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RATIONAL MOORE G-SPACES 

PETER J. KAHN 

ABSTRACT. This paper obtains some existence and uniqueness results for 
Moore spaces in the context of the equivariant homotopy theory of Bredon. 
This theory incorporates fixed-point-set data as part of the structure and so is 
a refinement of the classical equivariant homotopy theory. To avoid counterex-
amples to existence in the classical case and to focus on new phenomena involv-
ing the fixed-point-set structure, most of the results involve rational spaces. 
In this setting, there are no obstacles to existence, but a notion of projective 
dimension presents an obstacle to uniqueness: uniqueness is proved, subject to 
constraint on the projective dimension, and an example shows that this con-
straint is sharp. Various related existence results are proved and computations 
are given of certain equivariant mapping sets [X, Y], X an equivariant Moore 
space. 

1. Introduction. This paper presents some existence and uniqueness results 
for Moore spaces in the context of equivariant homotopy theory. In addition it also 
computes certain equivariant mapping sets [X, YI, in which X is an equivariant 
Moore space. 

Throughout, G will denote a finite group and all spaces, maps, homotopies, 
and actions will be pointed. By equivariant homotopy theory we mean the theory 
developed, for example, by Bredon [BI (or by Waner [Wn]). Thus, we consider 
not only G-spaces X, but we also systematically include information about all the 
H-fixed-point sets X H as H ranges over the subgroups of G. 

Following Bredon [BI, a convenient way to do this uses the orbit category Oa, 
whose objects are the left coset spaces G/H, H ~ G, and whose morphisms are 
their G-maps. For example, the (reduced) homology H.X of a G-space X is taken 
to be a certain contravariant functor from Oa to (graded) abelian groups. On 
objects G/H of Oa, H.X satisfies 

H.X(G/H) = H.(XH ). 

Homotopy groups 'JI..X are defined analogously (see 2.1). 
A contravariant functor from Oa to abelian groups is called an Oa-module. Let 

M be one such, and let n ~ 2 be an integer. A Moore G-space of type (M, n) is, 
then, a G-space X such that 

(1.1) 
(1) XH is I-connected, for all H ~ G, 
(2) HnX ~ M, as Oa-modules, 
(3) HiX = 0, i# n. 
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246 P. J. KAHN 

We also say that X realizes the Oa-module M (in degree n). 
When G = e, the trivial group, the above definition reduces to the standard 

nonequivariant one. Moore G-spaces, as defined above, play a central role in the 
notion of equivariant homology decomposition [K2]. 

If H-fixed sets XH are disregarded in (1.1) when H i= e, then we obtain what 
we call a "classical" Moore G-space. More precisely, let M be a ZG-module and 
n ~ 2. Then a classical Moore G-space of type (M, n) is a G-space X such that 

(1.2) 
(1) X is I-connected, 
(2) HnX ~ M, as ZG-modules, 
(3) HiX = 0, i i= n. 

Now even in this simpler classical case, general questions of existence and uniqueness 
are quite difficult. There are a number of special existence theorems (e.g., [A, VD 
and some nonexistence results (e.g., [CI, KID, but no general picture has emerged. 

In this paper, we wish to avoid all these classical obstacles and focus on the 
simplest phenomena that may lie beyond them when H-fixed sets are taken into 
account. Accordingly, we consider the following conditions. 
(1.3) 

(1) Abelian groups are vector spaces over the field Q of rational numbers. 
(2) Spaces are I-connected, rational CW complexes. 

We shall invoke these restrictions (explicitly) in many of our results below. Note 
that we intend (2) to apply, in particular, to all the fixed sets of a G-complex. 

Conditions (1.3) do suffice to kill the unwanted, classical obstacles (see Corollary 
E). Indeed, they kill all serious obstacles to existence of general Moore G-spaces 
of type (M,n). When each M(G/H) is finite-dimensional, H :0:::; G, this follows 
immediately from a result of Triantafillou [T2] on the existence of rational G-spaces 
with prescribed cohomology. When M is arbitrary and n ~ projective dimension 
M, the assertion is a specialization of Theorem 3.3. (We describe the notion of 
projective dimension of Oa-modules in 2.2.2.) In §4 we give some details, and, 
combining the above with a realizability result (Theorem 3.1) first discovered by 
W. Luck [L], we obtain a refinement (see Theorem 4.1), namely, assuming (1.3), 
every free Oa-resolution may be realized by a Moore G-complex. 

The simplest nonclassical phenomenon that is not trivialized by conditions (1.3) 
involves the projective dimension of Oa-modules mentioned above. The reader is 
referred to [TI] for the development of a number of important properties of this 
invariant. For example, in contrast to the classical projective dimension of Q[G]-
modules, which is always zero, the projective dimension of Oa-modules may be 
large, even in the presence of conditions (1.3). Note, however, that for each G, 
there is a nonnegative integer l(G) :0:::; log21GI which is a bound on this projective 
dimension. This fact is first stated and proved in [R & T], but it is already implicit 
in the constructions of [TI]. We define l(G) in 2.2.2. 

This phenomenon presents the basic obstacle to our constructions. Theorem 
B shows that the obstacle is essential. We get around it by requiring that the 
projective dimension be bounded by (approximately) the degree n of the Moore G-
space X. This condition arises from a simple stable range fact (Lemma 3.10) used 
in the constructions; it is always satisfied by sufficiently high suspensions ,,£1 X. 
Hence, we shall refer to it as a stability condition. 
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THEOREM A (COROLLARY 4.6). Assume (1.3). All Moore G-spaces realizing 
a fixed Oa-module M have the same stable G-homotopy-type. In fact, if 

n ~ projdimM + 1, 
then all Moore G-spaces of type (M, n) are G-equivalent. 

The stability condition n ~ proj dim M + 1 is needed for uniqueness, as the next 
result shows. 

THEOREM B (THEOREM 5.1). Let G = Z/2 EB Z/2. There exists an Oa-
module M of projective dimension two and two Moore G-spaces L1, L2 of type 
(M,2) that are not G-equivalent. Of course, by Theorem A, L: L1 is G-equivalent 
to L: L2 • 

For the next result, we need, for any G-spaces X, Y, the set [X, YJ of G-homotopy 
classes of G-maps X -+ Y, and the abelian group {X, Y} = colim[L:1 X, L: l YJ. 
We also need, for any Oa-modules M, N, the abelian group Hom( M, N) of natural 
transformations M -+ N, and Exti(M, N), where Exti is the ith derived functor 
of Hom. Let Exti = 0 for i < O. 

THEOREM C. Assume (1.3). Suppose that Ki is a Moore G-space of type 
(Mi' ni), i = 1,2. Then there is a natural isomorphism of abelian groups 

{Kl.K2} ~ Extn2-nl(M1,M2)' 
When nl = n2 = n, this is just the map induced by fIn. The natural map 
[Kl. K2J -+ {Kl. K 2} is 

(1) surjective, if2n2 - n1 ~ projdimM1 + 1, 
(2) bijective, if 2n2 - n1 ~ proj dim M 1 + 2. 
Theorem A is an easy consequence of Theorem C (see end of §4). 
Notice that in the example of Theorem B the natural map [L1' L2J -+ {Ll. L2} 

is not surjective and that the required inequality in (1) above indeed fails to hold 
by one. 

As a "best-case" illustration, we next specialize to the case in which M has small 
projective dimension. We do not assume (1.3). The method of proof here is simpler 
than that used for the more general results above, and the results are stronger. 
Both are patterned after the nonequivariant case (cf. [H, pp. 29-30]): 

THEOREM D (THEOREM 4.2). Choose any Oa-module M such that 
proj dim M ~ 1. 

Then 
(1) Moore G-spaces of type (M, n) exist and are unique up to G-equivalence. 
(2) Let X be a Moore G-complex of type (M, n) and Y any G-space. Then there 

is a short-exact sequence of groups (abelian groups, if n > 2) 
Ext1(M,1!:n+1Y ) >-+ [X, YJ - Hom(M,1!:nY)' 

A generalization of (2)-an equivariant Federer spectral sequence-is given in 
[K2J. 

Assume (1.3) and that G is a cyclic p-group. Then, the conclusions of Theorem 
D apply to every Oa-module, because all such have projective dimension ~ 1 (see 
[T3]). 

Theorem D can be applied to obtain a result about classical Moore G-spaces. 
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COROLLARY E. Let G be any finite group and Many ZG-module with 
projdimM < 00. Then classical Moore G-spaces of type (M,n) exist and have 
unique weak G-homotopy type. The same result applies when M is an arbitrary 
QG-module. 

By weak G-homotopy type, here, we mean the relation generated by G-maps 
which are weak homotopy equivalences. Existence in this case is well known (cf. 
[Sw]), so this corollary contributes only a uniqueness assertion. 

