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ABSTRACT
This article presents a new model of mortgage prepayments, based on rational

decisions by mortgage holders. These mortgage holders face heterogeneous transac-
tion costs, which are explicitly modeled. The model is estimated using a version of
Hansen’s (1982) generalized method of moments, and shown to capture many of the
empirical features of mortgage prepayment. Estimation results indicate that mort-
gage holders act as though they face transaction costs that far exceed the explicit
costs usually incurred on refinancing. They also wait an average of more than a year
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ment behavior as well as the recent empirical model of Schwartz and Torous (1989).
Implications for pricing mortgage-backed securities are discussed.
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A GNMA mortgage-backed security gives its owner a share in the cash flows from a

pool of mortgages.1 To value and hedge these securities requires a model of mortgage

prepayment behavior, since this determines the timing of the cash flows. Schwartz

and Torous (1989) is a recent example of a large body of literature, both academic and

institutional, which empirically models prepayment as a function of some set of (non-

model based) explanatory variables. Most such models use either past prepayment

rates or some other endogenous variable, such as burnout,2 to “explain” current

prepayment. Their goal is to fit the shape of observed prepayment data, unrestricted

by many theoretical considerations. However, since these models are really heuristic

reduced form representations for some true underlying process, it is not clear how

they would perform in a different economic environment. If the interest rate process

were to change, or there were some change to mortgage contract terms, mortgage

prepayment behavior would also change. Purely empirical models, including that of

Schwartz and Torous, can make no predictions about the magnitude of this change.

Several authors have proposed models of rational mortgage prepayment based on

contingent claims pricing theory. In these models, prices and prepayment behavior

are determined together, both depending on the assumed interest rate model. Dunn

and McConnell (1981a, 1981b) model the optimal prepayment strategy of a mort-

gage holder who incurs no costs on prepayment, and may face exogenous reasons for

prepayment. Their model, however, implies arbitrage bounds on mortgage-backed se-

curities that are often violated in practice. To explain this, Timmis (1985), Dunn and

Spatt (1986), and Johnston and Van Drunen (1988) add transaction costs or other

frictions that may prevent mortgage holders from exercising their prepayment option

and profitably taking advantage of these arbitrage-bound violations. Although these

models consistently link valuation and prepayment, their prepayment predictions do

not closely match observed prepayment behavior. In their basic forms, with identical

transaction costs for all mortgage holders, these models imply that there will either be

no prepayment or some “background” level of prepayment until one instant when all

1A mortgage banker or savings and loan issues mortgage loans, either insured by the Federal
Housing Administration (FHA) or Farmers Home Administration (FmHA), or guaranteed by the
Veterans Administration (VA). It groups the mortgages into a pool, and then obtains mortgage-
backed Ginnie Mae certificates from the Government National Mortgage Association (GNMA), which
are sold to dealers or investors. GNMA guarantees the payment of interest and principal. The
interest rate on a Ginnie Mae security is the interest rate on the mortgages in the underlying pool,
less a GNMA guaranty fee of 0.06% per year, and an issuer’s servicing fee of 0.44% per year, a total
difference of 0.5%.

2Burnout refers to the dependence of expected prepayment rates on cumulative historical pre-
payment levels. The higher the fraction of the pool that has already prepaid, the less likely are those
remaining in the pool to prepay at any interest rate level. See, for example, Richard and Roll (1989).

1



remaining mortgages in a pool will suddenly prepay. Even with heterogeneous trans-

action costs,3 there would still be a single moment for each transaction cost when

interest rates hit some critical level, and all mortgage holders with that transaction

cost (or lower) would immediately prepay. If interest rates then rose and fell again to

this level, there would be no further prepayment observed, since all mortgage holders

who would optimally prepay would already have done so. These models do not fully

capture all of the empirical features commonly attributed to mortgage prepayment,

which include:

1. Seasonality.

2. Some mortgages are prepaid even when their coupon rate is below current

mortgage rates.

3. Some mortgages are not prepaid even when their coupon rate is above current

mortgage rates.

4. Prepayment appears to be dependent on a burnout factor.

This paper presents a model that is an extension of the rational prepayment mod-

els of Dunn and McConnell (1981a, 1981b), Dunn and Spatt (1986), Timmis (1985),

and Johnston and Van Drunen (1988). Like these models, and unlike purely empirical

prepayment models, it consistently links prepayment and valuation within a single

framework, allowing it to address what would happen in the event of a structural shift

in the economy. However, it extends these models in several ways. First, it explic-

itly models and estimates heterogeneity in the transaction costs faced by mortgage

holders. Second, mortgage holders make prepayment decisions at discrete intervals,

rather than continuously. These two features of the model endogenously produce the

burnout dependence noted in previous empirical studies, without the need to specify

an ad hoc exogenous burnout factor. They also allow GNMA prices to exceed par

by more than the amount of the explicit transaction costs.4 Finally, the model gives

rise to a simple reduced form representation for prepayment. It is estimated using

a methodology based on Hansen’s (1982) generalized method of moments (GMM),

and monthly prepayment data for more than 1,000 mortgage pools over a 6 1/2 year

3See, for example, Archer and Ling (1993).
4Dunn and Spatt (1986) note that very high transaction costs are required for their model to

explain the observed level of GNMA prices. This is because, in their model, GNMA prices are
bounded above by par plus transaction costs. The model described here can exceed that bound be-
cause there are implicit costs introduced by mortgage holders’ inability to exercise their prepayment
option optimally.
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period. The estimated level of transaction costs is high at first sight, but seems to

be due in large part to the implicit assumption that mortgage holders should be able

to borrow at the riskless interest rate. A simple adjustment to take account of the

credit risk of mortgage borrowers reduces the estimated cost level substantially. The

model produces prepayment behavior that matches closely that actually observed.

Measured in terms of percent of variance explained, this model fits the data better

than the recent empirical prepayment model of Schwartz and Torous (1989). The

estimated transaction costs can be explained as a way of capturing unmodeled credit

imperfections of mortgage holders.

The paper is organized as follows. Section 1 lays out the model, first describing

the decision process of a single rational mortgage holder. This prepayment decision

is used to determine the value of the mortgage holder’s liability, and the value of

a security backed by a pool of identical mortgages. Heterogeneity in prepayment

costs is modeled explicitly, replacing the dependence on endogenous state variables

(“burnout”) used in previous empirical work. Section 2 describes the detailed imple-

mentation of the model. Section 3 deals with the estimation of this model based on

its predictions for observed prepayment behavior. Section 4 looks at how to value

mortgage-backed securities at their date of issue, and shows that differences in trans-

action costs have a significant impact on this value. Section 5 presents concluding

remarks.

1 The Model

1.1 Modeling Prepayment

Assume mortgage holders minimize the market value of their mortgage liabilities.

They owe the scheduled stream of cash flows on their mortgage, and own a call option

which gives them the right to receive an amount equal to each of the remaining

mortgage payments, in exchange for payment of the remaining principal plus any

applicable transaction costs. Mortgage holder i has a transaction cost Xi associated

with prepayment. This represents the fraction of the remaining principal balance

that the mortgage holder must pay if he or she decides to prepay. While there

are monetary costs incurred on refinancing, the cost Xi also includes the value of

non-monetary components reflecting the difficulty and inconvenience of filling out

forms, lost productivity etc. In reality, some of these costs will be fixed rather than

proportional to the remaining principal balance. Available prepayment data, however,
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do not show the size or number of individual mortgages in a GNMA pool.5 Assuming

all costs to be proportional allows us to use homogeneity to predict prepayment

without needing to know each mortgage’s principal balance.

