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ABSTRACT: Traditionally a pursuit of large pharmaceutical companies, high-
throughput screening assays are becoming increasingly common within academic
and government laboratories. This shift has been instrumental in enabling projects
that have not been commercially viable, such as chemical probe discovery and
screening against high-risk targets. Once an assay has been prepared and validated, it
must be fed with screening compounds. Crafting a successful collection of small
molecules for screening poses a significant challenge. An optimized collection will
minimize false positives while maximizing hit rates of compounds that are amenable
to lead generation and optimization. Without due consideration of the relevant
protein targets and the downstream screening assays, compound filtering and
selection can fail to explore the great extent of chemical diversity and eschew valuable novelty. Herein, we discuss the different factors
to be considered and methods that may be employed when assembling a structurally diverse compound collection for screening.
Rational methods for selecting diverse chemical libraries are essential for their effective use in high-throughput screens.

The earliest efforts in drug discovery focused on crude extracts
from natural sources, and success relied mainly on trial and

error. Work in the middle of the last century established the
concept of a molecular disease,1moving drug discovery in a more
rational direction and toward screening compounds against a
molecular target. Natural products provided the majority of early
drugs and still remain as an invaluable source of chemicals for
screening, along with semisynthetic derivatives.2 In more recent
times, the advent of combinatorial chemistry provided a radical
increase in the number of available screening compounds, and
this was coupled with high-throughput screening (HTS) of large
chemical libraries.3 Despite many failures among the successes,
HTS remains a widely used method for initiating the process of
drug and chemical probe discovery.4-9 The concept of a drug-
like molecule has existed for many years10 and includes opti-
mized parameters for physicochemical properties as well as
functional groups to be avoided. This concept has been extended
to consider lead-like instead of drug-like molecules,11 and this
progresses naturally to the identification of hit-like molecules,
which are geared to provide true positive results in HTS assays
and yield a basis for lead generation.12 The vastness of chemical
space means that there are currently tens of millions of molecules
available for purchase and screening. Even using harsh filters to
remove unwanted compounds, there are on the order of a million
hit-like molecules available commercially.13,14 However, identi-
fying a representative subset of these molecules to screen is a
complex task, with multiple scientific, financial and logistical
considerations. While this Review is unable to comprehensively
cover the multifold aspects of library design, its aim is to highlight
the key issues that must be taken into account. This is now
important in academic groups and government laboratories as

well as in industry.15Here we review current methods for crafting
screening compound collections and outline the traps and
pitfalls. This will be done in three sections: compound sourcing,
compound filtering, and compound selection. Finally, we high-
light key challenges to the field and outline future directions.

’COMPOUND SOURCING

There are many suppliers of screening compounds, ranging
from small chemical suppliers with hundreds of compounds to
large ones with over a million compounds. Many collections of
small molecules have been analyzed for drug-like and lead-like
properties,13,14,16-18,19 and chemical supplier libraries are being
increasingly tailored toward these parameters. Details of themain
screening libraries from six chemical suppliers with varied
collections of over 300,000 screening compounds are reported
in Table 1. At present, all have a high pass rate for commonly
employed drug-like and lead-like filters. However, compound
collections turn over rapidly and should be analyzed in this way
prior to selecting suppliers. Compound prices per milligram vary
widely dependent on the number of compounds purchased and
the sample weight per compound required, with significantly
lower prices per compound if thousands or tens of thousands are
purchased. Theoretically, searching the entirety of currently
available chemical space encompasses the maximum commer-
cially available molecular diversity. In practice, a great expanse of
available diversity can be sampled by selecting large numbers of
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compounds from a few chemical suppliers with diverse collec-
tions. Many chemical suppliers also sell preselected diverse
libraries at reduced cost. These are generally selected by rational
means, but the compound filters employed may have been too
harsh or too lenient, dependent on the nature of the screening
assay and the target. Furthemore, although the compounds tend
to be relatively diverse, they are also much more likely to have
been tested by other laboratories, as they are for sale off-the-shelf.
Including novelty in HTS is a vital aspect of drug discovery, and
many firms offer unlisted libraries at higher costs, promising an
easier path to intellectual property rights.
Compound Databases. In addition to compound libraries

