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Abstract

The unit sphere, centered at the origin in Rn, has a dense set of points
with rational coordinates. We give an elementary proof of this fact that
includes explicit bounds on the complexity of the coordinates: for every
point v on the unit sphere in Rn, and every ε > 0, there is a point
r = (r1, r2, . . . , rn) such that:

• ||r− v||∞ < ε.

• r is also a point on the unit sphere;
P
r2i = 1.

• r has rational coordinates; ri = ai
bi

for some integers ai, bi.

• for all i, 0 ≤ |ai| ≤ bi ≤ ( 321/2dlog2 ne
ε

)2dlog2 ne.

One consequence of this result is a relatively simple and quantitative proof
of the fact that the rational orthogonal group O(n,Q) is dense in O(n,R)
with the topology induced by Frobenius’ matrix norm. Unitary matrices
in U(n,C) can likewise be approximated by matrices in U(n,Q(i)).

1 Introduction

Suppose that M is a manifold embedded in Rn, and that v is a point onM .
Does M have points with rational coordinates that are as close as we like
to v ? The answer may depend on the embedding; it is not an intrinsic
property of M . If the rational points are dense, what is the tradeoff
between the closeness of approximation and the sizes of the denominators
that the rational coordinates must have? In general, such problems can be
very difficult. This paper discusses two closely related special cases that
are relatively easy: unit spheres centered at the origin, and real orthogonal
matrices. See [13] for a deep algebraic treatment of weak approximation
in algebraic varieties that is relevant to these examples. The methods
of this paper are comparatively elementary, and the metric theory is not
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discussed. In other words, this paper provides crude but simple bounds
that hold for all points v, rather than sophisticated bounds that hold for
typical points. Problems of the latter type are addressed by the “Metric
Diophantine Approximation on Manifolds”literature. (See, for example,
[3], [2], [7].)

2 Rational Points on the Sphere

Although Q2 is dense in R2, it is not true in general that a circle in the
plane has a dense set of rational points. For example, if ξ = 3

√
2 (or any

other real number that satisfies no quadratic polynomial in Z[x]), then a
unit circle centered at (ξ, 0) has no rational points on it. Let Sn−1

ρ be
the set of points in Rn for which the Euclidean distance from the origin
is ρ. Humke and Krajewski characterized the radii ρ for which S1

ρ

T
Q2

is dense in S1
ρ . In particular, the unit circle, centered at the origin in R2,

does have a dense set of points with rational coordinates[5]. It is known
that, for all n, the unit sphere Sn1 has a dense set of rational points. (I
thank Andy Hicks and Greg Naber for pointing out that the inverse of
the stereographic projection takes rational points to rational points.) This
paper provides another proof that is “quantitative”in the sense that that
it takes into account the complexity of the rational coordinates. If r = a

b

for some coprime integers a, b define the denominator D(r) of r to be |b|.
If we restrict the size of the denominator, it is apparently harder to get a
good approximation. Our main interest is this tradeoff between closeness
of approximation and size of the denominator.

We begin with the special case where the dimension of the ambient
space is a power of two.

Lemma 1 Suppose 0 < γ < .02, and suppose α1, α2, . . . , αM is a se-
quence of M = 2m real numbers such that α2

1 + α2
2 + . . . α2

M = 1. Then
there are rational numbers ri = ai

bi
, i = 1, 2, . . . ,M such that

•
MP
i=1

r2i = 1, and

• for all i, 0 < bi ≤ ( 2
γ2 )m, and

• for all i, |ri − αi| ≤ 4γm.

Proof: The proof is by induction on m. The base case m = 0 is trivial
since necessarily α2

1 = 1 and we can take r1 = α1. Let m > 0, and assume
the inductive hypothesis.

Let σ1 =

 
M/2P
i=1

α2
i

!1/2

, and let σ2 =

0@ MP
i= M

2 +1

α2
i

1A1/2

. Note that

σ2
1 + σ2

2 = 1. (1)

Without loss of generality, assume σ1 ≥ σ2. This and (1) imply that

σ2 ≤
1√
2
. (2)
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If σ2 = 0, then we can put ri = 0 for i > M
2

, and apply the inductive
hypothesis to α1, α2, . . . , αM/2. We therefore assume that σ2 > 0.

Adapting an argument of Humke and Krajewski [5], define f(y) =
2y

1+y2
, and let y∗ be the unique solution in (0, 1) to the equation f(y) = σ2.