At this point, we want to mention some connections with work of Triantafillou 
[Tl] and Rothenberg and Triantafillou [R & T] on equivariant minimal models. 
The homological algebra of Oa-modules plays a basic role in [Tl], and we have 
profited considerably from the analysis of projective Oa-modules in that paper. 
It is possible that some of our results can be reformulated or derived within the 
minimal model theory of [Tl] or [R & T], but that machinery is substantially 
more complex than the direct constructions of §3. So, for the "stable" results of 
this paper, we prefer the present approach. For more elaborate, nonstable examples 
along the lines of Theorem B, or for purposes of classifying Moore G-spaces, the 
machinery of [Tl] or [R & T] may well be useful. 

We now give a description of the organization of this paper and of some subsidiary 
results that may be of independent interest. 

§2 contains preliminary material: general terminology and constructions involv-
ing Oa-objects, Oa-sets, G-spaces, Oa-modules, and Oa-chain complexes. In ad-
dition, there are two results that deserve mention. First, for Oa-chain complexes 
C, D (C bounded), we obtain (in 2.2.3) a spectral sequence for Hom(C, D) ex-
actly analogous to the standard one (e.g., as in [M, pp. 340-342]). Secondly, we 
extend slightly (in 2.5) a result of Bredon [B, Lemma 6.5, p. II-15] which enables 
us to select unique G-homotopy classes of G-maps that satisfy certain algebraic 
conditions. 

§3 contains our basic results, namely, theorems on realizing certain rational Oa-
chain complexes, Oa-chain maps, and Oa-chain homotopies. These lead to a clas-
sification theorem for stable G-mapping sets (Corollary 3.6), which when combined 
with the spectral sequence of 2.2.3, permits some computations (Corollary 3.9). 
These do not necessarily involve Moore G-spaces. 

In addition we present an equivariant version (Theorem 3.1) of a realizability 
theorem of Wall [W, p. 132], which we apply to obtain some of our other results. 
A general form of this appeared originally in the Diplomarbeit of W. Luck [L]. 

§4 obtains all the theorems described in the above introduction, except Theorem 
B. 

§5 constructs the example in Theorem B. The construction is quite long and 
essentially independent of §§3, 4. Two features of the construction deserve some 
comment. First, the role played (in Step 5) by our "generalized Hopf invariant" 
underscores the stable nature of Theorems A, C. Secondly, the appearance of the 
"obstruction" group Ext2(M,M) = Ext2(M,1!:3L2) in §5 is related to the equivari-
ant Federer spectral sequence mentioned in connection with Theorem D. In fact, 
it was the appearance of such groups in the spectral sequence that first suggested 
how we might find the desired example. 

The author would like to thank J. P. May for some helpful comments. 
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2. Preliminaries. Much of the material we present here is explained in more 
detail in [B]. 

2.1. Oa-objects. G will always denote a finite group. Let Oa be the category of 
canonical orbits of G, that is, the category whose objects are the left-coset spaces 
Gj H, H ~ G, and whose morphisms are their G-maps. An Oa-object in a category 
C is a contravariant functor from Oa to C; an Oa-map is a natural transformation 
of Oa-objects. Given Oa-objects, A" B in C, the set of Oa-maps A, -+ B will be 
denoted Hom(A" B). The category of all Oa-objects and Oa-maps in C will be 
denoted 08(C). 

When C is well known, we may adapt our terminology accordingly. For example, 
when C is the category Sets of sets and functions or Top.. of pointed spaces and 
pointed maps, we speak of Oa-sets or Oa-spaces, respectively. If R is a ring and 
C = MR is the category of (left) R-modules and their homomorphisms, then we 
may speak of Oa-R-modules. When R is fixed and clearly understood, or when 
R = Z, we may speak simply of Oa-modules. 

One particularly simple type of Oa-object in C is obtained by choosing an object 
X in C and defining a contravariant functor Oa -+ C by the rule a -+ idx for every 
morphism a in Oa. We call such an Oa-object constant and denote it by the same 
symbol X. 

In some cases, this construction has an important generalization, involving the 
so-called "fixed-point functor" 11). In particular, suppose that C is a category for 
which there is a corresponding category G-C, whose objects belong to C and are 
endowed with a (left) G-action and whose morphisms are the morphisms of C 
respecting this action. Any of the specific categories mentioned above is of this 
type. Then, there is a functor 11): G-C -+ 08(C) satisfying II)X(GjH) = XH, 
11)(1: X -+ Y)(GjH) = fH: XH -+ yH. We may combine II) with various standard 
functors in the following way. 

Suppose that F: C -+ D is a (covariant) functor, and use the same name for 
the functor 08(C) -+ 08(D) induced by composition with F. We then obtain a 
composite 

G - C ~ 08(C) ~ 08(D), 

which we denote by E. For example, when C is Top .. and F is the reduced (singular) 
homology functor fin: Top .. -+ Mz, then Hn is the homology functor used in the 
introduction. Similarly if F equals the homotopy functor lI"n. 

For other examples, C may consist of pointed CW complexes and cellular maps 
and F may be the functor taking each CW complex to its n-skeleton, or F may be 
the reduced cellular chain complex functor C ... Or, let C = Sets, and let F: Sets-+ 
MR denote the free-module functor (which, in fact, we will denote by F). Then, if 
X is a G-set, we write F 0 II)X = E[X] and call it the free Oa-module on the G-set 
X (or on the basis X). If X indexes the n-cells of a G-complex (resp., rational G-
complex) K, then there is an isomorphism of Oa-Z-modules (resp., Oa-Q-modules) 
CnK ~ E[X]. Bredon shows that E[X] is projective as an Oa-R-module, for R = Z 
[B, p. 1-23]. The same result and argument hold for any ring R, as do the fact and 
proof that 08(MR) has sufficiently many projectives [B, pp. 1-26, 27]. 

2.2. Oa-chain complexes. Since the category 08(MR) is clearly an abelian 
category, there is a corresponding category of chain complexes in 08(M R ), denoted 
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Ch( 0a(MR)). Alternatively, this last may be regarded as the category of OG-objects 
and OG-maps in Ch(MR)' 

2.2.1. The usual terminology for chain complexes applies here. Thus, chain 
maps, chain homotopies, and chain equivalences have their usual meaning. We 
write 0 ~ D to signify that 0 is chain equivalent to D. If 0, D are two chain 
complexes, [0, D] denotes the abelian group of chain maps 0 --t D modulo the 
relation of chain homotopy. 

A chain complex 0 is (i) free, (ii) projective, (iii) bounded, (iv) finite-dimensional, 
(v) k-trivial, provided that each 0i is (i) free, (ii) projective, (iii) 0, for Iii suffi-
ciently large, (iv) 0, for i sufficiently large, (v) 0, for i :::; k, respectively. The full 
subcategory of all k-trivial chain complexes will be denoted Chk( 0a(MR)). We 
shall be particularly interested later in ChI(Oa(M R)). 

If M is an OG-module, and nEZ, let M(n) denote the chain complex which is 
M concentrated in degree n. A degree n resolution of M is an (n -i)-trivial chain 
complex 0, together with a homology equivalence 0 --t M(n). When n = 0, we 
may omit reference to n or to degree. 

The suspension of a chain complex 0, written I: 0 is defined by 

2.2.2. The connectivity (resp., dimension) of a chain complex 0, written conn 0 
(resp., dim 0) is defined by 

conn 0 = sup{nlHiO = 0, i:::; n}, 
dime = sup{nlOn =f. o}. 

The homotopy-dimension of 0 is defined only for 0 free, and it is defined relative 
to some chosen class a of free chain complexes containing O. The definition is 

hodimn 0 = inf{dimDIO ~ D and D E a}, 
and, in general, the value varies with a. We omit reference to a when there is no 
possibility of confusion. In our applications a will usually consist of the free, 1-
trivial chain complexes, i.e., the free chain complexes in ChI ( 0a(MR)) (cf. Corollary 
3.2). 

The projective dimension (resp., free dimension) of an OG-module M, written 
proj dim M (resp., fr dim M) is, as usual, the minimum length of all projective 
(resp., free) resolutions of M. It is easy to see that proj dim M = fr dim M except 
when M is projective but not free, in which case, by Eilenberg's trick, fr dim M = 1. 

Let l(G) denote the maximum l for which there exists a sequence of proper 
inclusions of subgroups of the form 

e = Go < G I < ... < Gl- I < Gl = G. 
Since [Gi: Gi+1J ~ 2, it follows that l(G) :::; log2lGI. 

LEMMA [R & TJ. If ME 0a(MQ), then projdimM:::; l(G). 0 

2.2.3. A spectral sequence for [I:kO,D]. Let O,D belong to Ch(Oa(M R)), and 
define a chain complex Hom(O,D) in Ch(MR), exactly as in [M], by 

Hom(O, D)r = IT Hom(Oi' Di+r), 
iEZ 
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Or(Hom)(i) = (fli)' where fli = Qi+r(D) 0 Ii + (-IV- 1L_1 0 Qi(C), 

Our interest in Hom(C, D) is due to the well-known observation [M, p. 44J that 

[C,DJ = Ho(Hom(C,D)). 