direct from chemical suppliers, there are a number of preas-
sembled online data repositories including ZINC20 (http://zinc.
docking.org/), emolecules (http://www.emolecules.com/), and
Chemspider (http://www.chemspider.com/). The ZINC repo-
sitory currently has the largest number of compounds, including
the complete compound libraries of the majority of chemical
suppliers. The number of molecules in the ZINC set of purcha-
sable compounds currently stands at just under 18.7 million.
However, chemical suppliers commonly update their libraries
every fewmonths, whichmay not be reflected in data repositories
such as ZINC. Despite the huge number of commercially avail-
able compounds, existing chemistry efforts have probed only a
small proportion of chemical space. The number of synthetically
feasible, drug-like molecules is estimated to be in excess of 1060,21

and only a small subset of this has been explored. For example,
data compiled in the Generated Database of Molecules (http://
www.dcb-server.unibe.ch/groups/reymond/gdb/start.html) de-
monstrate that less than 0.5% of the synthetically feasible com-
pounds comprised of up to 11 atoms of C, N, O, and F are
recorded in public databases as having been synthesized.22

Recent studies have also highlighted a large number of novel
ring systems that are not currently represented in available
chemical space.23 Many sources of diversity are excluded from
existing compound collections, and this greatly restricts the
coverage of chemical space. In particular, the bias against chirality
skews commercially available compounds toward flat com-
pounds with many aromatic rings.24 This in turn may negatively
impact on the properties related to absorption, distribution,
metabolism, elimination, and toxicity (ADMET) and increase
the risk of attrition during development.25 Shelat and Guy have
questioned whether libraries of synthetic molecules are suitable
for addressing novel drug targets and suggest the use of natural
products in HTS, particularly for phenotypic and high-content
screens.

Natural Products. The vast majority of commercially avail-
able small molecules are obtained from synthetic chemistry.
Nonetheless, nature is an important source of biologically active
compounds, and natural products have played a key role in drug
discovery efforts. It has been estimated that as many as 50% of
marketed small molecule drugs have been derived from natural
products.26 However, of the compounds currently approved for
marketing each year, natural products represent a much lower
percentage. Many chemical suppliers sell natural products for
HTS, and some chemical suppliers specialize in natural product
chemistry. The natural product collections are usually separated
from synthetic compounds and can be significantly more ex-
pensive. However, they can provide unique chemical structures
and may show more drug-like ADMET properties.27 Natural
products have proven particularly powerful as anticancer and
anti-infective agents2 and tend to be well suited to phenotypic
screening. Recent analysis shows that there are many ring
systems present in natural products that are not found in screen-
ing libraries, andmany have suggested that screening compounds
should be further biased toward biogenic scaffolds.28,29However,
the advantages of natural products must be balanced against their
often greater structural complexity that may lead to difficulties in
synthesis and purification of analogues during lead generation
and optimization. There is still great controversy over the relative
merits of screening natural products or natural product deriva-
tives versus screening libraries from combinatorial chemistry or
diversity oriented synthesis.30 Both have advantages and disad-
vantages, and thus HTS libraries commonly combine both
sources, though typically with more synthetic small molecules.
Recently, it has been suggested that compounds balancing the
properties of natural products and synthetic molecules may be
optimal.31

In summary, there are multiple sources of potential screening
compounds, and successful libraries typically strike a balance
between synthetic compounds and natural products. However,
although the growth in commercially available chemical space
should always be capitalized upon, many compounds are un-
suitable for screening in HTS assays and should be filtered out of
any quality screening collection.

’COMPOUND FILTERING

In order to obtain commercially available hit-like compounds,
computational filters are commonly used to remove compounds
with undesirable properties. Ideal drug-like and lead-like mole-
cules have differing properties, and these differ again from hit-like
molecules. In general, the physicochemical properties of a lead-like

Table 1. Details of the Screening Libraries for Six Chemical Suppliers, the ZINC Database of Purchasable Molecules, and the
Drugbank Database of Experimental Drugsa

compound source compound collection url no. of compounds % Lipinski passes % REOS passes