Let Bt denote the value of the underlying bond (the present value of the remaining

stream of cash flows on the mortgage) at time t, and Ft the remaining principal

balance. The mortgage holder has a call option on Bt with time varying exercise

price Ft(1 +Xi). The value of the mortgage liability, M `
t , is

M `
t = Bt − V

`
t , (1)

where V `
t is the value of the prepayment option to the mortgage holder. Since Bt does

not depend on the mortgage holder’s prepayment decision, minimizing the liability

value is equivalent to maximizing the option value.

Besides refinancing for interest rate reasons, the mortgage holder may also prepay

for exogenous reasons, such as divorce, job relocation, or sale of the house. The

likelihood of exogenous prepayment is described by a hazard function λ. Informally,

the probability of prepayment in a time interval of length δt, conditional on not

having prepaid prior to t, is approximately λδt. Hazard functions are discussed in

detail in Kalbfleisch and Prentice (1980), and Cox and Oakes (1984). The parameter

λ represents a baseline prepayment level, the expected prepayment level when no

interest rate driven refinancing should occur.

In previous rational models, mortgage holders reevaluate their prepayment de-

cision constantly. In this model, mortgage holders decide whether to prepay their

mortgage at random discrete intervals. This would result, for example, from mort-

gage holders facing some fixed cost payable when making each decision.6 Assume the

likelihood of making a prepayment decision is governed by a hazard function ρ. If ti

is a random decision point, the probability that the next decision is made in a time

interval of length δt starting at t is approximately ρ δt. Figure 1 shows the annual-

ized prepayment rates we would observe if there were no exogenous prepayment and

the interest rate remained for 5 years at a level where 50% of the mortgage holders

currently in the pool find it optimal to prepay. Different values of ρ imply different

prepayment behavior (and therefore different mortgage values). The smaller the value

of ρ, the smaller the initial prepayment rate, as fewer people prepay each month when

5A richer dataset, with information on loan size, would allow us to test whether the likelihood of
prepayment is related to loan size. This is not possible using GNMA data.

6This can be regarded as a measure of the difficulty and time involved in deciding whether
refinancing is optimal at any time.
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it is optimal to do so. A value of 0 corresponds to no prepayment. A value of ∞

implies that everyone prepays instantly, with the prepayment level dropping back to

0 after one month.7 For values between these extremes, the prepayment rate slowly

decays over time to zero.

In principle, Xi, λ and ρ could be functions of other variables, rather than con-

stants. For example, the transaction cost may increase over time as a proportion of

the remaining principal balance, if it is partially a fixed sum of money, rather than

purely a fraction of the remaining principal; the likelihood of relocation may be re-

lated to the level of interest rates, or to business cycle conditions; the time between

successive prepayment decisions may be related to the level of interest rates.8 The

implementation of the model is equally simple for any specification, as long as these

quantities depend only on interest rates and time. To derive a model that fits the

data yet is as parsimonious as possible, Xi, λ and ρ are all assumed to be constant.9

Define a prepayment strategy to be a function Ω that associates with each possible

state Yt an element Ω(Yt, t) of the set {0, 1}, where 0 corresponds to no prepayment,

and 1 to prepayment.10 For any given prepayment strategy Ω, the prepayment option

has a value denoted V `
t (Ω) (with dependence on Yt suppressed for clarity). Calculation

of V `
t (Ω), and therefore determination of the optimal prepayment strategy, requires

the specification of a model for interest rate movements and risk preferences. The

mortgage holder chooses the optimal prepayment strategy Ω∗, defined by

V `
t (Ω∗) ≥ V `

t (Ω), (2)

for all t and Yt, and for arbitrary prepayment strategy Ω. We write V `
t for V `

t (Ω∗),

and note that the optimal exercise strategy depends only on the transaction cost level

and the coupon rate on the mortgage. Since V `
t is homogeneous of degree 1 in the face

7The models of Dunn and McConnell (1981b), Timmis (1985), Dunn and Spatt (1986), and
Johnston and Van Drunen (1988) implicitly set ρ =∞.

8If interest rates are high, it is relatively unlikely that prepayment will be optimal in the near
future, and it makes sense to wait before checking again. If rates are very close to the prepayment
boundary, it makes sense to check again soon.

9If Xi, λ or ρ varied systematically with other variables, the model’s prediction errors when
these parameters are assumed constant ought to be correlated with those variables. In separate
tests, Stanton (1992) regresses prediction errors from this model against variables including pool
size, time since pool issue, housing starts, long and short term interest rates, unemployment, growth
in industrial production, and a seasonal dummy variable for summer [as used by Schwartz and
Torous (1989)]. None of these variables helps significantly to improve the fit of the model.

10We assume no partial prepayments (curtailments) occur. This is justified, except possibly right
on the exercise boundary, by the homogeneity of the mortgage holder’s problem. If we assume
in addition that some of the prepayment costs are fixed, and thus proportionately higher for a
curtailment than for a full prepayment, this rules out all curtailments.
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value, the value of a mortgage with a face value of $100 is the same as 100 mortgages

with a face value of $1.

The value of a mortgage-backed security, whose cash flows are determined by the

prepayment behavior of the mortgage holder, is Ma
t = Bt − V a

t (a for “asset”). As

noted by Dunn and Spatt (1986), there is a difference between the asset and liability

values because of the transaction costs associated with prepayment. While these are

paid by the mortgagor, and thus increase the value of the liability (reducing the value

of the option), they are not received by the investor in the mortgage-backed security.

The two values must be calculated simultaneously, since the optimal prepayment

strategy of the mortgage holder, determined as part of the liability valuation, in turn

determines the cash flows that accrue to the mortgage-backed security.

Each period, given the current interest rate and the transaction cost level of

the mortgage holder, the optimal prepayment strategy Ω∗ determines whether the

mortgage holder should refinance. For a given coupon rate, and transaction cost Xi,

there is a critical interest rate r∗t such that if rt ≤ r∗t the mortgage holder will optimally

choose to prepay. Equivalently, for a given coupon rate and interest rate rt, there is a

critical transaction cost X∗t such that if Xi ≤ X∗t the mortgage holder will optimally

prepay. This optimal exercise strategy defines an interest rate dependent hazard

function describing the time to prepayment for a single mortgage holder. If it is not

optimal for the mortgage holder to refinance, any prepayment is for exogenous reasons,

so the hazard rate governing prepayment equals λ. If it is optimal to refinance, the

mortgage holder may prepay in the next time interval either for interest rate related or

for exogenous reasons. The probability that the mortgage holder does not prepay in a

(small) time interval of length δt is the probability of neither prepaying for exogenous

reasons, nor making an interest rate related prepayment decision during this period,

e−λδte−ρ δt = e−(λ+ρ) δt. (3)

As δt goes to zero, the probability of prepayment approaches (λ + ρ) δt. Thus the

hazard rate governing prepayment equals λ if rt > r∗t (equivalently, Xi > X∗t ),

λ + ρ if rt ≤ r∗t (equivalently, Xi ≤ X∗t ).
(4)
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1.2 Borrower Heterogeneity and Mortgage Pools

We have so far considered only the prepayment behavior of a single mortgage holder.