In fact, it is not hard to check that for every k E Z, 

[Ek C,D] = Hk(Hom(C,D)). 

We shall interpret the well-known spectral sequence for H.(Hom(C, D)) [M, pp. 
340-342J as converging to [E k C, DJ via the above. Carlsson [C2J has also made 
use of this in another context. 

If M is an Oc-module, then let H&(C;M) denote H_r(Hom(C,M(O))). This is 
just the algebraic version of Bredon cohomology [Bj. 

PROPOSITION. Suppose C,D E Ch(OG(MR)) with C bounded. There exists a 
spectral sequence E;q such that 

(a) E~q = HaP(C; HqD). Thus, by [B, p. 1-24], if C is a degree n resolution, 
then E~q = Ext-p-n(HnC, HqD), where Exti is the usual ith derived functor of 
Hom on 0G(MR). 

(b) If C, D are nonnegative, then E;q is a second-quadrant spectral sequence. 
(c) E;q converges to the bigraded module associated to some dimensionwise-finite 

filtration of [En C, D], n E Z. 
REMARK. The proof is the standard double-complex argument, as it appears, 

say, in [M,pp. 340-342j. The double complex is given by Kpq = Hom(C_p,Dq), 
with differentials induced by those of C and D. The boundedness of C implies that 
the total complex Tot K equals H om( C, D) and that the standard (first) filtration 
is finite. 0 

2.3. G-spaces. We sharpen our earlier usage and, henceforth, let Top. denote the 
category of pointed, compactly-generated Hausdorff spaces and pointed, continuous 
maps. All spaces and maps considered in this paper will belong to Top •. 

If T.. is a subcategory of Top., let G- T. consist of all G-spaces X and G-maps in 
T.. such that each fixed-point subspace X H is in T •. A similar convention applies 
to pairs of spaces. 

We shall be primarily interested in subcategories W: (resp., QW:) of Top., con-
sisting of CW complexes (resp., rational CW complexes) K and cellular maps such 
that the n-skeleton Kn is a point. More specifically, we shall focus on W!, QW!, 
and the corresponding categories G-W! and G-QW!. These are all categories of G-
complexes in the sense of [B, WnJ. In order to deal with both cases simultaneously, 
we sometimes write ZW! for W.1 and then RW!, with R = Z or Q. 

It is worth pointing out here that we consider rational CW complexes to be 
built inductively out of rational cells which are cones on (fixed models of) rational 
spheres. The dimension of such a complex is, as usual, the supremum of the di-
mensions of its cells, and the dimension of each cell is one greater than that of the 
corresponding sphere. Our convention will be to refer to the homology-dimension 
of a rational sphere as its dimension and to write sn both for the ordinary n-
dimensional sphere and for the rational one. (As a CW complex, of course, the 
rational sn has dimension ~ n + 1, but as a rational space, by our convention, it 
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has dimension n.) The context will make our usage clear, but for the most part in 
§§3-5 we will be dealing with rational complexes. All these remarks carryover, of 
course, to the corresponding categories G-QW:. 

In any of the above categories G-T. we use ~ to denote G-homotopy and ~ to 
denote G-homotopy-equivalence (G-equivalence, for short). For G-spaces X, Y in 
G-T., [X, Y] will denote the set of G-homotopy classes of G maps X -t Y, all taken 
to be in 't. If X is a (double) suspension, then [X, Y] has a natural (abelian) group 
structure, by the standard argument. Similarly for maps of pairs. 

Let V be a class of spaces in G-W. and choose X in V. Define 

hodimv X = inf{dim YIY in V and Y ~ X}. 

When there can be no confusion, we omit reference to V and write hodim X even 
though, in general, hodim X will depend on V. 1 

Finally, for any X in G- Top., let 

conn X = sup{nl1!:iX = 0, for i ~ n}. 

Similarly for pairs of spaces in G- Top •. 
2.4. OG-sets. The most important examples of OG-sets are those of the form iPS 

for SaG-set. This is because of the following 

2.4. 1. LEMMA. ~S is projective. 

By this we mean ~S satisfies the usual universal lifting property for projectives. 
That is, noting that epimorphisms in Oo(Sets) are precisely those maps f satisfying 
!.. (G / H) is surjective, for all H ~ G, we are asserting that every diagram 

A 
h 
)' !,t: 

~S --+g B 
g -

with f epi, can be completed. 
PROOF. This is a standard argument, similar to that in [B, p. 1-23]. It suffices 

to treat the case S = G/H. Then, ~S(G/K) = (G/H)K = Hom(G/K,G/H). For 
"f in this set, define 

l!h) = Ah)(ao), 
where ao E A(G/H) is any chosen lift of g,(G/H)(idG/ H ). 0 

It is possible to show that every projective OG-set is of the form iPS, but we do 
not need this fact here. 

There is a functor +: Sets -t Top., obtained by adjoining a disjoint basepoint. 
This induces corresponding functors +: G-Sets -t G- Top. and +: 00 (Sets) -t 

Oo( Top.) which are compatible with ~. 
2.5. Extending a lemma of Bredon. We state and prove here a slight extension of 

Lemma 6.5, p. ILl5 of [B]. The extension is needed when we deal with nonabelian 
fundamental group (as in the proof of 4.2 and in 5.4). 

1 For example, if M is a ZG-module that is projective but not free, there exists a 3-dimensional 
classical Moore G-space of type (M,3) in G-W.l, but all G-equivalent complexes in G-W; are at 
least 4-dimensional. 
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Recall (2.1) that the usual path-component functor 71'0: Top. -t Sets determines 
a functor 

G-Top. ~ 0c(Top.) ~ Oc(Sets), 
which we denote by 1[0' 

2.5.1. LEMMA. Let S be a G-set and Y a pointed G-space. The natural map 

[S+, Y)-t Hom(~S,1[oY) 

is biiective. 

PROOF. It suffices to treat the case S = G/H. 
The left-hand side is obtained from Hom(S+, Y) = Hom( G / H+, Y) by passing to 

G-homotopy classes. But there is a standard isomorphism Hom( G / H+ , Y) ~ Y H 

under which G-homotopy classes go to path-components. Thus, the left-hand side 
is 71'O(yH). 

The right-hand side may be evaluated by observing that ~S(G/ K) = (G/ H)K = 
Hom(G/K,.G/H), as in 2.4.1. It follows that an element f E Hom(~S,1[oY) may be 
completely specified by the value [(G/H)(idG/H) E 1!:oY(G/H) = 71'O(yH). That 
is, the right-hand side also equals 1I"0(yH). It is not hard to see that the natural 
map identifies these. 0 

2.5.2. COROLLARY. Let X be a G-set, (L, K) a pair of pointed G-spaces, and 
n an integer ~ 1. Then, there are natural biiections 

(a) [sn-l AX+,L) ~ Hom(CJ.>X,1[n_1L), 
(b) [(Dn, sn-l) A X+, (L, K)) ~ Hom(CJ.>X,1[n(L, K)). 

PROOF. (a) Apply the lemma to the G-space Y = Lsn - 1 and use the standard 
bijection 

Hom(X+, Y) ~ Hom(Sn-l A X+, L), 
which respects homotopy classes. 

(b) Similar to (a). 0 
REMARKS. (a) Note that when n ~ 3, we have 

Hom(CJ.>X,1[n_1L) ~ Hom(F[X),1[n_l' L), 

Hom(CJ.>X,1[n(L, K)) ~ Hom(F[X),1[n(L, K)). 
Bredon's Lemma 6.5, op. cit., is essentially 2.5.2(a), for n ~ 3, with the first right-
hand expression replacing the one on the left. 

(b) We shall be applying the corollary in the context of rational complexes. In 
that case, we always interpret sn-l, n ~ 2, as a rational (n - I)-sphere, and Dn 
as the cone cSn - 1• Because we are using compactly-generated topologies, this 
modification does not affect the above proofs. 

3. Realizing chain complexes and chain maps. Throughout this section, 
we shall confine spaces and maps to the categories RW! and G-RW!, R = Z 
or Q (see 2.3). Corresponding algebraic restrictions will be in force. Thus, R 
will always mean Z or Q, and chain complexes will always belong to Ch1(MR) or 
Ch1(OS(MR)), i.e., they will be I-trivial (see 2.2.1). 

Proofs of the main theorems are given at the end of the section. 
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In general, we shall use the terms "realizing," "realization," etc. in connection 
with geometric objects, such as G-complexes or cellular G-maps, for which certain 
corresponding algebraic objects have been prescribed. The context should make 
this usage clear. 