Asinex Gold and Platinum Collections http://www.asinex.com 364,407 79.6 73.0

Chembridge Express Pick Library http://www.chembridge.com 442,051 84.0 66.6

ChemDiv Discovery Chemistry http://www.chemdiv.com 789,603 73.8 72.1

Enamine HTS Collection http://www.enamine.net 1,116,406 90.7 79.6

Life Chemicals Stock http://www.lifechemicals.com 327,211 84.9 76.6

Vitas M Laboratories HTS Stock http://www.vitasmlab.com 476,184 75.1 65.8

Drugbank All Drugs http://www.drugbank.ca 4,886 71.4 51.7

ZINC Purchasable Compounds http://zinc.docking.org 18,671,085 87.2 73.1
aAll physicochemical properties were generated withQikprop, and filtering was performed with Canvas. The compound collection refers to the subset of
molecules that was analyzed from each source.
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molecule can be improved during lead optimization toward a
drug-like molecule by tailoring the lipophilicity. Similarly, the
binding affinity of a hit-like molecule can be improved during the
process of hit explosion to yield a lead-like molecule. However,
hit-like molecules must be large and lipophilic enough to gain
sufficient binding affinity that they can be identified in a screening
assay, but not so large that they have a very small probability of
binding. Larger and more complex molecules have a lower pro-
bability of exhibiting perfect shape and electrostatic complemen-
tarity with any given target, and this suggests that smaller and less
complex molecules will more commonly provide starting points
for drug development.32 An ideal hit molecule should also be
amenable to chemical elaboration, show reasonable levels of cell
permeability, and have a range of commercially available analo-
gues, some of which have also been tested in the same assay.
Computational Filters. There are numerous computational

filters used to mark compounds that may have problems due to
assay interference or downstream ADMET properties. The most
commonly used of these are physicochemical property filters that
specifically attempt to remove compounds that may lead to low
levels of drug absorption and distribution. An exception that is
ignored by these filters is compounds that are substrates for drug
transporters, which recent work suggests may be a significant
proportion of molecules.33 In addition to Lipinski’s well-known
rule of five,34 Ghose filters35 and Veber filters36 are commonly
employed to filter compounds. Noteworthy analysis has also
been performed by Walters,37 Oprea,38 Egan,39 Lee,40 Baurin,13

andMartin.41The key properties that determine drug absorption
and distribution for an oral drug are the lipophilicity measures of
the octanol/water partition coefficient (log P) and surface area of
the polar atoms in themolecule (PSA).42-44Analysis of trends in
launched drugs has highlighted a significant increase inmolecular
weight in the past 50 years, but a negligible increase in log P
values.45This is not surprising, as drugs with increased log P tend
to be more promiscuous binders and can thus be expected to
have a higher attrition rate in later development.46 However,
studying the most recent trends in molecules being synthesized
in leading drug discovery companies suggests an increase in both
molecular weight and log P.45This has been attributed to the fact
that more lipophilic drugs have the potential to be more effica-
cious, as they tend to have increased binding affinity. It has been
suggested that this may adversely affect drug attrition rates in the

future due to an increased likelihood of toxicity.47 However, as
discussed, larger and more complex molecules have a lower
probability of exhibiting perfect shape and electrostatic comple-
mentarity with any given target and are thus expected to show
greater specificity.32 This predicted increase in promiscuity due
to increased lipophilicity may thus be ameliorated by increased
complexity. Despite the noted increase in molecular weight,
there is great pressure during the development process to lower
the molecular weight, likely because larger molecules show reduced
passive absorption across cell membranes, increased number of
toxic pharmacophores, or rapidly metabolized moieties.48 One
caveat when filtering on lipophilicity or solubility is to note
whether experimental values or predicted values are being used.
Solubility predictions based on clog P values or PSA can be
accurate in some circumstances but are inaccurate in others and
tend to perform particularly badly for charged compounds.49

Charged compounds may be better represented by the octanol/
water distribution coefficient log D, which takes into account the
different protonation states. It is vital to carefully consider
whether compounds should be excluded on the basis of predicted
insolubility, when such predictions can be inaccurate.
One other significant method for marking ADMET risks are

the rapid elimination of swill50 (REOS) filters. As well as physi-
cochemical properties, REOS filters remove molecules contain-
ing certain functional groups, as described by SMILES or
SMARTS patterns.51 Some of these are shown in Figure 1. REOS
filters flag compounds containing functional groups that may
lead to false positives due to reactivity or assay interference,
which have long been noted as a problem in HTS efforts.52 They
also remove compounds containing functional groups known to
be risks for ADMET. However, it is important to note that many
known drug molecules fail the common physicochemical and
substructure filters. The Drugbank53 (http://www.drugbank.ca/)
contains structural data for over 1,350 FDA-approved small
molecule drugs and nearly 5000 experimental drug entries.
Analysis of the Drugbank experimental drugs is shown in Table 1
and reveals that only 71.4% pass all of the Lipinski filters and only
51.7% pass all of the REOS substructure filters. This data
highlights that compound filtering is used to reduce risk but will
also eliminate useful molecules from further consideration. More
recently, a Herculean analysis of compounds hitting multiple
orthogonal HTS assays has led to the identification of pan assay

