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Abstract

Murine syngeneic tumor models are critical to novel

immuno-based therapy development, but the molecular and

immunologic features of these models are still not clearly

defined. The translational relevance of differences between the

models is not fully understood, impeding appropriate preclin-

ical model selection for target validation, and ultimately hin-

dering drug development. Across a panel of commonly used

murine syngeneic tumor models, we showed variable respon-

siveness to immunotherapies. We used array comparative geno-

mic hybridization, whole-exome sequencing, exon microarray

analysis, and flow cytometry to extensively characterize these

models, which revealed striking differences that may underlie

these contrasting response profiles. We identified strong differ-

ential gene expression in immune-related pathways and

changes in immune cell–specific genes that suggested differ-

ences in tumor immune infiltrates between models. Further

investigation using flow cytometry showed differences in both

the composition and magnitude of the tumor immune infil-

trates, identifying models that harbor "inflamed" and "non-

inflamed" tumor immune infiltrate phenotypes. We also found

that immunosuppressive cell types predominated in syngeneic

mouse tumor models that did not respond to immune-check-

point blockade, whereas cytotoxic effector immune cells were

enriched in responsive models. A cytotoxic cell–rich tumor

immune infiltrate has been correlated with increased efficacy

of immunotherapies in the clinic, and these differences could

underlie the varying response profiles to immunotherapy

between the syngeneic models. This characterization highlight-

ed the importance of extensive profiling and will enable inves-

tigators to select appropriate models to interrogate the activity

of immunotherapies as well as combinations with targeted

therapies in vivo. Cancer Immunol Res; 5(1); 29–41. �2016 AACR.

Introduction

Recent clinical successes treating tumors with immunothera-

pies, including approval of the immune-checkpoint blockade

antibodies ipilimumab (anti–CTLA-4) and nivolumab and

pembrolizumab (anti–PD-1), demonstrate the potential to

transform treatment paradigms and improve patient outcomes

(1–3). These treatments represent a shift in the approach to

cancer therapy as they do not target the tumor cells but instead

target the immune system to circumvent inhibitory pathways

that attenuate effective antitumor immune responses. Despite

these successes, responses to immunotherapy usually remain

restricted to a subpopulation of patients (4, 5). In order to

broaden the cancer patient population benefiting from immu-

notherapy, a greater understanding is needed of the factors

that affect response and the potential for combination of

different therapies. It is clear that T-cell infiltration varies greatly

between individual tumors, patients, and disease types, with

some considered to harbor more immunogenic (e.g., "hot"/

"inflamed") tumors (6, 7), characterized by greater T-cell infil-

tration and Th1 cytokine expression, and overlapping drivers of

immunosuppression. In contrast, other tumors may be char-

acterized by a sparse T-cell infiltrate (e.g., immunologically

"cold"), potentially as a consequence of reduced immunoge-

nicity. The phenotype of the tumor immune infiltrate correlates

with both patient prognosis (8) and outcome following immu-

notherapy (9). Intrinsic tumor characteristics such as neoanti-

gen load can also affect response to immunotherapy (10, 11),

possibly by modulating tumor immunogenicity (12).

Human xenograft tumor models, in which human tumor cell

lines are implanted in mice, have played a critical role in under-

standing traditional cytotoxic or targeted cancer therapies. How-

ever, in the context of immunotherapy, these routinely used and

well-characterizedmodels are not suitable, because they lack an
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intact immune system. Several immunocompetent mouse

model systems can be used to study immunotherapies, but

each brings with it a series of challenges and limitations

(reviewed in refs. 13 and14). For example, genetically engi-

neered mouse models (GEMM) recapitulate the anatomical

location and encompass some disease-specific mutations fre-

quently observed in human cancer, but they require large

colonies of mice, have extended latency periods and, in contrast

to the clinical setting, often display limited mutational burden

and minimal genetic mosaicism (15). Alternatively, models

based on subcutaneous or orthotopic implantation of synge-

neic tumor cell lines have short latency periods, are reproduc-

ible, and high-throughput; on the basis of this, they have been

the workhorse of cancer immunology for several decades (13).

These tumor models have been invaluable in providing pre-

clinical proof of concept for candidate immunotherapeutic

drugs (16, 17), as well as building an understanding of mech-

anism of action and evaluating potential biomarkers of

response (18, 19). However, to date, the majority of studies

have been performed in a small number of models (compared

with xenografts, ref. 14) and, despite their widespread use,

surprisingly little is known about the genotypes and pheno-

types of these syngeneic murine tumor models (14). Ultimate-

ly, a better understanding of these models is required to enable

appropriate model selection and to permit both data interpre-

tation and extrapolation to the clinic (13, 14).