Thus y∗ = σ−1
2 −

q
σ−2

2 − 1. By a well known theorem on Diophantine

approximation [1], we can choose coprime integers k, ` such that 0 < ` ≤ 1
γ

and

|k
`
− y∗| ≤

γ

`
. (3)

With this choice of k and `, define

R2 =
2k`

k2 + `2
= f(

k

`
) (4)

and

R1 =
q

1−R2
2 =

`2 − k2

k2 + `2
. (5)

Ultimately R1 and R2 will serve as rational approximations for σ1 and
σ2 respectively. But first we use them to define the rational numbers ri.
By the inductive hypothesis, applied to the numbers αi

σ1
, we can choose

rational numbers qi, i = 1, 2, . . . , M
2

such that

M/2X
i=1

q2i = 1 (6)˛̨̨
qi −

αi
σ1

˛̨̨
≤ 4γ(m− 1)

`
for i = 1, 2, . . . , 2m−1´ (7)

D(qi) ≤ (
2

γ2
)m−1 `

for i = 1, 2, . . . , 2m−1´ . (8)

We can likewise choose rational numbers qi, for 2m−1 < i ≤ 2m, such that

MX
i=2m−1+1

q2i = 1 (9)

˛̨̨
qi −

αi
σ1

˛̨̨
≤ 4γ(m− 1)

`
for 2n−1 < i ≤ 2m

´
(10)

D(qi) ≤ (
2

γ2
)m−1 `

for 2m−1 < i ≤ 2m
´
. (11)

For i ≤ M
2

, define ri = R1qi. Similarly, for i > M
2
, define ri = R2qi.

Clearly r1, r2, . . . , rM are rational. We must verify that these numbers
satisfy the conditions stated in the lemma.

The first condition is that (r1, r2, . . . , rM ) is a point on the unit sphere.
By (6) and(9),

MX
i=1

r2i = R2
1

M/2X
i=1

q2i +R2
2

MX
M/2+1

q2i = R2
1 +R2

2 = 1. (12)

The second condition is a bound on the denominators of the rational
approximations. Note that, for all i, D(ri) ≤ (k2 + `2)D(qi) ≤ 2

γ2D(qi).
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By (8) and (11), D(qi) ≤
“

2
γ2

”m−1

. Thus, for all i,

D(ri) ≤ (
2

γ2
)m. (13)

For the third condition, begin with the observation that, for all i > M
2
,

|ri − αi| = |R2qi − σ2qi + σ2qi − αi|

≤ |qi||R2 − σ2|+ |σ2||qi −
αi
σ2
|.

It is clear from (1) and (9) that σ2 ≤ 1 and |qi| ≤ 1. It follows by (10)
that

|ri − αi| ≤ |R2 − σ2|+ 4γ(m− 1) = |f(
k

`
)− f(y∗)|+ 4γ(m− 1). (14)

By the mean value theorem, |f(x) − f(y)| ≤ 2|x − y| for all x, y ∈ (0, 1).
Hence

|R2 − σ2| = |f(
k

`
)− f(y∗)| ≤ 2|k

`
− y∗| ≤

2γ

`
≤ 2γ. (15)

Putting this back into (14), we get, for all i > M
2
,

|ri − αi| ≤ 2γ + 4γ(m− 1) < 4γm.

Similarly, for i ≤ 2m−1,

|ri − αi| ≤ |R1 − σ1|+ |qi −
αi
σ1
| ≤ |R1 − σ1|+ 4γ(m− 1). (16)

Let g(x) =
√

1− x2, so that,for some ξ between R2 and σ2, we have

|R1 − σ1| = |g(R2)− g(σ2)| = |g′(ξ)||R2 − σ2|.

Note that |g′(x)| = x(1− x2)−1/2 is increasing on (0, 1). By (15) and (2),
we have R2 ≤ σ2 + 2γ ≤ 1√

2
+ 2(.02) < .75. Hence |g′(ξ)| ≤ |g′(.75)| < 2,

and
|R1 − σ1| ≤ 2|R2 − σ2|+ 4γ(m− 1) ≤ 4γm.

2

Now we can proceed to the general case of numbers that are not nec-
essarily powers of two.

Theorem 2 Suppose ε ∈ (0, .08), and suppose α1, α2, . . . , αn is a se-
quence of n real numbers such that α2

1 + α2
2 + . . . α2

n = 1. Then there are
rational numbers ri = ai

bi
, i = 1, 2, . . . ,m such that

•
mP
i=1

r2i = 1, and

• for all i, 0 < bi ≤ ( 32dlog2 ne
2

ε2
)dlog2 ne, and

• for all i, |ri − αi| < ε.

Proof: Let m = dlog2 ne. If n is not a power of two,then “pad with
zeroes”, i.e. define αi = 0 for n < i ≤ 2m. Then Lemma 1 is directly
applicable with γ = ε/4m. 2

A final comment is that there was a good reason to consider powers of
two first. The advantage of working with M = 2m first is that the depth
of the recursion is only O(logM), and consequently we get much better
bounds for the denominators.
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3 Approximating Orthogonal Matrices

First we fix some notation. For any n × n matrix A = (ai,j)1≤i,j≤n, let

||A||2 =
rP

i,j

a2
i,j . Also let ||A||∞ = maxi,j |ai,j |. Similarly, for a vector

v, let ||v||∞ be the maximum of the components’ magnitudes. For any
subset F ⊆ R, let O(n, F ) be the set of all n× n matrices A, with entries
in F , for which the columns are orthonormal with respect to the standard
inner product, i.e. for which At = A−1.