However, the cash flows that accrue to the owner of a GNMA mortgage-backed se-

curity are determined by the prepayment behavior of all mortgage holders in a pool.

Valuing a mortgage-backed security backed by a pool of identical mortgage holders,

each facing the same transaction costs, and each holding a mortgage with the same

coupon rate and the same issue date, is a trivial extension. The liability value per

dollar of face value of each mortgage in the pool is the same as that calculated above.

The value of a security backed by a pool of mortgages is just a multiple of a single

mortgage with face value $1.

While GNMA regulations insist that the mortgages backing a GNMA mortgage-

backed security should be homogeneous, there are inevitably differences between

them. If these differences lead to different prepayment speeds, prepayment rates

for the pool will exhibit burnout behavior. For example, assuming all pools to be

identical, if a large fraction of a pool has already prepaid, those remaining in the

pool are likely to be predominantly slow prepayers, and the pool’s prepayment rate

for any given level of interest rates is likely be low. Conversely, if only a small frac-

tion of the pool has prepaid, the fraction of fast prepayers left in the pool will be

high, and the expected prepayment rate of the pool will be relatively high. To model

this behavior, previous empirical papers often assume that a mortgage’s prepayment

probability depends explicitly on the total prepayment of the pool to date [see, for

example, Schwartz and Torous (1989)]. The problem with using such an endogenous

state variable is that it is unclear what sort of behavior would lead to the specific

burnout representations used.

To treat heterogeneity explicitly, assume that the distribution of prepayment costs

among mortgage holders is a beta distribution with parameters α and β. This distri-

bution is chosen because it has many possible shapes, and constant support.11 The

mean and variance of the beta distribution are

µ =
α

α + β
,

σ2 =
αβ

(α + β)2 (α+ β + 1)
.

11This implies a fixed upper bound on possible transaction cost levels of 100% of the remain-
ing principal balance. However, under the assumptions of the model, a mortgage holder facing a
transaction cost close to this level never prepays his or her mortgage for interest rate reasons under
reasonable parameter values, so there is no disadvantage to not allowing higher costs.
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Given the distribution of transaction costs in a pool, it is now simple to value a

GNMA mortgage-backed security backed by that pool. Since the cash flow from the

pool is the sum of the cash flows from the individual mortgages, we just value each

type of mortgage in the pool, and weight each value by the fraction of the pool of

that type.

2 Solution of the Model

2.1 Interest Rates

To solve the model we must make assumptions about the process governing interest

rate movements. We use the Cox, Ingersoll and Ross (1985) one-factor model to

characterize nominal interest rate movements. In this model, the instantaneous risk-

free interest rate rt satisfies the stochastic differential equation

drt = κ(µ− rt) dt+ σ
√
rt dzt. (5)

This equation says that, on average, the interest rate r converges toward the value

µ. The parameter κ governs the rate of this convergence. The volatility of interest

rates is σ
√
rt. One further parameter, q, which summarizes risk preferences of the

representative individual, is needed to price interest rate dependent assets.

The parameter values used in this paper are those reported in Pearson and Sun (1989),

using data from 1979–1986, which roughly matches the sample period of this study.

These values are

κ = 0.29368,

µ = 0.07935,

σ = 0.11425,

q = −0.12165.

The long run mean interest rate is 7.9%. Ignoring volatility, the time required for

the interest rate to drift half way from its current level to the long run mean is

ln(1/2)/(−κ) ≈ 2.4 years.

Given this model for movements in rt, we now need to calculate the value of the

mortgage and the optimal exercise strategy for the observed sequence of interest rates.

To do this, note that V (rt, t), the value of an interest rate contingent claim paying
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coupons or dividends at some rate C(rt, t), satisfies the partial differential equation12

1

2
σ2rVrr + [κµ− (κ+ q)r]Vr + Vt − rV + C = 0. (6)

Solving this equation, subject to appropriate boundary conditions, gives the asset

value V (rt, t).

2.2 Valuation and Optimal Prepayment Strategy

Natural boundaries for the interest rate grid are 0 and ∞. Rather than solving

equation (6) directly, we therefore use the transformation

y =
1

1 + γr
, (7)

for some constant γ > 0,13 to map the infinite range [0,∞) for r onto the finite range

[0, 1] for y. The inverse transformation is

r =
1− y

γy
. (8)

Equation (7) says that y = 0 corresponds to “r = ∞” and y = 1 to r = 0. Next,

rewrite equation (6) using the substitutions

U(y, t) ≡ V (r(y), t), (9)

Vr = Uy
dy

dr
, (10)

Vrr = Uy
d2y

dr2
+ Uyy

(
dy

dr

)2

, (11)

12We need to assume some technical smoothness and integrability conditions [see, for example,
Duffie (1988)].

13We shall be using the grid points as approximations for observed interest rates in calculating
expected prepayment rates. The finer the grid, the better this approximation. However, the pro-
cessing time is proportional to each grid dimension. For a given number of grid divisions in the y
direction, the denser the implied r values are in the range corresponding to observed interest rates
(say 4% to 20%), the better will be the approximation of choosing the closest discrete r value to each
observed interest rate. We can affect this density by our choice of the constant γ. The larger the
value of γ, the more points on a given y grid correspond to values of r less than 20%. Conversely,
the smaller the value of γ, the more points on a given y grid correspond to values of r greater than
4%. As a compromise between these two objectives, γ = 12.5 was used. The middle of the range,
y = 0.5, corresponds to r = 8%.
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to obtain

1

2
γ2y4σ2r(y)Uyy +

(
−γy2 [κµ− (κ + q)r(y)] + γ2y3σ2r(y)

)
Uy + Ut − r(y)U + C = 0.

(12)

To value a single mortgage, and simultaneously determine the optimal exercise strat-

egy for that mortgage, we can use a finite difference approximation to solve equa-

tion (12). There are several different finite difference approximations. We use the

Crank-Nicholson algorithm, which has better stability properties than the simpler

explicit finite difference scheme, and a faster order of convergence than the fully im-

plicit method.14 Using this algorithm involves replacing the derivatives that appear in

equation (12) with equations involving the differences between the values of the asset

at neighboring points on a discrete grid of y and t values. For convenience we use a

time interval of one month, yielding a total of 360 intervals in the time dimension.

The Crank-Nicholson algorithm works backward to solve equation (12) one period

at a time to calculate the value of the mortgage holder’s liability.15 This gives the value

of the mortgage liability conditional on the prepayment option remaining unexercised,

M `
u(y, t). The value of the mortgage liability if the prepayment option is exercised is

the amount repaid, including transaction costs:

F (t)(1 +X).