3. 1. THEOREM. Suppose that L E G-RW; and that C is a free chain complex 
in Chl(Oa(MR))' Let cP: C -t C.L be a homology equivalence. Then, there exist a 
K E G-RW.l and a cellular G-map f: K -t L realizing cPo 

REMARK. This theorem (in somewhat different form) was originally discovered 
by W. Luck [L] and was rediscovered independently by the author. It is an equiv-
ariant version (with some simplifying assumptions, here, which are suited to this 
context) of a theorem of Wall [W, p. 132]. 

The following consequence of 3.1, although interesting in its own right, will be 
used here only for the formulation of some of our results below and in §4. We 
refer the reader to 2.2.2 and 2.3, in which definitions of hodim are given for chain 
complexes and for spaces, respectively. The classes {1 and V in those definitions 
are understood, here, to refer to all free chain complexes in Chl(Oa(MR)) and all 
spaces in G-RW;, respectively. 

3.2. COROLLARY. For any K E G-RW;, hodimC.K = hodimK. 

PROOF. By G-cellular approximation [B, 11.12],2 K ~ L implies C.K ~ C.L. 
Using an L ~ K such that hodimK = dimL, we obtain 

hodimC.K ~ hodimC.L ~ dimC.L = dimL = hodimK. 
For the reverse inequality, we choose a free C E Chl(Oa(MR)) and a chain 

equivalence ~: C -t C.K with dimC = hodimC.K. We apply 3.1 to obtain a 
G-map f: L' -t K realizing cPo The Whitehead Theorem for G-complexes [B, 11.12] 
implies that f is a G-equivalence. Thus, hodim K = hodim L' ~ dim L' = dim C = 
hodimC.K. 0 

Theorem 3.1 asserts a type of relative realizability. In our next result, the real-
izability is absolute. We refer the reader to 2.2.2 and 2.3 to recall the definition of 
conn and conn, respectively. 

3.3. THEOREM. Suppose Cis a free chain complex in Chl(Oa(M Q )) such that 
hodimC ~ 2connC + 2. 

Then C has a realization. In particular, every bounded, free C in Chl (Oa (MQ)) 
has a stable realization. 

We now turn to chain maps and homotopies. 
3.4. THEOREM. Let (L, K) be a pair of G -complexes and 1': K -t M a 

cellular G-map, with K, L, M E G-QW; and 
dim(L\K) ~ 2connM + 1. 

Suppose that cP: C * L -t C * M is a chain map extending C * 1': C * K -t C. M. Then 
there exists a cellular G-map f: L -t M realizing cP and extending 1'. 

3.5. COROLLARY. Let K,L E G-QW;. 
2This works for rational complexes as well. 
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(a) Suppose dimK ::::; 2connL + 1. Then every chain map O"K - O"L has a 
realization. 

(b) Suppose dim K :::::; 2 conn L. Then cellular G-maps K - L are G-homotopic 
provided that the induced chain maps are chain homotopic. 

PROOF. (a) This follows immediately from 3.4 taking K in 3.4 to be *. 
(b) A chain homotopy between chain maps 0" K - 0" L may be interpreted as 

a chain map 0.(1+ A K) - O.L. Apply 3.4 to this. 0 
Note that the converse of 3.5(b) holds without dimension restrictions as in the 

proof of 3.2. Thus, we get 

3.6. COROLLARY. Suppose that K,L E G-QW.l. Then, the natural map 
[K, L] - [O.K, O.L] is well defined and 

(a) surjective, if hodim K :::::; 2connL + 1, and 
(b) bijective, if hodim K :::::; 2 conn L. 

PROOF. If, in the hypotheses, hodimK is replaced by dimK, then (a) and 
(b) are immediate consequences of 3.5 and the subsequent remark. It remains to 
observe that neither the domain nor the range of the map in question are affected 
essentially when K is replaced by a G-equivalent complex. 0 

3.7. COROLLARY. Suppose that C is a free chain complex in Ch1(OS(MQ)). 
(a) IfhodimC ::::; 2connC + 1, then any two realizations of Care G-equivalent. 
(b) If hodimC < 00, then any two stable realizations of C are stably G-

equivalent. 

PROOF. Of course, (b) follows from (a). To obtain (a), apply 3.2 and 3.6(a) 
to two realizations K, L, obtaining a cellular G-map K - L that induces a chain 
equivalence O.K - O.L. Now apply the Whitehead Theorem for G-complexes. 0 

3.8. REMARK. Set 

{K, L} = colim [El K, El L] . 

As usual this has a natural abelian-group structure. Assume that K, L E QW! and 
hodimK < 00. Corollary 3.6 implies that there is a bijection {K,L} ~ [O.K, O.L] 
and that the natural map [K,L] - {K,L} is 

(a) surjective, if hodimK ::::; 2 conn L + 1, and 
(b) bijective, if hodim K ::::; 2 conn L. 

One checks easily that the bijection is an abelian-group isomorphism. We now 
combine this remark with the spectral sequence of 2.2.3. 

3.9. COROLLARY. Choose K,L E G-QW! with hodimK < 00. There is a 
second-quadrant spectral sequence E;q converging to n:::n K,L}, nEZ, such that 

(a) E~ = HaP(K; HqL) (Bredon cohomology [B]); 
(b) if K is a Moore G-space of type (M,n), then E~q = Ext-p-n(M, HqL). 0 

We now turn to proofs of 3.1, 3.3, 3.4. Each of these follows a similar, familiar 
pattern. Each involves a construction which is inductive on skeleta and begins 
trivially. In each, the inductively assumed algebraic data is used to produce a 
map of Oa-modules of the form E[X] - 11:, 11: some homotopy group, which is 
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converted to a certain G-map by means of Corollary 2.5.2. The G-map is then 
used to complete the inductive step. We describe only the inductive step in what 
follows. 

PROOF OF THEOREM 3.1. Assume that Kn-l, the (n - I)-skeleton of K, and r- 1 : Kn-l ---+ L have been defined realizing <p through dimension n - 1. Consider 
the following diagram, in which the middle horizontal rows are exact. 

E[Xn ] 

II 
CnL 

II 
>---+ Hn(Ln, Ln-l) ---+ H (Ln- 1 Kn-l) -n-l , 

1 II 
H (Ln-l Kn-l) -n-l , 

(We abuse notation slightly here, since r- 1 is not an inclusion.) Note that 
Qn(Cn) c kerQn_l' and kerQn_l can be identified with Hn_1Kn-1. Thus, Q~ 
exists and is unique, and the commutativity of the diagram then implies that 
im <Pn C H n (Ln, Kn-l ), i.e., <p~ exists and is unique. Finally, the inductive hypoth-
esis implies that conn(Ln, Kn-l) ~ n -1, so that we may identify 1In(Ln, Kn-l) 
and Hn(Ln, Kn-l). 

In summary, then, we have a composite 

E[Xn] <......+ Cn ~ H n(Ln , K n- 1) = 1In(Ln, K n- 1). 

By Corollary 2.5.2, this may be represented by a G-map, unique up to G-homotopy, 
(Dn,sn-l) AX;:- ---+ (Ln, Kn-l). More accurately, we obtain a commutative dia-
gram of G-maps 

sn-l A X+ ~ K n- 1 n f n - 1 

'\: 
1 1 Ln-l 

~ 
Dn A X+ n ~ Ln 

Define Kn to be the pushout of 

sn-l A X;:- ~ Kn-l 

r 
Dn A X;:-

and use f3n to extend f n- 1 to a G-map fn: Kn ---+ Ln. One checks easily that fn 
has the required properties. 0 

The proofs of 3.3 and 3.4 require the following lemma, which iI{ a standard (and 
easily verified) fact in ordinary homotopy theory. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RATIONAL MOORE G-SPACES 257 

3.10. LEMMA. Suppose K E QW1. The Hurewicz map 7riK --+ HiK is 
bijective if i :::; 2 conn K and surjective if i :::; 2 conn K + 1. 0 

PROOF OF THEOREM 3.3. Write Ci = F[Xi], i ~ 1, for G-sets Xi. Suppose 
that Li have been constructed, for i < n, with each Li obtained from Li-l by 
attaching Di /\ xt, such that when Hi(Li, Li-d = GiLi is accordingly identified 
with Ci , the squares 

GiLi 
Q; 

Gi_1Li-l --+ 

(3.11i) II II 
C· 

Q;(Q) 
Ci- 1 --+ -t 

commute. 
It follows that Hn_1Ln- 1 may be identified with kerQn_l(C) and we obtain a 

diagram 

-..... 

where hur is the Hurewicz map. 

Q.,(Q) 
--+ 

Suppose that hur is an epimorphism (Le., hur( G / H) is surjective for each H :::; 
G). Since F[Xn] is projective, the diagram can be completed, and, by Corollary 
2.5.2, the lift E[Xn] --+ 1[n-l Ln- 1 is represented by a G-map sn-l/\ X;i --+ Ln-l, 
which we denote dn. Then, we get Ln = c(dn). It is straightforward to check that 
(3.11n) is satisfied. 