Figure 1. Chemical structures used in compound filtering. Chemical structures of functional groups commonly used to remove compounds from
consideration in HTS assays. The functional group name and SMILES/SMARTS string used in the filter are reported.
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interference compounds (PAINS).54 As increasing amounts of
assay data from different HTS efforts around the world is
becoming publically available, a clearer picture of compounds
and functional groups that tend to yield false positives is
developing.55 This development is vital, as frequent hitters are
likely to be over represented in compounds from chemical ven-
dors due to an increased likelihood that they will be ordered as
analogues of apparent hits. Research has also specifically high-
lighted substructures that alert when a compound may be a
DNA-reactive genotoxin.56 While this may be acceptable in a
screening hit, it would almost certainly have to be removed in the
hit to lead process.
Physicochemical Property Filters. The majority of physico-

chemical property filters are simple to understand. Eight drug-
like filters and one lead-like filter are described in Table 2. There
is general agreement, although the exact properties vary slightly.
Any of these rules can be used, alone or in conjunction, to filter a
set of compounds, and it is worth noting that many of the
properties are highly correlated, such as log P and PSA. However,
due consideration must be given to the details of the screening
assay and the nature of the target as this affects the desired phy-
sicochemical properties of the screening compounds. For exam-
ple, a fragment with a molecular weight of 200 may be too small
to show measurable binding in typical HTS assays or compete
with high-affinity ligands. However, if the assay is tailored to
identify smaller molecules, fragment-based methods have been
shown to be very useful, with higher ligand efficiencies57 and a
greater potential for chemical elaboration and linking.58 Com-
pound filters for fragments are completely different from filters
for traditional small molecules. Phenotypic screens also place a
different pressure on the screening library, with considerably
more emphasis on cell permeability at the initial stage. As well as
the importance of the assay format, the composition of an ideal
screening library also varies with the protein target.Many existing
screening libraries and are tailored toward screening against a
narrow range of targets such as kinases and GPCRs.59 A screen-
ing library tailored toward screening against protein-protein
interactions would have a very different profile. Recent analysis
collected in the TIMBAL database23 suggests that inhibitors of
protein-protein interactions have higher molecular weights and
lipophilicity than inhibitors of buried binding sites, as well as a
greater number of hydrogen bond donors, hydrogen bond
acceptors, and rotatable bonds. While the general applicability
of this approach to generating approved drugs remains to be
seen, it is an important consideration. As well as traditional
physicochemical property filters, there are now a number of flags
for more complex properties.60 Increasing evidence shows that
small molecules may cause nonspecific protein aggregation61 and

thus lead to false positives in some assays. Experimental work has
shown that a significant number of compounds may act in this
way and potential risks can be identified and removed from
consideration.62 There are also experimental methods to identify
compounds that are reactive, such as ALARM NMR,63 and also
for compounds containing fluorophores.64 However, while the
latter is of great importance for fluorometric assays, it is of little or
no importance in other assays. Experimental studies such as
PAINS have identified molecular scaffolds that form the basis for
promiscuous inhibitors and thus yield false positives in many
screening assays.54,65 Defining the mechanism underlying the
promiscuous inhibition of these PAINS compounds will no
doubt provide significant but interesting challenges in the next
decade. In addition there are now methods for predicting com-
pounds that disrupt particular screening assays,66 but these
methods are approximate and should be used with this under-
standing.
Substructure Filters. Many filters simply remove com-

pounds with specific functional groups that are known to inter-
fere with HTS assays or cause problems later in drug develop-
ment. The importance of removing these functional groups has
been discussed in numerous papers.37,52 The majority of screen-
ing libraries contain very few if any of the most troublesome
compounds such as aldehydes, epoxides, or R-halo ketones. The
prevalence of these three groups in the six supplier databases is
on average 0.3%, 0.01%, and 0.04%, respectively. However, many
still contain potential risks such as isolated alkenes (12.3%), Rβ-
unsaturated carbonyls (8.5%), or nitro groups (7.6%). The
prevalence of the more common functional groups can be seen
in Table 3. Each of these substructures is a potential liability for
the following reasons:
• 1,2-dicarbonyl: metabolically unstable/potential toxicity
due to mutagenicity

• 1,2-dimethoxy: prone to oxidation yielding reactive qui-
nones.