It is theoretically optimal to refinance the mortgage if M `
u(y, t) > F (t)(1 +X). Oth-

erwise it is optimal not to prepay.16 The actual value, M `(y, t), is a weighted average

of M `
u(y, t) and F (t)(1+X), the weight on F (t)(1+X) being the probability that the

mortgage is prepaid in month t. This probability is determined by the parameters λ

and ρ. Let

Pe = 1− e−λ/12, (13)

the probability of prepayment this month if only exogenous prepayment will occur

14See McCracken and Dorn (1969).
15The value of the mortgage in month 360 is 0, since all principal has been repaid. Given known

values for the asset or liability at month t+1, the algorithm calculates their values at every interest
rate level on the grid at month t by discounting back a weighted average of their possible values at
time t+1. This is analogous to the “binomial tree” option pricing algorithm. For a detailed discussion
of the relationship between binomial methods, discounted expected values, explicit and implicit finite
difference methods for the valuation of contingent claims, see Brennan and Schwartz (1978).

16To facilitate empirical implementation, we assume that the new contract obtained after refi-
nancing is not subject to further refinancing costs.
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(i.e. it is not optimal to prepay for interest rate reasons). Let

Pr = 1− e−(λ+ρ)/12, (14)

the probability of prepayment this month if it is optimal to prepay. The value of the

mortgage liability is then

M `(y, t) =

 (1− Pe)M `
u(y, t) + Pe [F (t)(1 +X)] if M `

u ≤ F (t)(1 +X),

(1− Pr)M `
u(y, t) + Pr [F (t)(1 +X)] otherwise.

(15)

To determine the value of an asset (security) backed by this mortgage, Ma, the process

is similar. When the prepayment option is exercised, the security owner receives the

remaining principal balance on the mortgage, F (t). The value of a security backed

by the mortgage is thus

Ma(y, t) =

 (1− Pe)Ma
u(y, t) + PeF (t) if M `

u ≤ F (t)(1 +X),

(1− Pr)Ma
u(y, t) + PrF (t) otherwise.

(16)

This parallels equation (15) above with each M ` replaced by Ma, but with a different

payoff if the mortgage is prepaid. The asset value is less than the value of the mortgage

holder’s liability at all levels of transaction costs, since the money paid out by the

mortgage holder is always less than that received by the owner of the security.

2.3 Characteristics of Prepayment Behavior

In this model, if many mortgages have already prepaid, it is likely that the mortgages

remaining have relatively high transaction costs. It is therefore likely that in future

months relatively low prepayment will occur. The converse is also true. Although

there is no explicit burnout factor, the model does exhibit burnout behavior. To

give a sense of the different types of prepayment behavior that can be generated by

the model, and to see the impact of changing parameter values, Figure 2 illustrates

expected monthly prepayment rates for three hypothetical pools of 12.5% mortgages

from January 1980 to December 1989. The short term riskless interest rate used is

the one month T-Bill return tabulated by Ibbotson Associates. The parameter values

(α, β, ρ, λ) used for the three plots are A - (0.5, 0.5, 2.0, 0.05); B - (0.5, 0.5, 0.3,

0.05); C - (0.5, 4.0, 0.3, 0.05). Parameters α and β govern the initial transaction

cost distribution, and can be regarded as determining the response at a single time

to a change in rates. The parameter ρ governs how prepayment changes over time.
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Ignoring exogenous prepayment, the probability that a mortgage holder prepays in

any single month (if it is optimal to do so) is 1−e−ρ/12. The average time before a given

mortgage holder prepays for rational reasons is 1/ρ. For example, for ρ = 0.5, 2, 10,

the probability of prepayment in a single month is 4%, 15% and 57% respectively. The

average times before prepayment are 2 years, 6 months and 1.2 months respectively.

The expected proportion of the pool prepaying per year for exogenous reasons is

1− e−λ ≈ λ. All three pools in Figure 2 assume λ = 0.05, so the expected proportion

of the pool prepaying for exogenous reasons each year is 4.88%.

The pools labeled A and B have the same distribution of transaction costs, but

different ρ values. Mortgage holders in pool A take an average of 6 months to prepay,

while those in pool B take 3 years and 4 months. This implies that pool A should

initially (when no prepayment has occurred in either pool) have higher prepayment

rates, because a higher proportion of those in the pool who ought to prepay actually

do so in any given month (e.g. mid 1980, mid 1982). However, by 1988 the expected

prepayment level for pool B is generally higher. This is because almost all of the

people in pool A who would choose to prepay have already done so. Also interesting

is the fact that prepayment for rational reasons (above the base 4.9% level) occurs at

times for pool B when it does not for pool A, such as at the end of 1983. The greater

prepayment lag for pool B means they are less able to follow their theoretically optimal

option exercise policy (that they would follow if they exercised immediately). This

reduces the value of keeping their option unexercised, while the payoff from exercising

the option is the same for mortgage holders in both pools. Therefore mortgage holders

in pool B may find it optimal to prepay when those in pool A do not.

Pool C has the same ρ as pool B, but a different initial distribution of transaction

costs. The average transaction cost in pool B is 50% of the remaining principal

balance, whereas in pool C it is only 11%. Thus, there are always more people who

find it optimal to prepay in pool C than in pool B, and the expected prepayment

level for the pool is always higher. These comparative dynamics show that one can

in principle identify the separate parameters α, β, ρ, λ via their implications both for

prepayment at a single point in time and for how this changes over time.

3 Estimating the Model

Given the hazard functions describing the prepayment behavior of individual mort-

gage holders, we can in principle write down a likelihood function for a pool’s prepay-

ment [see Kalbfleisch and Prentice (1980)]. Parametric heterogeneity can be incorpo-

12



rated in this likelihood function by integrating over different values of the unobserved

parameter(s). Schwartz and Torous (1989) follow this approach, using maximum

likelihood to estimate their prepayment model. However, the fact that we do not

know the number of mortgages in a GNMA pool leads to a problem. If we assume

a single, fixed loan size to determine the number of loans outstanding at any time,

the point estimates obtained from maximum likelihood are invariant with respect to

this assumed loan size. However, the calculated standard errors are not invariant. To

avoid this problem, we shall use an alternative approach, based on Hansen’s (1982)

generalized method of moments (GMM).17 This provides a means of estimating pa-

rameters in a model by matching theoretical moments of the data, as functions of the

parameters being estimated, to their sample counterparts. For a full description, see

Hansen (1982) or Hansen and Singleton (1982).

3.1 Determining the Expected Prepayment Level

We need to identify a set of functions of the parameters and observable data which

have an unconditional expectation of zero. Let wit be the proportion of pool i pre-

paying in month t, where i = 1, 2, . . . , N . Define Ψt to be the information set at

time t, containing demographic information (date of issue, initial transaction cost

distribution, etc.) about each pool and the sequence of observed interest rate values

up to and including time t, and define

θ ≡ (α, β, ρ, λ).