It remains to determine when hur is epi. By 3.10, this occurs as long as 
n - 1 :::; 2connLn _ 1 + 1. There are two cases. (1) n - 1 :::; connC, in which 
case conn Ln - 1 ~ n-2. (2) n-1 > connC, in which case conn Ln - 1 = connC. In 
the first case, the desired inequality is always satisfied. In the second, it is satisfied 
for n - 1 :::; 2 conn C + 1. Thus, the above construction can be continued until we 
obtain Ln for n = 2 conn C + 2. But by 3.1 and the hypothesis, we may assume C 
satisfies dim C :::; 2 conn C + 2, and so we are done. 0 

PROOF OF THEOREM 3.4. For each i ~ 2, let Wi be a G-set indexing the i-cells 
of L\K. Clearly, GiL = GiK EEl F[Wi], i ~ 2. 

The desired extension of f' to p: L2 U K --+ M is straightforward and will be 
left to the reader. Suppose then that we have been able to extend f' to a cellular 
G-map r- 1 : Ln-l UK --+ M, n - 1 ~ 2, so as to induce ¢ on GiL for i :::; n - 1. 
We have the following commutative diagram 

(3.12) 

.B..n-1L = Hn_1Ln-l 
4>1 ! ! 1':-1 

Use Corollary 2.5.2 to choose a G-map (Dn,sn-l) /\ w;t L (Mn,Mn-l) repre-
senting 
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By (3.12) above, 

(3.13) 

and 

(3.14) sn-l /\ W: ~ Ln- 1 r::/ Mn - 1 

induce the same homology homomorphism 

E[WnJ = Hn_1(sn-l/\ W:) -+ Hn_1Mn- 1 , 

with dn the attaching map for Dn /\ W,t. 
Now assume that hur: 1!:n_1Mn-1 -+ Hn_1Mn-l is an isomorphism. It fol-

lows that both of the above maps (3.13) and (3.14) induce the same homotopy 
homomorphisms 

F[WnJ = 1!:n-l (sn-l /\ W:) -+ 1!:n-l M n- 1. 

By Corollary 2.5.2 again, it follows that the maps are G-homotopic. Thus, by 
the G-Homotopy Extension Theorem [B, p. 1-1], I is G-homotopic to a G-map 1 
extending f n- 1 0 dn. If Xn: Dn /\ W,t -+ Ln is the characteristic map extending 
dn, then the desired G-map r: Ln U K -+ M can be defined as r-1 u (] 0 X~l). 

It remains to determine when 1!:n_1Mn-1 = Hn_1Mn-l. This discussion is 
analogous to that in the previous proof, the result being that we need to require 
n - 1 :::; 2 conn M. Thus the foregoing construction can continue until we have 
obtained r, n = 2connM + 1. 0 

4. Applications to Moore G-spaces. The conventions of §3 still apply. 
Spaces belong to G-RW!, modules to 08(M R ), and chain complexes to 
Ch1(08(M R )), R = Z or Q (see 2.3,2.2.1). 

4.1. THEOREM. (a) If ME 08(MQ) and either each M(GjH) is a finite-
dimensional vector space or n ~ fr dim M, then Moore G -spaces of type (M, n) 
exist. (b) Under the assumptions of (a), every degree n free resolution of M in 
Ch1(08(MQ)) has a realization. (c) Suppose that M E 08(M R ), C is a degree n 
free resolution of M in Ch1(08(M R )), and Y is a Moore G-space of type (M, n). 
Then there exists a Moore G-space realizing C and G-equivalent to Y. 

PROOF. (c) By [B, p. 1I.17J, we may assume that Y has no i-cells 0 < i < n, 
which implies that C.Y is a degree n free resolution of M. Thus, there is a chain 
equivalence C -+ C. Y, to which we apply Theorem 3.1 and the Whitehead Theorem 
for G-spaces [BJ. 

(a) When each M (G j H) is finite-dimensional, we use a theorem of Triantafillou 
[T2J, together with [B, p. II.17J, to find a rational G-space with no I-cells such 
that conn Z ~ 1, iIn z = M·, and iIi Z = 0, for i =f. n. Here M· is the dual of M. 
Z is the desired Moore G-space. When n ~ fr dim M, we choose a minimal degree 
n free resolution of M and use Theorem 3.3 to realize it. 

(b) This follows immediately from ( a) and (c). 0 
Assertion (c) above shows that G-homotopy types of Moore G-spaces cannot be 

distinguished via the resolutions they may realize. This is in accord, of course, with 
the nonequivariant case. 
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Our next result specializes to the case of low projective dimension. Here we 
can say more than in the general case, and we use it as a "best case" illustration. 
The proof is independent of §3 and is similar to the well-known, nonequivariant 
argument of [H, pp. 29-30]. 

THEOREM 4.2. Choose any (M,n) with ME 0c(MR), R = Z or Q, n ~ 2, 
and proj dim M S 1. Then 

(a) Moore G-spaces of type (M, n) exist and are unique, up to G-equivalence. 
(b) Let X be a Moore G-space of type (M,n), and let Y be a G-space. Then 

there is a short-exact sequence of groups (abelian groups, if n > 2), 

Ext1(M,1[n+1Y) >-+ [X, Y]- Hom(M,1[nY). 
PROOF. The hypothesis proj dimM S 1 implies that M has a free resolution of 

the form 
8 1 

E[X1] H F[Xo] - M 
(allowing the case Xl = 0). Use 2.5.2 to represent 111 by a G-map 

sn "xt ~ sn " xt. 
The desired Moore G-space is just the mapping cone c(dt}. This proves the exis-
tence assertion of (a). Uniqueness will follow from the proof of (b). 

To prove (b), first note that d1 may be taken to be a suspension (in fact, a double 
suspension if n > 2). To see this, consider the diagram 

8' _ ..". 1[n_1(sn-1" xt) 
-1 -__ -- -- 1 hur 

-..--- a -
~X1 ~ F[X1] ~ F[Xo] = H n_1(sn-1 "xt) 

regarded as a diagram of Oc-sets. The Oc-set ~X1 is projective, and hur is always 
epi, so the lift 8i exists. Using 2.5.2, choose di: sn-1 "xt ~ sn-1 "xt to 
realize 8i, and set d1 = 2:: di. A similar argument gets a double suspension when 
n > 2. 

It follows that c(dt} may be taken to be a suspension (double suspension when 
n > 2). Now consider the equivariant Puppe sequence [B, IIIA] associated with db 

sn" xt ~ sn" xt ~ c(dt} ~ sn+1" xt 2::-:1 ••. , 

and form the exact mapping-set sequence 
dO )' dO 

(1) [sn" xt, Y] ~ [sn" xt, Y]_ [c(dt}, Y] ~1 •••• 

Set Fi = E[Xi]. By 2.5.2, (1) becomes 
(2) 

dO 
Hom(F1,1[nY ) ~ Hom(Fo,1[nY ) 

i 
[c(dt}, Y]- Hom(F 1,1[n+1Y) &. Hom(Eo,1[n+1Y). 

The usual considerations involving group structures apply here, and we see that 
(2) yields exact sequence of groups (abelian, if n > 2) 

Ext1(M,1[n+1Y) >-+ [c(dt}, Y]- Hom(M,1[nY). 
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Now choose Y = X, where X is any Moore G-space of type (M, n). Then, we 
have 1[nY = 1[nX = iInx = M, and the above sequence shows that we may choose 
a G-map c(dd -+ X inducing an equivalence iI.c(dd ~ iI.x. Thus, c(dd ~ X, 
and we may substitute X for c(dd in the above sequence, proving (b). 

In fact, we have also verified the uniqueness assertion of (a), since we have just 
shown that all Moore G-spaces of type (M, n) are G-equivalent to c(dd. 0 

Recall (1.2) that a G-space X is called a classical Moore G-space of type (M, n), 
M some ZG-module, if X is I-connected, iInx ~ M, and iIix = 0, i :I n. We 
shall use the relation of weak G-homotopy type for such spaces. This is generated 
by G-maps which are weak homotopy equivalences. 

4.3. COROLLARY. Choose n ~ 2, let G be any finite group, and Many ZG-
module with proj dimM < 00. Then, classical Moore G-spaces of type (M, n) exist 
and have unique weak G-homotopy type. Similarly when M is any QG-module. 

PROOF. By a well-known theorem of Rim, proj dim M ::::: 1. Existence now has 
a standard cell-attachment proof, first used by Swan [SwJ. It will, however, be 
useful to derive existence from 4.2. Accordingly, we define an Dc-module M by 
M{G/e) = M, M{G/H) = 0, H:I e. The association M H M may also be applied 
to the projective modules in a length-one resolution of M, yielding a length-one 
projective Dc-resolution of M. Thus, proj dim M ::::: 1. Any Moore G-space of type 
(M, n) is a classical Moore G-space of type (M, n), so that existence now follows 
from 4.2. 