• 1,4-dimethoxy: very prone to oxidation yielding reactive
quinones

• Rβ-unsaturated carbonyl: prone to reactivity by acting as a
Michael acceptor

• acetal: metabolically unstable due to acetal hydrolysis
• acylhydrazide: metabolically unstable due to acyl hydrolysis
• aliphatic ketone: metabolically unstable due to nucleophilic
attack

• alkene: metabolically unstable due to epoxidation
• aminothiazole: potential toxicity
• anthracene/phenanthrene-like: known DNA intercalation
• nitro group: prone to reduction yielding reactive species/
potential hepatocarcinogens

Table 2. Details of Physicochemical Property Filters To Mark Drug-like and Lead-like Compounds for Screening Libraries

MW PSA (Å2) HBA HBD log P rotatable bonds no. of atoms charge

Lipinski (1997) e500 0 to 10 0 to 5 e5.0

Ghose (1999) 160 to 480 -0.4 to þ5.6 20 to 70

Oprea Drug-Like (2000) 2 to 9 0 to 2 2 to 8

Egan (2000) e130 -1.0 to þ5.8

Walters (2000) 200 to 500 e120 0 to 10 0 to 5 0 to 8 20 to 70 -2 to þ2

Oprea Lead-Like (2001) e450 0 to 8 0 to 5 -3.5 to þ4.5

Veber (2002) e140 0 to 10

REOS (2002) 200 to 500 0 to 10 0 to 5 -5.0 to þ5.0 0 to 8 -2 to þ2

Martin (2005) e150
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• methylenedioxy: metabolically unstable due to acetal hydro-
lysis/prone to oxidation yielding reactive quinones

• thiourea: metabolically unstable due to flavin oxidation/
potential onspecific protein binding

• unflanked pyridyl: potential interference with cytochrome
P450s due to metal ion coordination

However, many of these functional groups do appear in
certified drug molecules,67 as shown in Table 3, and many show
no activity in HTS assays.68 When eliminating functional groups
due to any ADMET risk, the nature of the functional group
should be considered. It may be easier to replace a potentially
risky side-group at the hit-to-lead stage than a potentially risky
core group. For example, a nitroaromatic side-group can be repla-
ced with another similar side-group such as a trifluoromethane-
sulfonyl side-group to retain or increase binding affinity without
disrupting the structure of the molecule.69 The same is not true
for a 2-aminothiazole core group, as its shape and hydrogen bond-
ing characteristics are more difficult to mimic without disrupting
the structure of the molecule. Despite this, scaffold hopping can
be achieved and is increasingly common.70 When eliminating
functional groups due to the risk of cytotoxicity, it is important to
consider the target, as some therapies (for cancer in particular)
are damaging to cells. For example, 2-aminothiazoles may lead to
cytotoxicity, but they form the basis of a number of potent CDK
inhibitors for cancer therapy.71 Functional groups implicated in
organ toxicity may also be acceptable in chemical probe discovery.
Filtering Tools. There are a number of software packages used

to predict chemical properties and/or filter screening compounds.
This includes Accelrys’ Pipeline Pilot,72 MOE’s sdfilter,73 Schro-
dinger’s qikprop,74 and Openeye’s filter,75 which is freely available

to academics. Once the filtering process is complete, it is important
to inspect a subset of the resulting structures. No matter how
sophisticated the filtering criteria and algorithms, a scientist should
always ensure that the remaining compounds meet their require-
ments. Despite the importance of filtering compounds to prevent
screening potentially problematic compounds, it is common to
screen a small proportion of “wildcards” that do not pass all of the
filters. As seen in Tables 1 and 2, many drug molecules do not pass
the drug-like or lead-like filters and contain significant proportions
of functional groups that are commonly removed by HTS filters.
For example, the REOS rule to exclude compounds withmore than
four joined rings removes all steroids and nearly 10% of the Drug-
bank experimental drugs. It is important to realize that the process
of compound filtering is about minimizing risk and downstream
expenditure rather than maximizing hit rate. For example, reactive
groups may present the risk of false positives, but work has shown
that this is not always the case.68 In some cases, reactive groups can
act as covalent inhibitors, inactivating the target by binding irrever-
sibly, and thus provide an advantage over noncovalent inhibitors.
However, this activitymay be difficult to extract fromHTS data as it
can be hard to discriminate from unwanted reactivity. Potentially
reactive compounds should remain, at most, a small percentage of
any screening library, unless there is a clear plan to extract useful
data on covalent inhibition from the screening assay.
In summary, it may be necessary to rethink the process of