Let

wit(θ) = E [wit | Ψt;θ] , (17)

the expected value of wit conditional on the information set and the parameter values

in the prepayment model. If the critical transaction cost level (dependent on the

current interest rate) at time t is X∗t , and if P ∗it is the proportion of pool i with

transaction costs less than or equal to X∗t , then (suppressing dependence on θ)

wit = Pe(1− P
∗
it) + PrP

∗
it, (18)

where Pe and Pr are defined in equations (13) and (14) above. If we calculate the

critical cost level for each month, and keep track of the distribution of costs in the

pool over time, we can therefore generate a series of expected monthly prepayment

17This also allows us to avoid having to impose arbitrary distributional assumptions.
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rates for a pool. However, for an arbitrary continuous transaction cost distribution,

searching for the critical cost level and keeping track of the full distribution of costs

in the pool over time are numerically very burdensome. To reduce the computation

required to a manageable level, we replace the continuous distribution of transaction

costs with a discrete approximation.18 The specific points and probability weights

of the discrete distribution should match the underlying continuous distribution as

closely as possible under a suitable metric. We define the discrete approximation by

a set of m values X1, X2, . . . , Xm, with associated weights c1, c2, . . . , cm, giving the

estimator

F̂ (x) =
m∑
j=1

cjI [Xj ≤ x] , (19)

where I is the indicator function. We choose the specific values of the points and

weights to approximate the proportion of mortgages in any range of transaction costs

as closely as possible. For a given m, we choose the Xj and cj to solve

min
Xj ,cj

{
sup
x∈[0,1]

∣∣∣F (x)− F̂ (x)
∣∣∣} , (20)

where F is the true distribution function. The solution to this can easily be shown

to be

cj =
1

m
, (21)

Xj = F−1
(

2j − 1

2m

)
, (22)

for j = 1, 2, . . . ,m, where

F (x) =
∫ x

0
f(u) du. (23)

The Xj are thus related to the m quantiles of the distribution. The important feature

of this approximation is that the jumps are all of the same size, and are centered

around the correct value. This is in contrast to other methods, such as Gaussian

quadrature, which provide approximations with other useful features (e.g. closely

approximating expected values of polynomials), but have widely varying weights. The

approximation used here minimizes the largest possible jump in expected prepayment

resulting from a small shift in interest rates.

Assuming the discrete approximation involves m different transaction cost levels,

18Alternatively, we could think of the true distribution being discrete, though approaching it via
a continuous distribution allows us to take advantage of the flexible parametric representation of the
beta distribution.
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the critical transaction cost level for every time and level of interest rates can be

determined by valuing m mortgages, each on a grid of interest rate and time values,

simultaneously determining the optimal exercise strategy for each mortgage. The

greater the number of points used, the closer the discrete approximation to the true

underlying distribution, but the greater the computational burden. Given the initial

distribution of transaction costs defined by the cost levels Xj and the associated

weights cj, it is now a simple matter to calculate the expected prepayment level

each month from equation (18). Let the proportion of mortgages in pool i with

transaction cost Xj at time t be cjt, (j = 1, 2, . . . ,m).19 The proportion of the pool

with transaction costs less than or equal to the critical value is

P ∗it =
m∑
j=1

cjtI [Xj ≤ X
∗
t ] . (24)

The expected proportion of the pool with transaction cost Xj at time t+ 1 is

cj t+1 =


cjt(1−Pr)

1−wit
if Xj ≤ X∗t ,

cjt(1−Pe)
1−wit

if Xj > X∗t .
(25)

3.2 Moment Restrictions

Write the model’s prediction error as

eit(θ) = wit − wit(θ). (26)

In matrix form, write

E(θ) =


e00 e01 . . . e0T

e10 e11 . . . e1T

...
. . .

...

eN0 eN1 . . . eNT

 , (27)

where N is the total number of mortgage pools and T the number of months of

prepayment data for each pool. We shall estimate the model by choosing parameter

values that set the average value of each column of E as close to zero as possible. The

conditional expectation E [eit(θ0) | Ψt] is zero, where θ0 is the vector of true values

19So cj0 = cj.
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for the prepayment model’s parameters. If zjt is any element of Ψt, then

E [eitzjt | Ψt] = 0, (28)

and so by iterated expectations the unconditional expectation

E [eitzjt] = 0. (29)

Thus we can in principle form extra moment conditions by using instruments from the

information set Ψt, such as past interest rates and prepayment rates. However, since

each column of E shares a common value of t, multiplying by any instrument zjt that

varies over time, but is common across all pools (such as an interest rate variable)

would result in a constant multiple of the old column, rather an independent moment

condition. Using past prepayment rates for each pool would in theory yield additional

moment conditions, but even with only a single instrument (the constant 1), there

are already 78 moment conditions (one per month of data). As a result, we shall only

consider the instrument zjt ≡ 1.

Define the vector of sample moments eN (θ) by

[eN(θ)]t =
1

N

N∑
i=1

eit(θ), (30)

the sample mean of column t of E. Under regularity conditions, eN (θ) → E [ei(θ)]

almost surely as the number of mortgage pools N →∞, where ei is the T vector of

prediction errors for pool i. Choosing an estimator θ̂ to minimize the magnitude of

eN(θ) gives a consistent estimator of θ0. To estimate the parameters of the model,

we minimize a quadratic form

QT (θ) = eN (θ)′WeN(θ), (31)

where W is some positive definite weighting matrix. This is done in two stages. First

take W to be the identity matrix, and perform the minimization to derive a first stage

estimator of the parameters, θ̂1. Next calculate WN , the sample estimator of

W0 = (E [ei(θ0)ei(θ0)
′])
−1
. (32)

WN is given by

WN =
[

1

N
E(θ̂1)

′E(θ̂1)
]−1

. (33)
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Use this as the weighting matrix for the second stage. As long as WN → W0 almost

surely, which will hold if we assume the mortgages to be drawn from a well behaved

distribution, the limiting variance-covariance matrix of the GMM estimator is

Σ0 =
1

N

[
(E [∂ei(θ0)

′/∂θ])W0 (E [∂ei(θ0)
′/∂θ])′

]−1
, (34)

assuming there is no correlation between residuals eit and ejt for i 6= j. This is true

under the null hypothesis that the model fully describes the prepayment behavior of

all pools, with deviations independent across pools.20 The sample estimator of this

expression gives a consistent estimator for the variance-covariance matrix.

This procedure is different from the usual implementation of time series GMM,

where a set of moment conditions is averaged across time. Here we average across

pools instead. There are several reasons for doing this. Averaging across time would

entail transposing the residual matrix E above, and calculating N different moments

(one per pool). The number of mortgage pools exceeds the number of time periods in

our sample, so the rank of E is at most T . The calculation of the weighting matrix for

the second stage estimator in equation (33) requires that the matrixE′E be invertible.

This is true if E has full column rank. However, if we were to average across time,

the equivalent formula would involve the inverse of EE′, an N×N matrix, which can

have rank at most T < N , and is thus not invertible. This problem could potentially

be avoided by aggregating data across pools to reduce the number of moments.

Section 2.3 noted that two pools with different prepayment parameters may exhibit

prepayment behavior that is not very different on average over time, but changes over

time in different ways. Forming the sample moments by averaging the residuals across

time throws away all of this variation across time. Both problems are overcome if

we transpose the usual residual matrix, and instead average across pools using one

moment condition for each month of data.

3.3 Data

The prepayment data used for estimation are monthly prepayment rates for a large

sample of pools of 12.5% GNMA 30 year single family mortgages. These are newly

issued single family residential mortgages, with a coupon rate of 12.5% (correspond-

ing to a coupon rate of 12% on the mortgage-backed security) and an initial term

of 30 years. Each mortgage has a default guarantee provided by either the FHA,

20Regressions reported in Stanton (1992) indicate that the sample correlation between errors in
separate pools is very small.
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VA or FmHA, and the maximum initial mortgage amount is between $100,000 and

$110,000.21 The period selected was July 1983–December 1989, to ensure both a

long sample period and a large number of pools with prepayment data for the entire

period. For each pool, the date of issue, initial balance and coupon rate are known.