To prove uniqueness, start with a classical Moore G-space X of type (M, n), 
n ~ 2, proj dim M ::::: 1, and construct a G-map e: Y -+ X such that 

(a) e is a weak homotopy equivalence, and 
(b) Y is a Moore G-space of type (M, n), where M{G/e) = M and M{G/H) = 0, 

H:I e. 
In fact, Y may be constructed by choosing a free, contractible G-space E and 

adjoining a cone to X x E at • x E. The map e is just the trivial extension of the 
projection X x E -+ X. 

As argued above, proj dim M ::::: 1, so we have shown that every classical Moore 
G-space of type (M, n) has the weak G-homotopy type of a Moore G-space of type 
(M, n) with proj dim M ::::: 1. Since, by 4.2, any two of the latter are G-equivalent, 
we have verified uniqueness. 0 

We next obtain a result which is a slight diversion from our main interest but 
which will help in the formulation of our last two theorems. Recall that the free 
dimension of an Dc-module M, written frdimM, is the minimum length of all free 
Dc-resolutions of M. It deviates from proj dim M only when M is projective but 
not free. We also refer the reader to the comments about hodim above 3.2. 

4.4. COROLLARY. Let K E G-RW! be a Moore G-space of type (M, n), M :I 
O. Then 

(a) ifn = 2, hodimK = n + fr dim Mj 
(b) if n > 2, hodim K = n + proj dim M. 

PROOF. Let L1, L2 E G-RW! be G-spaces, G-equivalent to K, with L2 realizing 
a minimal, free degree n resolution of M. Note that 0.L1 = .dEBB, with.d acyclic 
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and at most n-dimensional and B a projective, degree n resolution of M. Thus, 

n + proj dim M ::; dim L 1• 

Since this holds for any L1 ~ K, L1 E G-RW.l, we have 

(1) n + proj dim M ::; hodim K. 

On the other hand, by construction, 

(2) n + fr dim M = dim L2 ~ hodim L2 = hodim K, 

so that if proj dim M > 0 or M is free, then the inequalities all reduce to equalities 
and we are done. 

Henceforth assume that M is projective but not free. 
Suppose n = 2. Since G-complexes, here, are always restricted to G-RW;, a 2-

dimensional G-complex is a bouquet of 2-spheres and, hence, has a free fI 2. Thus, 
hodim K = 3 = 2 + fr dim M, as required. 

When n > 2, we use the Eilenberg trick to find a short, split-exact sequence 
M >--+ Eo ~ Fl. with Ei = E[Xi] free. Realize g by a G-map a: sn-1 1\ xii -
sn-1 1\ xt (2.5.2), and let L be the mapping cone c(a). Clearly, L has dimension 
n and is a Moore G-space of type (M, n). By the uniqueness assertion in 4.2(a), 
L ~ K, so that hodim K = n, as required. 0 

For the next result, we recall the stable mapping sets 

{K1,K2} = colim [Ll K 1'Ll K2] 

and the derived functors Exti of Hom. It will be convenient to set Exti = 0 for 
i < O. 

4.5. THEOREM. Suppose that Mi E O~(.MQ)' ni ~ 2, and that Ki is a Moore 
G-space of type (Mi' ni), i = 1,2. There is a natural isomorphism of abelian groups 
{K1,K2} ~ Extn2-nl(M1,M2). When n1 = n2 = n, this is J·ust the map induced 
by fIn. The natural map [K1' K2]- {Kl. K2} is 

(a) suriective, if 2n2 - n1 ~ proj dim M 1 + 1, 
(b) biiective, if 2n2 - n1 ~ proj dim M 1 + 2. 

PROOF. We want to apply Corollary 3.9, which requires verifying that hodim K1 
< 00. By 4.4, this is equivalent to checking that proj dim M 1 < 00, which holds by 
the lemma in 2.2.2. 

To apply 3.9, note that fI qK2 = 0 unless q = n2. Now use 3.9(b) to get 
E~ = E~q = 0, for q =I n2, and E~2 = Ext-p - n1 (M l' M 2). Thus, the filtration 
of {Kl.K2} consists only of E~n2n2 = Extn2-nl(M1,M2)' as asserted. 

To verify (a) and (b), we first assume n1 > 2 or proj dim M 1 ~ 1. In either 
case, by 4.4, hodimK1 = n1 + projdimM1• Also, connK2 = n2 - 1. Thus, the 
inequalities in (a) and (b) are equivalent to 

(a/) hodimK1 ::; 2connK2 + 1, 
(b/) hodimK1 ::; 2 conn K2, 

respectively, and these are precisely the conditions in 3.8 that imply the desired 
surjectivity and bijectivity, respectively. 
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When n1 = 2 and proj dimM 1 = 0, we apply Theorem 4.2 to get [K1, K2J ~ 
Hom(M l' 1[2K 2)' This equals Hom(M l' M 2) or 0 according as n2 = 2 or n2 > 2. 
But so does Extn2-2(M1,M2) ~ {K 1,K2}, and it is not hard to see that these 
identifications correspond to the natural map [K1,K2J-+ {K1,K2}. Thus (a) and 
(b) hold in this case as well. D 

Finally, we conclude with our uniqueness result (Theorem A of § 1). 

4.6. COROLLARY. Choose M E Oc(MQ). All Moore G-complexes realizing M 
are stably G-equivalent. In fact, if 

n ~ proj dimM + 1, 

then all Moore G-spaces of type (M, n) are G-equivalent. 

PROOF. It suffices to prove the second assertion. If both K1 and K2 realize 
(M, n), with n as above, then we can apply 4.5(a) to get a G-map K1 -+ K2 which 
is a homology equivalence, hence a G-equivalence. D 

5. Two nonequivalent Moore G-spaces of type (M,2). Throughout this 
section, we shall be working with rational G-spaces. Thus, as mentioned in 1.3, sn 
will denote the rational n-sphere, n ~ 1. Correspondingly, we restrict entirely to 
Oc-modules in 0c(MQ) and Oc-chain-complexes in Ch1(Oc(MQ))' 

5.1. THEOREM. Let G = Z/2 (JJ Z/2. There exists an M in 0c(MQ) and two 
Moore G-spaces L1 and L2 of type (M,2) that are not G-equivalent. 

By the lemma in 2.2.2, every Oc-module has projective dimension::::; 2 in this 
case, and so Corollary 4.6 implies that L L1 c::: L L2. 

The proof of 5.1 is long, occupying the rest of this section. To aid the reader, 
we begin with an outline of the construction. 

5.2. Outline of the construction. 
Step 1. Choose an Oc-module M such that 

Hom(M,M) = Q2 and Ext2(M,M) f. O. 

Such an M has projective dimension 2, so we may choose a free resolution 

Step 2. Begin building a G-complex that realizes the resolution, as in the proof 
of Theorem 3.3. 

Choose d1: S2 1\ xt -+ S2 1\ Xii to induce fl.1 on H 2 = 1[2' By 2.5.2, d1 is 
unique, up to G-homotopy. Set K equal to the mapping cone c(d1), and choose 
d2: S3 1\ xi -+ K to induce fl.2: E[X2J -+ kerfl.1 = H 3K. There are many such 
choices. Set L1 = c(d2 ). 

5.2.1. PROPOSITION. There exists a choice of d2 such that the natural map 
[L1' Ld -+ Hom ( M, M) is surjective. 

This will be proved in Step 5. Henceforth, fix d2 as in 5.2.1. 
Step 3. Define a homomorphism 

~: Hom(E[X2],1[3K) -+ Ext2(M, M) 
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which, roughly, measures the difference between d2 and other candidates for at-
taching maps S3 1\ xt ---+ K. 

Choose d2: S3 1\ xt ---+ K so as to induce Q2 and so that ~(d2) =I O. Set 
L2 = C(d2). 

Step 4. Prove that ~(d2) =I 0 implies that there can be no G-map L1 ---+ L2 
inducing the identity M = H 2L1 ---+ H 2L2 = M. 

Using 5.2.1, it follows that no G-map L1 ---+ L2 induces an automorphism M ---+ 

M, and thus L1 i:- L2. 
Step 5. Prove Proposition 5.2.1. 
Here we actually prove two propositions (5.4.4' and 5.4.4") that imply 5.2.1. 

The idea is that L1 is composed of two pieces, and we find it convenient to prove a 
5.2.1-like result for each. The proofs use an equivariant Hopf invariant that enables 
us to suitably modify a first-approximation. 

5.3. Step 1. The choice of M. We first define some convenient notation. Useful 
references are [Tl and T3J. Recall that G = Z/2 E9 Z/2. 

G contains five subgroups, G, e, H1, H2 , H3 which we find convenient to arrange 
as follows. 

H1 
G H2 e 

H3 
Inclusions can be thought of as proceeding from right to left, and these correspond 
to projections of corresponding coset spaces in OG. An OG-module N may then be 
arranged as follows. 