designing libraries for screening against the more diverse range of
targets now being considered. Research at Harvard,76 the
NIH,6,77 and the DDU in Dundee9 among others has shown
that HTS is feasible in a nonindustrial center and can be vital in
developing treatments for neglected diseases. While such drug
development projects must also select screening compounds
with care, many of the functional group and physicochemical
property filters are unsuitable for screening efforts aimed at
development of chemical probes. Compounds causing assay
interference or low solubility should be avoided, but compounds
causing liver toxicity or poor oral absorption may be acceptable.
Recent analysis suggests that the nature of screening hits is
shifting to larger and more lipophilic molecules as a result of the
increased use of in vitro assays over in vivo assays.78 This is
expected to shift or widen the nature of screening libraries. How-
ever, the exact nature of the assay and the target must be
considered when selecting compound exclusions as, for a diver-
sity library aiming to span multiple assays and targets, it may not
be appropriate to remove all potential risks. A balance must be
reached between filtering out all compounds that are a risk in any
drug development program and only filtering compounds that
are a risk in all programs. There is now a critical mass of published
data highlighting risks for compound interference, and this can
easily be applied to hits post screening, along with experimental
methods to detect false positives such as dose-response plot-
ting. This should ensure that screening libraries take advantage of
the enormous diversity in chemical space, while assessing risk
appropriately. With respect to chemical diversity, chemical
suppliers will only provide chiral compounds if there is a market
for them, and thus filtering out chiral compounds from screening
libraries will drive the purchasable chemical space further in this
direction and away from biogenic chemical space.

’COMPOUND SELECTION

Aggressive filtering may remove up to 50% of compounds
from consideration, but huge numbers of commercially available

Table 3. Percentage of Compounds Failing Common Drug-
Like Filters for Unfavorable Physiochemical Properties and
Unwanted Substructures for the Six Combined Chemical
Supplier Libraries, the ZINC Database of Purchasable Mole-
cules and the Drugbank Database of Experimental Drugsa

combined suppliers Drugbank ZINC

clog P > 5 15.8 7.0 10.7

HBA > 10 3.8 23.0 6.7

HBD > 5 0.0 13.1 0.1

MW > 500 4.9 13.3 1.7

PSA > 150 1.8 22.0 3.3

rotatable bonds >10 1.5 20.3 2.5

isolated alkene 9.1 12.3 8.7

Rβ-unsaturated carbonyl 8.5 8.5 6.9

1,2-dimethoxy 7.6 6.0 7.6

nitro 7.4 6.6 6.5

acylhydrazide 4.0 4.6 4.1

aminothiazole 4.0 4.8 3.1

thiourea 3.3 4.3 1.6

anthracene/phenanthrene-like 3.1 5.9 1.2

unflanked pyridyl 3.1 5.9 2.5

acetal 2.7 13.0 2.0

methylene-dioxy 2.3 4.6 1.5

aliphatic ketone 2.1 10.6 2.0

1,2 dicarbonyl 1.6 5.6 1.0

1,4-dimethoxy 1.5 4.5 1.6
aAll physicochemical properties were generated with Qikprop and
filtering was performed with Canvas.
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compounds still remain. The main aim of compound selection is
to pick a subset of these compounds for testing. In general, it is
wasteful to test many compounds with similar structures in front-
line assays, at the expense of more diverse compounds. Analysis
has shown that if a compound is biologically active, a molecule
with very high similarity will have a similar biologically activity,
and thus testing the second molecule in the frontline assay is
unlikely to be worthwhile.79,80 It is thus common to select a struc-
turally diverse subset of compounds that represents the chemical
space being considered. However, chemical space grows very
rapidly with molecular size, and in 200 years of chemical
synthesis we have covered only a tiny fraction of chemical space
up to a molecular weight of 500. The biggest screening libraries,
which are of the order of tens of millions of molecules, can never
hope to cover this space. Approaching compound selection in a
sensible manner is thus very important.81

Measuring Chemical Diversity. Molecular similarity is a key
prerequisite in assessing molecular diversity.82 There are many
different techniques to measure whether two compounds are
similar,80,83 but none of them are entirely satisfactory. From a
pharmaceutical perspective, the ideal metric would predict that
two compounds are similar if they elicit the same biological effect
by hitting the same biological target and binding in the same
pose. Unfortunately such a metric does not exist. Currently used
metrics predict that two compounds are similar if they have simi-
lar chemical connectivity or similar shape and electrostatic form.
One important issue in assessing chemical similarity is that a
compound can be very different in its various conformations, tau-
tomers, and protonation states. Two compounds that are calcu-
lated to be similar in specific tautomeric states may be calculated
to be different in other states. However, there are numerous com-
putational methods for the enumeration of protonation and
tautomeric states. This includes Schrodinger’s Ligprep,84 the
Openeye toolkit,75 CCG’s MOE,73 Tripos Sybyl,85 and Accelrys’
Discovery Studio.72 Three of the most common methods for
predicting similarity are fingerprint,86 shape-base,d87 and phar-
macophore70 methods. These methods are commonly used
in virtual screening when a known active compound has been
identified. Fingerprint methods are relatively simple and usually