Also known is the proportion of the initial dollar principal balance remaining in the

pool at the end of each month. The number of mortgages in each pool is not known.22

Pools with missing prepayment data during the sample period were excluded from

the study, leaving 1,156 pools in the sample used for estimation.23 The average annu-

alized prepayment rates between July 1983 and December 1989 varied between 1.6%

and 50%. The average proportion of a pool prepaying in any single month was 1.8%,

with a standard deviation of 4.3%. The standard deviation of the monthly average

prepayment levels (averaged across all 1,156 pools) was 1.6%.

The Cox, Ingersoll and Ross interest rate model describes movements in the short

rate. Mortgages are long-term instruments, and their value and optimal strategy are

therefore likely to be related to long-term interest rates. In the period subsequent to

this study, short rates have become more important due to the steepness of the yield

curve and greater use of shorter mortgage instruments such as ARMs. However, this

was less significant during the period 1983–89. The Salomon Brothers yield on newly

issued 20 year Treasury bonds was used to derive a short rate series to feed into the

CIR model. Each month, the short rate r was calculated which would have produced

the observed long bond yield if the CIR model were correct. If the CIR model were

strictly correct, this procedure would have no effect, as using any part of the yield

curve would produce the same results. However, to the extent that the CIR model

does not fully describe movements in the term structure, this procedure allows us to

focus on long rate movements.24 This is especially important because the relationship

between long and short rates varied substantially over the period 1983–1989, whereas

the CIR model implies that a particular short rate is always accompanied by the same

long rate.

21The VA loan limit increased from $100,000 to $110,000 in 1981, then again to $144,000 in 1988.
Over the same period, the FHA loan limit was $90,000, rising to $101,250 in 1988.

22The data for this study were provided by Goldman, Sachs & Co.
23Some pools were missing pool factors for certain months. The absence of data was not related

to whether the pool had a high or low prepayment rate, so ignoring these pools does not bias our
results.

24The long interest rate has been used by many other authors, including Schwartz and
Torous (1989).
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3.4 Results

The model was estimated using the 2-stage GMM procedure described above. 78

moment conditions were used, one for each month between July 1983 and December

1989. Table 1 shows the results. The value of ρ implies that prepayment occurs

slowly, even when it is theoretically optimal to refinance. For example, if it is optimal

to prepay for a whole year, the probability that a mortgage holder actually prepays

during that period is 1− e−0.6073 = 46%. The average time before a mortgage holder

prepays for rational reasons is 1/ρ = 1 year, 8 months. This provides evidence

against models that assume ρ =∞. The estimated value of the parameter λ implies

a probability of approximately 3.4% that a mortgage holder prepays in a given year

for exogenous reasons, ignoring rational prepayment. This provides evidence against

models which assume λ = 0, such as that of Timmis (1985).

The parameters α and β determine the initial distribution of transaction costs in a

mortgage pool. Figure 3 shows the estimated shape of this distribution. Transaction

costs are concentrated around the range 30–50%, with a mean value of 41% of the

remaining principal balance. This is significantly higher than the explicit monetary

costs associated with refinancing, which usually total no more than about 7%. This

implies that non-monetary prepayment costs amount to an average of 34% of the

remaining principal balance.

In understanding the estimated size of these costs, it is important to note that,

besides the explicit and implicit costs already mentioned (the inconvenience of hav-

ing to go to the bank, fill out forms, take time off work etc.), these transaction costs

also serve as a proxy for any other unmodeled or unobservable factors that make

prepayment rates lower than the model, as estimated, would predict using more “rea-

sonable” cost levels. There are several such factors. First, the model was estimated

assuming mortgage holders to have a 30 year planning horizon. Since the cost of

refinancing must be amortized over the remaining life of the mortgage, the shorter

the planning horizon, the greater must be the gains to prepayment before these gains

offset the costs. Mortgage holders with a shorter planning horizon will thus prepay

less often than those with the full 30 year horizon assumed in estimating the model.

The first column of Table 2 shows the results of estimating the model using a 10 year

investment horizon. The estimates of 0.6452 and 0.0338 for ρ and λ are similar to

those obtained assuming a 30 year horizon. The new estimates for α and β are 2.4173

and 4.2293, implying an average cost level that has reduced from 41% to 36%.

Credit considerations also serve to reduce prepayment rates. If a mortgagor is not

sufficiently credit worthy (or if the underlying house is not sufficiently valuable), he
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or she will be unable to refinance, regardless of how low interest rates become.25 The

effective transaction costs for such mortgagors are extremely high, so if they make up

a significant fraction of the pool,26 this will increase the average estimated transac-

tion cost. Another credit related issue is the possibility of mortgagor default. While

mortgage-backed securities are insured, so that as far as the investor is concerned,

default has the same impact as prepayment, the possibility of default will have some

impact on the prepayment behavior of mortgagors. The analysis in this paper implic-

itly assumes mortgage loans to be (default) risk free. However, mortgagors possess

not only an option to prepay their mortgages, but also an option to default on the

loan, giving the house to the lender.27 Ignoring this default option overstates the

value of the mortgagor’s liability in the absence of prepayment, hence overstating the

mortgagor’s incentive to prepay, in turn leading to excessive transaction cost esti-

mates. To illustrate the impact of this on the estimated parameter values, the second

column of Table 2 shows the results of estimating the model with a 1.5% credit spread,

roughly equivalent to that on a low rated corporate bond.28 Again, the estimates for

ρ and σ are similar to before, but the average estimated transaction cost level is now

only 20%.

3.4.1 Standard Errors

The standard errors reported in Table 1 appear low.29 This may be a sample size

problem, or may be related to the discrete approximation used in the analysis. The

objective function being minimized has discrete jumps, which makes numerical eval-

25A related explanation, believed by many mortgage traders, is that a sizable fraction of mortgage
holders never prepay under any circumstances.

26Or even just a significant fraction of the borrowers who would tend to prepay slower anyway.
27The theoretical interaction between this put option and the prepayment option is considered by

Kau, Keenan, Muller and Epperson (1992), assuming a lognormal process for house prices. They
find that the value of the default option is generally small for reasonable house price volatilities and
loan-to-value ratios, but that for larger volatilities or loan-to-value ratios, its value may approach
that of the prepayment option.

28The observed long interest rate is increased by this spread. This approximates the rate at which
mortgagors could borrow money with no prepayment option, but with the right to default.

29These estimates are calculated as if Pearson and Sun’s (1989) estimates for the parameters of
the CIR interest rate model are constants. Since these are themselves estimates, the standard errors
reported in Table 1 are probably understated. Newey (1984) shows in principle how to correct for
this. Assuming no correlation between the residuals used to estimate the mortgage model and those
used by Pearson and Sun to estimate the CIR model, Newey’s equation (8) defines a positive definite
correction that needs to be added to the variance matrix calculated above. However, calculation
of this correction requires the variance matrix for Pearson and Sun’s estimates, which they do not
report.
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uation of the derivatives used in calculating standard errors rather unreliable.30 To

see whether the discrete approximation is a problem, the estimation was repeated for

different numbers of discrete costs and interest rate values. The results are shown in

Table 3. The point estimates and standard errors are not identical for different grid

sizes, but they do not appear to vary systematically. The reported standard errors

do not increase as the grid size increases. Indeed, the reported standard errors for α

and β generally decrease in the number of grid points.