N1 
N: V N2 M 

N3 

Here N(GIG) = V is a Q-vector space, N(GIHi) = Ni is a Q[GIHiJ-module, and 
N(Gle) = M is a Q[GJ-module. Suitable module homomorphisms N(GIH) ---+ 

N (G I K) exist, corresponding to projections G I K ---+ G I H (equivalently, inclusions 
K ~ H), and these proceed from left to right. We shall not need to display these 
explicitly in our notation. 

We always give the rationals Q the trivial Q[G I HJ-module structure. 
We begin by listing examples of projective OG-modules. All the module homo-

morphisms are standard inclusions (see [Tl, §3]): 

Q Q 0 
P(O) = Q Q Q, P(I) = 0 0 Q, P(2} = 0 Q Q, 

Q 0 0 

0 0 
P(3) = 0 0 Q, P(4) = 0 0 Q. 

Q 0 

In fact, note that P(O) is the free OG-module F[GIG], where GIG is the singleton 
G-set. 
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To define M, we describe one more auxiliary Oc-module, 

o 
M' = Q 0 o. 

o 
It is easy to verify directly that M' is injective. Now set 

Note that 

o 
M = M' + P( 4) = Q 0 Q. 

o 

i( ) {HOm(M,M) = Q2, 
Ext M,M = Exti(M',P(4)), 

i = 0, 
i > O. 

To compute Exti(M', P(4)), we construct a minimal projective resolution for 
M', using the projective-cover construction of [Tl]: all maps are obvious inclusions 
or projections 

Eo P1 P2 

(5.3.1) II II II 
M' *- P(o) +- P(1) + P(2) + P(3) +-< P(4)+E(4). 

Apply Hom(-,P(4)) to this resolution. One verifies easily that the resulting com-
plex is 0 ~ 0 ~ Q2. Therefore, 

( ) . { Q2 i = ° or 2, 5.3.2 Ext'(M, M) = 0,' otherwise. 

Now we convert (5.3.1) to a free resolution of M' by selecting a free module E' 
such that Pi + F' = F~ is free, i = 1,2. This uses Eilenberg's trick. Set F~ = P(O). 
Then, we get 

8' 8" R'· M' F' -1 F' -2 F' - . - *- -0 +- -1 +-< -2' (5.3.3) 

Next we choose the free G-set G and corresponding free Oc-module F~ = F[G] 
(cf. 2.1). It satisfies F~(G/H) = 0, for H "# e, and E~(G/e) = Q[G]. Thus, 
the standard augmentation 77: Q[G] ~ Q gives an epimorphism F~ ~ P(4) with 
(projective) kernel N. Again use Eilenberg's trick to find a free F~ with F~ = 
N + E~ free. We set M" = P(4) and obtain a free resolution 

(5.3.4) 
8" 8" R" . M" F" -1 F" -2 F" - . - *- -0 +- -1 +-< -2' 

Let F~ = E[Xn, E~' = E[Xn and Fi = E[Xi], with Xi = Xi u Xi', i = 0, 1,2. We 
thus have a free resolution 

(5.3.5) 

with R = R' + R". 
5.4~ Step 2. The construction of L1 realizing (5.3.5). We shall realize 2:2 R' and 

2:2 R" by G-complexes Li and L~, respectively, and then we set L1 = Li V L~, 
which, of course, realizes 2:2 R. These will all be 4-dimensional. 
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In the rest of this step, we make a number of remarks about L~ and R'. These 
may all be converted to equally valid assertions about L1 and R or L1 and R/I by 
decreasing or increasing the number of superscript primes in the notation. 

Since L:2 R' satisfies the condition hodim ~ 2 conn +2 of Theorem 3.3, we may 
take L~ to be the realization produced by the proof of 3.3. Let d~ denote the 
attaching map in the construction of L~ that corresponds to the boundary map Q~ 
in R'. For reference, note that the domain of di is the bouquet 8i+1/\X:+, i = 1,2. 
Let K' be the mapping cone c(d~), the 3-skeleton of L~. 

Just as in the proof of 4.2, using 2.5.2, we may choose d~ to be a suspension. 
Hence K' is a suspension. We have 

(5.4.1) 

We shall make frequent use of these identifications, as well as the abbreviations 

(5.4.2) H; = H3K', 1[; = '!I.3K'. 

Note that d~: 8 3 /\ X~+ - K' determines a commutative diagram 

11" 83 /\ X'+ d;. 
11"' -3 2 --'+ -3 

hur! ~ ! hur 

H 83 /\ X'+ 8' H' (5.4.3) -3 2 ~ -3 
II II 

F' 8' 
kerQ~ ~ -2 

~ 

We may describe this by saying that d~ lifts Q~ or, using (5.4.3) to identify '!I.383 /\ 
X~+ with H;, we may say d~ splits hur. 

Now d~ is not uniquely determined by the construction in the proof of 3.3 (even 
up to G-homotopy). 

5.4.4'. PROPOSITION. d~ may be chosen so that [L~,L~]- Hom(M',M') is 
surjective. 

Since Hom(M,M) = Hom(M', M') +Hom(M/I,M/I), it is easy to see that 5.4.4' 
and (5.4.4/1) imply Proposition 5.2.1, i.e., 

(5.4.4) [L1' L1]- Hom(M, M) is surjective. 

We prove 5.4.4' and (5.4.4/1) in Step 5. Henceforth, we assume 5.4.4. We do not 
need to refer further to L~, L1 except in Step 5. 

5.5. Step 3. The homomorphism A: Hom(H3,'!I.3) - Ext2 (M, M). Note first 
that 

(5.5.1) 

This is immediate from the choice of 

o 
M= Q 0 Q 

o 
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and the construction of L1, since 

Lf~{S2, 
*, 

H=G,e, 
otherwise. 

Next, using (5.4.1) (unprimed), we identify Q2:E2 - F1 with the inclusion 
H 3 >-+ F l' By a standard property of Ext·, we have, for any Oc-module B, an 
exact sequence 

(5.5.2) 
We are particularly interested in the case B = 11:3' 

Observe that we have a commutative diagram 

11:4(Lt, K) - 11:3 - 11:3L1 = M 
n ! hur 

11:3(S3 t\ xt) ~ H3 

so that, essentially, d2 gives a splitting 11:3 = H 3 EB M. 
Plugging this value of B into the second and third terms in (5.5.2) yields com-

patible splittings 

Hom(H 3,11:3) = Hom(H 3' H 3) EB Hom(H 3, M) 
(5.5.3) ! ! 

Ext2(M,11:3) = Ext2(M, H3) EB Ext2(M, M) 

The homomorphism ~ is now defined to be the composite 

Hom(H3,11:3) - Ext2 (M, H3) EB Ext2(M,M) !! Ext2(M,M). 
Note that since d2 projects to 0 in Hom(H 3' M), 

(5.5.4) 

Choose d2 : S3 t\ xt - K as follows. By abuse of notation, we have d2 E 
Hom(H3,11:3)' We require that d2 project onto idH3 in Hom(H3,H3), i.e., d2 lifts 
Q2' and 

(5.5.5) 
Since Hom(H 3' M) - Ext2 (M, M) = Q2 is surjective, such a choice is possible. 

Fix such a d2 and set L2 = c(d2). 
5.6. Step 4. Self-maps K - K and maps L1 - L2. We shall make use of the 

operation of [S3 t\Xt,KJ on [K,KJ, which is defined just as in the nonequivariant 
case. That is, if p: K - K V (S3 t\ xi) is the pinching map-recall that K is the 
mapping cone of d1: S2 t\ xt - S2 t\ xii -and a: S3 t\ xt - K, f: K - K are 
arbitrary G-maps, then r is given by the composite 

K-KV(S3t\Xi) - K. 
p {f,a} 

We shall abuse notation and use the same letters for G-homotopy classes. 
Note that, by 2.5.2 we have an identification 

[S3 t\Xt,KJ = Hom(F1,11:3), 
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which we use without further comment. The following commutative diagram intro-
duces notation. 

El 
a 

-+ 1[3 
(5.6.1) a' 

£2 1 / ! hur 

(F2 =) H3 
a" 

H3 -+ 

Our interest in the operation of Hom(E 1, 1[3) on [K, KJ is explained by assertion 
( a) in the following lemma. 

5.6.2. LEMMA. (a) Let 1 E [K,KJ denote the class o/the identity map. The 
orbit 0/ 1 under the action 0/ Hom(E1 , 1[3) consists 0/ all G-homotopy classes 0/ 
G-maps K -+ K inducing idM on H2 (= 1[2). 

(b) The 1[3 -endomorphism,nduced by 1 a is 

id'l\" +a' 0 hur . 
-3 

(c) The H 3 -endomorphism induced by 1 a is 

idH +a". 
-3 

The proofs of (a)-(c) are the same as in the nonequivariant case and will be 
omitted. 

5.6.3. LEMMA. Suppose that /: K -+ K is a G -map inducing the identity on 
H2K = M. Then, there is no G-map g:L1 -+ L2 extending /. 