two-dimensional. Eachmolecule is assessed for a number of atom
and bond connectivities. Each of these connected units is termed
a bit/key, and the combination of bits/keys that are present in a
given molecule is its fingerprint. Two molecules with similar
fingerprints have similar atoms in similar bonding environments
and are likely to bind in similar ways to a protein target. There are
a number of fingerprinting techniques as well as a number of
atom-typing schemes and close reading of the current literature is
recommended before selecting a method, as this is still a rapidly
developing field.88 Recent analysis has shown that atom-type
based radial fingerprints perform well,89 but other work suggests
that fingerprints based on physicochemical properties or phar-
macophores may perform better.90 Different fingerprinting
methods can yield very different similarities, and thus an exact
comparison with literature is not always appropriate. There are
also a number of similarity/difference metrics,91 and while the
Tanimoto metric is most commonly used, close reading of the
current literature is again recommended. The molecules in
Figure 2 were analyzed using radial fingerprints based on daylight
atom types using Schrodinger’s Canvas software, and Tanimoto
similarity scores were then generated. As can be seen, molecule
with a high similarity such as A and B are very similar and would
likely give similar assay results, whereas molecule A and D are
significantly different and should ideally both be tested in a
frontline assay. Shape-based methods compare molecules by
analyzing whether they have the same shape and electronic form.
This is implemented in Openeye’s ROCS and EON software,75

which is widely used and is freely available to noncommercial
groups working toward public disclosure.92 Pharmacophore meth-
ods have the obvious advantage of including the three-dimensional
geometry of the molecules. As noted, chemical similarity is a very
important concept in assessing chemical diversity. While three-
dimensional methods have the potential to provide a much more
accurate model of molecular similarity, there is great difficulty in
applying them when the bioactive conformation is unknown, as is
the case in diversity analysis. Thus, two-dimensional methods such
as fingerprinting remain the tool of choice at present.
Rational Selection. Once a set of compounds has been

analyzed on the basis of similarity, it is possible to select a diverse

Figure 2. Example of similarity between compounds. Four compounds and the Tanimoto similarity between them. The compounds were assigned
radial fingerprints using Schrodinger’s Canvas software at 64-bit precision using daylight-invariant atom types.
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set of compounds. In some cases it is possible to consider the
average similarity between compounds and optimize this as an
objective function. However, this requires generation of an N by
N similarity matrix, which may become prohibitively large as N
increases.93 Heuristic clustering methods are thus more com-
monly used.93 Such methods include k-means clustering,94

sphere exclusion,95 directed sphere exclusion,96 and maxmin.97

The aim of such methods is that, for each selected molecule, no
similarmolecules are then selected. This is illustrated using a two-
dimensional representation for a simple sphere exclusionmethod
in Figure 3. The centroid molecules R, B, G, and Y represent all of
the molecules within a similarity of greater than 0.2. Iterative
selection in this chemical space will finally encompass all mole-
cules. A secondary aim of compound selection is to pick clusters
of two or more structurally similar compounds in each cluster,
such that the initial assay results immediately provide some
QSAR data to inform decision-making. In many cases the aim of
compound selection is to augment an existing compound collec-
tion. In this case, the existing compound structures can be used as
an input to the diverse selection algorithm. This can be used to
select new compounds that “fill the gaps” in chemical space.
Despite this usefulness of diversity selection methods, the use of
virtual screening methods should always be considered in a
resource constrained environment, with sufficient knowledge
of the protein target and its structure. Both molecular docking98

and pharmacophore analysis99 can improve hit rates in HTS
assays and are commonly used.
In summary, the process of selecting a representative subset of

compounds from a large collection relies heavily on the ill-
defined concept of molecular similarity. However, the concept is
vital as it allows lead molecules to be identified at reduced cost
and effort through hit identification and explosion.