To analyze the reported standard errors further, the prepayment parameters re-

ported in Table 1 were used to generate simulated mortgage prepayment data, which

were then used in turn to reestimate the model. Repeating this many times allows us

to look at the small sample properties of the distribution of the estimates. Monthly

prepayment rates were simulated for 1,000 pools of 1,000 12.5% mortgages between

July 1983 and December 1989. This was repeated 100 times, and the model was

estimated on each set of simulated data. Table 4 summarizes the results of these

estimations. The first column shows the true parameter values used. The second

gives the sample mean of the estimated parameter values. The third column gives

the sample standard deviation of the estimated parameter values, and the fourth col-

umn gives the average reported standard errors, calculated using equation (34). The

average parameter estimates are close to the true values, but the average reported

standard errors are much lower than the sample values, suggesting that the reported

standard errors may be too low. Since this is apparently not due to the grid size, the

most likely explanation is that the sample size is not large enough for the asymptotic

standard errors to be close to the true values.

The χ2 test reported in Table 1 rejects the model. The weighted sum of squares is

too large to be due to random fluctuation. One possible explanation is that, since the

standard errors seem to be understated, this would probably result in an overstatedχ2

statistic. To check this, the empirical distribution of the 100 reported χ2 values from

each estimation performed above using simulated prepayment data was calculated.

A χ2
74 distribution should have a mean of 74. The sample mean was 243. While

the theoretical 1% critical level is 105, the sample 1% level was 356. The model is

still rejected, but the small sample confidence intervals are very different from their

asymptotic counterparts. This rejection may be due to the existence of explanatory

variables that are not included in the model.

30Because of this, the Powell algorithm, which does not require the calculation of derivatives, was
used to perform all minimizations.
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3.5 Predictions versus Observed Prepayment Rates

To see how the model’s predictions compare with prepayment rates actually observed

during the period July 1983–December 1989, Figure 4 shows the average observed

annualized monthly prepayment rates for the 1,156 pools used to estimate the model,

compared with the average predicted prepayment rates from the model. The R2

value, calculated from the formula

R2 = 1−
Variance of prediction error

Variance of dependent variable
, (35)

is 91%. For comparison, Figure 4 also shows the fitted values obtained by estimating

the Schwartz and Torous (1989) empirical prepayment model using the same data.31

The R2 for the Schwartz and Torous model is 88%. Finally, to show the importance of

using the long rate, Figure 4 shows the fitted prepayment rates obtained by estimating

the rational model using the short rate directly, rather than using an implied short

rate derived from the long bond yield. Using the long rate allows the model to match

the data substantially better.

4 Valuation

The value of a GNMA mortgage-backed security is a weighted sum of the market

values of the underlying mortgages. Section 2.2 described how to calculate asset

and liability values along with optimal prepayment strategies for individual mortgage

holders. To value a security backed by a heterogeneous pool requires calculating the

market value of a mortgage with each possible transaction cost level, then weighting

each value by the fraction of the pool with that transaction cost level.

Figure 5 shows how the value of a mortgage-backed security is affected by the value

of the parameter ρ, the probability that a prepayment decision gets made per unit

time. It plots the market value per $100 face amount of newly issued 12.5% mortgages

against the interest rate r for different values of ρ. In each case the transaction cost

level is 24%. The value decreases in ρ, since the lower ρ, the less the mortgage holder

is able to follow the optimal prepayment strategy, the less valuable is the prepayment

option, and therefore the more valuable is the mortgage liability.

Looking now at the impact of transaction costs, Figures 6 and 7 plot the market

value per $100 face amount of newly issued 12.5% mortgages against the interest

31Maximum likelihood was used to estimate the model, similarly to Schwartz and Torous (1989).
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rate r. The mortgages in Figure 6 have parameter values ρ = ∞, λ = 0. Those in

Figure 7 have ρ and λ set equal to their estimated values, reported in Table 1. Each

graph shows the value for several different transaction cost levels. The mortgage

value increases in the level of the transaction costs because a higher transaction cost

translates into a higher exercise price for the prepayment option, reducing its value.

The values in Figure 6 exhibit behavior described by Dunn and Spatt (1986).

Unlike a plain coupon bond, the GNMA value does not necessarily decrease mono-

tonically in the interest rate r. This is due to the presence of transaction costs.

Consider the case where ρ = ∞. At very low interest rates, prepayment occurs and

the mortgage is therefore worth $100. At very high interest rates, the value tends to

zero. At intermediate rates, the mortgage holder would prepay without transaction

costs, but the presence of these costs prevents this prepayment. Restricting the abil-

ity of the mortgage holder to exercise his or her prepayment option reduces the value

of this option, therefore increasing the market value of the mortgage.

In Figure 7, note that, unlike Figure 6, at low interest rates the security value

may now significantly exceed par ($100) even with zero explicit costs. This occurs

because mortgage holders wait more than a year on average before prepaying. This

delay precludes them from being able to follow their optimal prepayment strategy,

hence reducing the value of their prepayment option, and increasing the value of

the mortgage-backed security. Note also that the maximum value (corresponding to

infinite transaction costs) has dropped from almost $150 to about $140. This is due

to the increase in λ from 0 to 0.0345. A non-zero λ has the effect of decreasing the

mortgage value when it is trading above par, and increasing the value when it is

trading below par, since prepayment always results in a terminal cash flow of $100.

5 Conclusions and Directions for Future Research

This paper presents a new mortgage prepayment model that extends the option-

theoretic approach of previous authors. It explicitly models heterogeneity in the

costs faced by mortgage holders on prepayment, and assumes that prepayment deci-

sions occur at discrete intervals, rather than continuously, as with previous rational

models. These two factors together endogenously produce the burnout dependence

noted by previous authors, and allow the model to generate GNMA prices that exceed

par even without explicit transaction costs. The model captures many of the empir-

ical regularities observed in prepayment behavior, and possesses a simple moment

representation that allows it to be estimated using GMM. The parameter estimates
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reported in the paper provide evidence against previous models that assume mortgage

prepayment decisions are made continuously. They imply an average time between

successive prepayment decisions of more than a year.

This model provides a parsimonious structural means of modeling individual be-

havior that appears “irrational” according to the predictions of a simple optimal

exercise model without transaction costs. Rather than merely curve fitting, allow-

ing the data to predict itself, the rational exercise structure is retained in a modified

form. This allows the model to address economic questions that are beyond the scope

of purely empirical models. Individuals’ decision processes should remain constant

even when the results of those decisions change due to shifts in the economic envi-

ronment. We could, for example, analyze the impact of a change in the interest rate

process, or a change in mortgage contract terms (such as the imposition of an explicit

prepayment penalty), on prepayment behavior and security value.