(i) 

PROOF. We suppose g exists and derive a contradiction. 
Consider the commutative diagrams 

1[4(D4 1\ xt, 8 3 1\ xi) ~ 1[4(Li , K) 
~l ! 

7T (83 1\ x+) -3 2 

for i = 1,2, where we have d(l) = d2, d(2) = d2. The map g: (L1, K) -+ (L2, K) 
induces a map of diagram (1) to diagram (2) and, thus a G-homotopy-commutative 
diagram 

(3) 
t 8 3 1\xi 

! d2 

1. K 
We show that, in fact, the existence of (3) leads to a contradiction. 
Note that, by 5.6.2(a), / = la, for some a E Hom(E1 ,1[3)' and, by 5.6.2(b), 

(4) /0 d2 - d2 = a', 
as homomorphisms H3 = E2 = 1[3831\ xt -+ 1[3K = 1[3 (cf. 5.6.1).3 

If we apply the functor H3 to (3), we see that the vertical maps reduce to the 
identification F2 = H3K = H 3. Thus, we may identify H 3g' with Hd. In fact, 

3We shall identify maps with their homotopy classes and the latter with induced homomor-
phisms, when appropriate, to simplify notation. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



268 P. J. KAHN 

since 1!:383 /\ xt = H 383/\ xt , we may identify 1!:3g' with H 3f. Writing g' instead 
of 1!:3g', and bearing in mind the identification F 2 = H 3' we have g' = idli3 +a", 
by 5.6.2{c). Thus, 
(5) d2 0 g' - d2 = d2 0 a". 

Now, by inspecting the right-hand sides of (4) and (5), we see that both of these 
homomorphisms H3 - 1!:3 factor through (i.e., extend to) E1 (cf. 5.6.1). In view 
of the exact sequence (5.5.2), this implies that 

(6) 6.(fd2 - d2) = 0 = 6.{d2g' - d2). 
But the G-homotopy-commutativity of (3) gives 
(7) 6.(fd2) = 6.{d2g'), 
whereas our construction of 6. and d2 in 5.5 implies that 
(8) 
Relations (6), (7), and (8) cannot hold simultaneously. 0 

5.7. Step 5. Proof of Proposition 5.2.1. By the construction and discussion 
in 5.4, it suffices to prove (5.4.4') and (5.4.4"). Since both proofs are virtually 
the same, we adopt the following convention to simplify notation. We eliminate 
superscript primes and give both proofs simultaneously, with the exception of one 
computation (5.7.4{d)) which will be made separately for each case. Note, then, 
by our convention, in this section M will refer either to M' or M" and not to the 
Oa-module M' + M" of that name in Theorem 5.1 (cf. 5.3 for the definition of 
M',M"). 

To begin, note that, in either case, 
Hom{M,M) = Q, 

where r E Q corresponds to multiplication by r. 
Let 8 1 denote the rational circle, and let fr: 8 1 - 8 1 denote a fixed map of 

degree r. Recall that the 3-skeleton K of L1 is a suspension, say K = L K. Thus, 
we have a G-equivalence K = LK ~ 8 1 /\ K. Let er : K - K denote the self-G-
map corresponding to fr /\ id K under this G-equivalence. Proposition 5.4.4' and 
(5.4.4") will follow easily from 

5.7.1. LEMMA. d2 : 8 3 /\ xt - K may be chosen so that 

1f' 8 3 /\ x+ .:.:. 1f' 8 3 /\ x+ -3 2 -3 2 
d2. 1 1 d2. 
1!:3K ---+ 1!:3K 

eu 

commutes. 
Proof that 5.7.1 implies 5.4.4' and (5.4.4"). We must show that d2 may be chosen 

so that, if L1 = C{d2)' then [Ll. L1J - Hom{M, M) = Q is surjective. 
Now, Lemma 5.7.1, together with 2.5.2, implies that 

8 3 /\ xt ~ 8 3 /\ xt 
d2 1 1 d2 
K ---+ K 

er 
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G-homotopy-commutes, where J.tr is some G-map inducing multiplication by r on 
1!:383 A Xi. (Of course, J.tr is unique, up to G-homotopy, but we do not need 
this.) It follows that er extends to some g: Ll -+ L1 . Clearly g.: H 2Ll -+ H 2Ll is 
multiplication by r. 0 

Next, we define an equivariant version of Hilton's generalized Hopf invariant. 
Here, this will be a homomorphism 

).( = ).(Y:1!:kY -+ 1!:k+1(Y x Y, Y V Y), 

defined for any k ~ 1 and any G-space Y which is a suspension (of some G-space 
X). Thus, if p: Y -+ Y V Y is the pinching map, then ).(y is the composite 

1!:kY £! 1!:k(Y V Y) ~ 1!:kY EB 1!:kY EB 1!:k+1 (Y x Y, Y V Y) ~ 1!:k+1 (Y x Y, Y V Y). 

Our interest in ).( derives from the corollary of the next lemma. If f, g: Y -+ Y 
are G-maps, then f + g is defined, as usual, to be the composite 

Y ~ YVY {~} Y. 

5.7.2. LEMMA. (f + g).1 ker).{ = f.1 ker).{ + g.1 ker).{. 

5.7.3. COROLLARY. (fr A idx ).1 ker).{ is multiplication by r. 

Here, fr: 8 1 -+ 8 1 is as above, and we are identifying Y = EX with 8 1 A X 
as before. Both 5.7.2 and 5.7.3 are standard in the nonequivariant case and are 
proved in the same way here. 

By 5.7.3, Lemma 5.7.1 will follow if we can choose d2: 83 A xi -+ K (lifting Q2 
and) so that d2.(1!:383 A Xi) C ker ).{K, where ).(K:1!:3K -+ 1!:4(K x K,KV K). We 
next state a computational result which allows us to achieve the desired choice of 
d2 • 

5.7.4. LEMMA. (a)1!:4(KxK,KVK)=M®M. 
(b) 8et J = 8 2 A xt. Then, 1!:4(J x J, J V J) = Fo ® Eo. 
(c) Let j: J -+ K be the standard inclusion (J is the base of the mapping cone 

K), and recall that §:: Eo - M comes from the resolution of M. Then, the following 
diagram commutes. 

1!:3 J ~ 
j. ! 
1!:3K ~ 

(d) ).(K(1!:3K) = (§: ® §:)).{J(1!:3J). 

We shall leave (a)-(c) as an exercise. 
PROOF OF 5.7.4(d). (d) asserts that, for each H ~ G, 

image ).(K(G/ H) = image((~ ® §:) o).{J )(G/ H). 

By 5.7.4(c), the inclusion 2 holds, so we must prove the reverse. 
Note that 

o 
M= Q 0 0 

o 
or 

o 
o 0 Q, 

o 
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so that in either case M ® M = M, and it suffices, to show that (f ® f) 0 }(J is 
nonzero. 

First, consider 
o 

M = Q 0 O. 
o 

In this case, consider H = G, and note that f(G/H):Eo(G/H) -t M(G/H) is the 
identity map Q -t Q. Correspondingly, JG = 8 2 , and the map ((f®f) o}(J )(G/G) 
is just the standard (rational) Hopf homomorphism h: 7r38 2 -t Q, well known to 
be nontrivial. 

Next, when 
o 

M = 0 0 Q, 
o 

consider H = e. In this case, f(G/ H) is the standard augmentation 1]: Q[GJ -t Q. 
Correspondingly, P = J = 8 2 1\ G+. Let a denote the composite 

8 2 = 8 2 1\ e ~ 82 1\ G+ = J, 

and observe that the diagram 

7r382 
hI 

7r4(82 x 82,82 V 82 ) 

~ 'lr3 J 
I ~(G/e) 

(Q~). 7r4(J X J, J V J) 

commutes. It is easy to see that (f®f)(G/e) takes im(a x a). onto Q = M(G/e), 
and so it must do the same to im }((G/e). This completes the proof of 5.7.4(d). 0 

Completing the proof of Lemma 5.7.1. As already observed (following 5.7.3), 
5.7.1 will follow if we can choose d2 lifting Q2 such that d2.(JI383 1\ Xi) c ker}{. 

Begin by choosing any (12: 8 3 1\ xi -t K that lifts Q2 (or splits hurl-see 5.4. 
This gives a diagram 

F[X2J = 7r 8 3 1\ X+ - -3 ____ 2 
..... 
/j ..... -

By 5.7.4{d) and the fact that E[X2J is projective, we may complete the solid-arrow 
diagram with some map §.. Choose d2 so that 

which can be done by 2.5.2. 
It is easy to see that hur 0 j. = 0, so that d2 splits hur just as (12 does. Moreover, 

clearly, imd2• c ker){, as required. Thus, the proofs of 5.7.1,5.4.4', (5.4.4"),5.2.1, 
and, finally, 5.1 are complete. 0 
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