’CONCLUSIONS AND DISCUSSION

Shrewd selection of screening compounds is one of the most
vital enabling steps in the drug development process. There are
no strict rules, only rules of thumb. No compound filters are
globally applicable, and no diversity metrics or selection methods
can be proven as optimal. However, misapplication of filtering
can reduce chemical diversity within a project and preclude many
novel discoveries. Conversely, careful filtering reduces the risk of

false positives and downstream ADMET failures, while sensible
compound selection can yield libraries that cover larger regions
of chemical space and increase true positive hit rates. ADMET
concerns may not be as important for chemical probes developed
in academic groups, but solubility, cell permeability, and poten-
tial chemical reactivity are all still important considerations, and
chemical diversity is still highly desirable. There are numerous
sources of compound interference, which plague HTS assays.
However, recent large-scale analyses have identified molecular
scaffolds that appear as frequent hitters in numerous assays. The
resultant data is very useful and should be incorporated either
into library filtering or triaging of assay data. However, if every
group used the same filters, then every group would test similar
compounds and many useful molecules could be missed. Large
screening libraries in industry include a substantial fraction of
commercially available compounds. Thus, if an academic group
sources from commercial vendors and uses traditional industry
filters, then they will develop smaller relatives of the big industrial
libraries with little or no chemical novelty. It may thus be advi-
sible for academics to consider synthesizing or purchasing mole-
cules in untapped regions of chemical space, particularly em-
bodying multiple stereogenic centers, to maximize chemical
diversity and increase the number of unique chemical entities
tested. Diversity should also bemaximized by considering natural
products and biogenic scaffolds, which may show improved
ADMET properties. At present, commercially available chemical
space is heavily skewed toward flat compounds with many
aromatic rings. While this makes synthesis more tractable, it
excludes many sources of chemical diversity and shifts screening
libraries away from biogenic scaffolds and toward pharmacolo-
gical risks. These risks have been recently quantified and the
results are compelling.25 This problem will only be remedied by
customers changing their practices to incentivise chemical sup-
pliers.

A screening library must have the correct balance of molecular
weight and log P, tailored to the constraints of the assay. Once a
true positive hit has been identified, increasing size and complex-
ity in tandem with lipophilicity is expected to increase both
affinity and specificity. It is important to note that the ideal range
of chemical and physicochemical properties of an HTS library
differs when considering different assay platforms or protein
targets. An optimal screening library for a fragment-based screen
or targetting a protein-protein interaction will thus be different
from a traditional kinase set and should be carefully designed.
Due to the economies of scale with respect to purchasing a
screening library, cost sharing between academic and government
laboratories can increase the scope of screening efforts. Some
companies may be willing to share portions of their screening
libraries, in return for IP rights, on projects focused on commer-
cially viable, validated targets. With respect to compound selec-
tion, there are numerous existing methods for measuring chemi-
cal similarity and selecting diverse sets of compounds, but no
ideal metric can exist. While current work has highlighted the
best applications of fingerprinting, shape-based, and pharmaco-
phoremethods, these are all evolving fields, and no technique can
be proven superior in all cases. However, compound selection
through analysis of molecular similarity reduces the size and cost
of screening libraries while retaining diversity.

One question of great importance that has not been addressed
in great detail is how many compounds need to be tested to
ensure a sufficient coverage of chemical space.100 This question
can be answered by considering the number of lead series desired,

Figure 3. Clustering of compounds in chemical space. A two-dimen-
sional representation of chemical space being partitioned into clusters of
similar compounds using a simple sphere exclusion method.
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the false positive rate, the number of molecules assayed per
cluster, and the hit rate of the primary screen. Such an analysis
predicts that on average one lead series can be developed from
testing approximately 350,000 diverse compounds in a typical
HTS screen.101 This number applies only to leads successfully
developed into marketed drugs and is thus not appropriate when
considering chemical probe discovery. However, it is commonly
accepted that some targets are more druggable than others such
that this value can vary greatly and that some screens will yield no
successful lead series. Due to the importance of HTS in the
development of new drugs and chemical probes, high-quality
screening libraries are a key asset of any research group, and there
are many factors to be weighed. However, each library will be
unique and should be suited to the particular needs of the
screening group. With the rapid increase in the number of
purchasable molecules, the almost limitless volume of chemical
space and the proliferation of HTS groups, rational selection of
diverse hit-like compounds seems likely to continue as a lynchpin
of drug development.
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practice tends to quantify the similarity
in structure

Substructure filter: a computational filter used to remove
molecules containing molecular substruc-
tures that are considered to give rise to
non-specific binding or deleterious phar-
macodynamic properties.
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