It is apparently known that O(n,Q) is dense in O(n,R). The case
n = 3 has been studied in some detail because of physics and engineer-
ing applications. See, for example, [6]. I do not know a suitable refer-
ence for general n, but Margulis[8] credits Platonov[11] with a proof that
SO(n,Z[ 1

5
]) is dense in SO(n,R). I cannot read [11], but Chapter 7 of [13]

is relevant. Platonov’s proof is not very accessible, and it is a non-trivial
matter for a general mathematical reader to sort through the topologies.
See [9],[10]. Theorem 3 below is a relatively simple proof that O(n,Q) is
dense in O(n,R) in the topology induced by Frobenius’ norm || · ||2 ( i.e.

the subspace topology inherited from Rn
2

when we regard n×n matrices

as vectors in Rn
2
). It provides crude but explicit bounds on the denom-

inators of the approximating matrices’ entries. I do not know whether
such bounds can be deduced from Platonov’s work.

Theorem 3 For any n× n real orthogonal matrix T ∈ O(n,R), and any
δ > 0, there is a rational orthogonal matrix A ∈ O(n,Q) such that

• ||T −A||2 < δ.

• Each entry of A has denominator less than ( 16
√

2n2dlog2 ne
δ

)2n
2dlog2 ne.

Proof: For any unit vector u (represented as an n× 1 matrix), let Hu be
the corresponding Householder matrix, i.e.

Hu = I − 2uut. (17)

It is well known [14],[4] that, for some h ≤ n and some unit vectors
u1,u2, . . . ,uh, we have

T =

hY
k=1

Huk . (18)

Let β = ( 16
√

2n2dlog2 ne
δ

)2dlog2 ne. By Theorem 2 (with ε = δ
4n2 ), we can,

for each k, choose a unit vector ak such that:

ak has rational coordinates (19)

||ak − uk||∞ <
δ

4n2
(20)

each coordinate of ak has denominator less than β. (21)

For this choice of unit vectors a1,a2, . . . ,ah, let

A =
hY
k=1

Hak . (22)
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Clearly A and has rational coefficients. We must show that it is a good ap-
proximation for T. Beginning with (18) and (22), we can add and subtract
a term to get

˛̨̨˛̨̨
A− T

˛̨̨˛̨̨
2

=
˛̨̨˛̨̨
Ha1(

hY
k=2

Hak −
hY
k=2

Huk ) + (Ha1 −Hu1)(

hY
k=2

Huk )
˛̨̨˛̨̨

2

≤
˛̨̨˛̨̨
Ha1(

hY
k=2

Hak −
hY
k=2

Huk )
˛̨̨˛̨̨

2
+
˛̨̨˛̨̨

(Ha1 −Hu1)(

hY
k=2

Huk )
˛̨̨˛̨̨

2
(23)

Because a Householder matrix is orthogonal, we have
˛̨̨˛̨̨
HvB

˛̨̨˛̨̨
2

=
˛̨̨˛̨̨
B
˛̨̨˛̨̨

2
=˛̨̨˛̨̨

BHv

˛̨̨˛̨̨
2

for any unit vector v and any n × n matrix B. Applying this

repeatedly to (23), we get

˛̨̨˛̨̨
A− T

˛̨̨˛̨̨
2
≤
˛̨̨˛̨̨ hY
k=2

Hak −
hY
k=2

Hau

˛̨̨˛̨̨
2

+
˛̨̨˛̨̨
Ha1 −Hu1

˛̨̨˛̨̨
2
.

The same argument can be applied again to the first term on the right.
Thus, by iterating, we get

˛̨̨˛̨̨
A− T

˛̨̨˛̨̨
2

=
˛̨̨˛̨̨ hY
k=1

Hak −
hY
k=1

Huk

˛̨̨˛̨̨
2
≤

hX
k=1

˛̨̨˛̨̨
Hak −Huk

˛̨̨˛̨̨
2
. (24)

For any i ≤ n, let uk(i) and ak(i) respectively be the i’th coordinates of
the unit vectors uk and ak. Then entry i, j of Hak −Huk is

2uk(i)
“
uk(j)− ak(j)

”
+ 2ak(j)

“
uk(i)− ak(i)

”
.

Combining this with (20), we get

||Hak −Huk ||2 ≤ n||Hak −Huk ||∞ ≤ 4n||ak − uk||∞ ≤
δ

n
. (25)

Putting (25) back into (24), we get the half of the theorem: ||T −A||2 < δ.
We still need to bound the sizes of the entries of the approximating

matrix A =
hQ
i=1

Hai . The h vectors a1,a2, . . . ,ah have collectively at most

hn ≤ n2 rational coordinates, each of which has denominator less than

β. Therefore βn
2

is an upper bound for the least common multiple of the
denominators of the coordinates, and consequently each entry of A has

denominator less than βn
2
. 2

Essentially the same argument can be carried out for unitary matrices.
Any unitary matrix can U ∈ U(n,C) can be written as a product of
Householder matrices of the form H = I − 2uu∗, where u is a unit vector
in Cn [14]. By identifying a unit vector u ∈ Cn with a unit vector in R2n,
we can choose a unit vector a in Q(i)2n so that ||u− a|| is is as small as
we like.
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