The approach used in this paper has implications for the study of many assets

and liabilities with embedded options, whose value is determined by the behavior of

a large group of individuals who cannot be counted on to act according to a simple

rational model. This includes determining the optimal call policy for corporate bonds,

modeling the conversion behavior of the holders of convertible debt, and valuing

and hedging investment vehicles such as certificates of deposit (CDs), guaranteed

investment contracts (GICs), and single premium deferred annuities (SPDAs).32

32With these contracts, an investor makes an initial deposit which grows over time. The investor
has the right at any time (possibly subject to some switching cost) to surrender the contract,
withdraw the accumulation so far, and reinvest it in a higher yielding vehicle.
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Table 1: Parameter estimates for rational prepayment model

Parameter Estimate
ρ 0.6073

(0.0077)
λ 0.0345

(0.0007)
α 2.9618

(0.0919)
β 4.2268

(0.1245)
χ2

74 test of overidentifying restrictions 646.5∗∗∗

Variance of average monthly prepayment rate .00025
Variance of average prediction error .00002
R2 0.905
∗ Significant at the 10% level.
∗∗ Significant at the 5% level.
∗∗∗ Significant at the 1% level.

In this table, generalized method of moments (GMM) is used to estimate the pa-
rameters ρ (which measures how likely mortgage holders are to make a prepayment
decision in any given period), λ (which measures the probability of prepayment for
exogenous (non-interest rate) reasons), and α and β (which together determine the
initial distribution of transaction costs among the mortgage holders in the underlying
pools). Standard errors appear in parentheses. Data used for estimation are monthly
prepayment rates for 1,156 12.5% GNMA-1 mortgage pools between July 1983 and
December 1989.
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Table 2: Parameter estimates under alternative assumptions about investment hori-
zon and credit spread

Estimate assuming Estimate assuming
Parameter 10 year horizon 1.5% credit spread

ρ 0.6452 0.6501
(0.0058) (0.0034)

λ 0.0338 0.0374
(0.0004) (0.0006)

α 2.4173 1.0943
(0.0140) (0.0053)

β 4.2293 4.2518
(0.0365) (0.0210)

χ2
74 672.4∗∗∗ 735.0∗∗∗

Var. average monthly prepayment rate 0.00025 0.00025
Var. average prediction error 0.00002 0.00003
R2 0.919 0.894
∗ Significant at the 10% level.
∗∗ Significant at the 5% level.
∗∗∗ Significant at the 1% level.

In this table, generalized method of moments (GMM) is used to estimate the pa-
rameters ρ (which measures how likely mortgage holders are to make a prepayment
decision in any given period), λ (which measures the probability of prepayment for
exogenous (non-interest rate) reasons), and α and β (which together determine the
initial distribution of transaction costs among the mortgage holders in the underlying
pools). Standard errors appear in parentheses. Data used for estimation are monthly
prepayment rates for 1,156 12.5% GNMA-1 mortgage pools between July 1983 and
December 1989.
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Table 3: Parameter estimates for different grid sizes

Number of grid points
Parameter 30 100 200 500

ρ 0.6073 0.6556 0.6321 0.6851
(0.0077) (0.0077) (0.0093) (0.0096)

λ 0.0345 0.0357 0.0343 0.0351
(0.0007) (0.0006) (0.0007) (0.0007)

α 2.9618 3.3518 3.0439 2.4202
(0.0919) (0.0696) (0.0306) (0.0436)

β 4.2268 4.1880 4.0966 3.1593
(0.1245) (0.0924) (0.0617) (0.0533)

In this table, generalized method of moments (GMM) is used to estimate the pa-
rameters ρ (which measures how likely mortgage holders are to make a prepayment
decision in any given period), λ (which measures the probability of prepayment for
exogenous (non-interest rate) reasons), and α and β (which together determine the
initial distribution of transaction costs among the mortgage holders in the underlying
pools). Standard errors appear in parentheses. Each column shows the results of es-
timation for a given number of interest rate and transaction cost categories (the same
number used for both interest rates and transaction costs). Data used for estimation
are monthly prepayment rates for 1,156 12.5% GNMA-1 mortgage pools between July
1983 and December 1989.
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Table 4: Simulation results

Parameter Actual Value Estimated
ρ 0.6073 0.58076

(0.00251) (0.00060)
λ 0.0345 0.03537

(0.00043) (0.00005)
α 2.9618 3.02091

(0.02280) (0.00409)
β 4.2268 4.25621

(0.03659) (0.00549)

The parameter values in the “Actual” column were used to generate simulated prepay-
ment rates for 1,000 mortgage pools, each containing 1,000 12.5% mortgages. GMM
was then used to estimate the model from the simulated data. Parameters estimated
are ρ (which measures how likely mortgage holders are to make a prepayment decision
in any given period), λ (which measures the probability of prepayment for exogenous
(non-interest rate) reasons), and α and β (which together determine the initial dis-
tribution of transaction costs among the mortgage holders in the underlying pools).
The average estimated value (over 100 replications) of each parameter is shown, to-
gether with the average reported standard error, and the standard deviation of the
estimated values. Data used for estimation are monthly prepayment rates for 1,156
12.5% GNMA-1 mortgage pools between July 1983 and December 1989.
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Figure 1: Effect of decision frequency on prepayment behavior.
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In this example, 50% of pool initially find it optimal to prepay. Parameter ρ deter-
mines average time between prepayment decisions (1/ρ). For large ρ, every mortgage
holder who finds it optimal to prepay does so very quickly. As ρ approaches zero, the
initial prepayment rate is lower, but prepayment continues over a longer period.
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Figure 2: Expected annualized prepayment rates for three hypothetical pools of 12.5%
mortgages.
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Mortgage holders in pool A make more frequent prepayment decisions than those
in pools B and C. Those in pool C face lower transaction costs, on average, than
mortgage holders in pools A and B. Prepayment rates are calculated conditional on
the observed short term interest rate, measured according to the Ibbotson monthly
T-Bill return series.
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Figure 3: Initial distribution of transaction costs.
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Figure shows distribution based on estimated values of parameters α and β. Solid
line shows cumulative distribution function. Dashed line shows probability density
function.
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Figure 4: Actual prepayment rates vs. models’ predictions.
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Thick line shows average observed prepayment rates for a sample of 1,156 12%
GNMA-1 mortgage pools over the period July 1983–December 1989. Thin solid
line shows prepayment rates predicted by rational prepayment model, and dashed
line shows prepayment rates predicted by Schwartz and Torous empirical prepayment
model. Dotted line shows predictions of rational model, conditional on a short term
interest rate rather than a long rate.
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Figure 5: Mortgage values for different speeds of prepayment.
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Initial market value per $100 face amount of 12.5% mortgage for different values of
parameter ρ, which governs average time between successive prepayment decisions.
Transaction cost in each case is assumed to be 24% of remaining principal balance.
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Figure 6: Mortgage values for different refinancing costs.
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Initial market value per $100 face amount of 12.5% mortgages with different trans-
action costs payable on prepayment. Mortgage holders are assumed not to prepay
for non-interest rate reasons, and to face no delays in exercising their prepayment
options.
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Figure 7: Mortgage values at estimated parameter values.

0% 40% Infinite

0 5 10 15 20 25
Interest Rate (%)

70

80

90

100

110

120

130

140

150

V
al

ue
 p

er
 $

10
0 

F
ac

e 
A

m
ou

nt

Initial market value per $100 face amount of 12.5% mortgages with different transac-
tion costs payable on prepayment. Likelihood of prepayment for exogenous reasons,
and average time between successive prepayment decisions, are assumed equal to their
estimated values.
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