Here, we describe a comprehensive characterization of the

genomic, transcriptomic, and immunologic composition of sev-

eral murine syngeneic tumor models. Using flow cytometry, we

characterized the tumor immune infiltrate, the spleen and tumor-

draining lymph nodes (TDLN) in a panel of our most frequently

used models. This enabled us to examine whether the genotype

andgene expressionprofile of the tumor cells associatedwith their

immunophenotype in vivo and determine how this related to

response following immune-checkpoint blockade. This study

highlights the need for extensive characterization of models used

for preclinical immunotherapy research, and provides data that

will, based on the proposed mechanism of action of the therapy

being evaluated, support investigators in selecting appropriate

models using hypothesis-driven rationales. It also forms the

basis of a dataset that will increase the translational relevance of

studies, by allowing parallels to be drawn between models and

human disease phenotypes. Moreover, these data can be readily

applied to expedite the discovery and development of novel

immunotherapies by increasing the efficiency of preclinical drug

development.

Materials and Methods

Tumor models

An overview of the experiments performed is shown in Sup-

plementary Fig. S1. All in vivo experiments were performed in

accordance with the UK Animal (Scientific Procedures) Act 1986

and the EU Directive 86/609, under a UK Home Office Project

License and approved by the Babraham Institute Animal Welfare

and Ethical Review Body, using guidelines outlined by Workman

and colleagues (20). C57BL/6 and BALB/c mice were supplied by

Charles River UK at 8 to 10 weeks of age and >18g and housed

under specific pathogen-free conditions in Tecniplast Green

Line IVC Sealsafe cages holding a maximum of 6 animals

with irradiated aspen chip bedding, Nestlets nesting material, a

cardboard tunnel andwooden chew blocks. Mice were housed on

a12/12 light/dark cycle,with ad libitumUV-treatedwater andRM1

rodent diet.

Cells (100 mL) in PBS were subcutaneously injected into the

right flanks of mice (unless otherwise stated; details of the cell

lines and cell numbers are given in Supplementary Table S1).Cells

did not undergo any in vivo passaging (except for the B16F10 AP-3

cell line) and were maintained under limited passage from

original stocks (typically under 5). We did not undertake addi-

tional independent validation. Tumor volume was measured

using the formula (width2� length)/2, and tumorswere collected

when reaching an average of 150mm3. For the Pan02 cell line, 50

mL of cells in ice-cold matrigel (Corning) were surgically

implanted into the pancreas tail. For tumor growth studies, mice

were injected intraperitoneally with 10 mg/kg of either anti–

CTLA-4 (mouse IgG2b, clone 9D9; Biolegend) or anti–PD-L1

(rat IgG2b, clone 10F.9G2; BioXCell) or the respective isotype

controls (aNIP; MedImmune).

Array comparative genomic hybridization (aCGH)

Microarray serviceswere provided byAlmacDiagnostics. Geno-

micDNAwas extracted fromone sample of eachmouse tumor cell

line using the DNeasy Blood and Tissue Kit (Qiagen) and quality

controlled (OD A260/230 ratio � 1.8) using a 2100 Bioanalyzer

(Agilent). Samples were 2-color labeled using the genomic DNA

labeling kit PLUS (Agilent), hybridized onAgilentMouse genome

CGH 1 � 224K oligo microarrays using the Oligo aCGH Hybrid-

ization kit (Agilent) and scanned on an Agilent Microarray scan-

ner. Reference mouse genomic DNA (Merck) was used as a

control. All microarray data are deposited into GEO (accession

number GSE85509). After normalization to the control mouse

genome, probe log2 ratios for autosomal genes were converted to

copy-number variation (CNV) values (Supplementary Table S2

and Supplementary Dataset).

Whole-exome sequencing (WES)

DNA was extracted from cell lines using the DNeasy Blood

and Tissue kit (Qiagen). DNA samples were evaluated using an

E-Gel (Invitrogen) and PicoGreen fluorometry to measure

quality and quantity, respectively. DNA samples were then

physically sheared to the desired size using a Covaris E220

Focused-ultrasonicator. Library preparation and enrichment

were carried out using an Agilent SureSelectXT Mouse All Exon

49.6Mb design, followed by sequencing on an Illumina HiSeq

2000. Basecall files (�.bcl) were de-multiplexed and converted

to fastq.gz format using CASAVA v1.8.2 (Illumina). CrossMap

(21) was used to lift the BED files over to mm10 reference for

variant calling. The reads were aligned using BWA (22) and

variants were called using FreeBayes (23) and VarDict (24).

Copy number was inferred from the exome data using Seq2C

and CNVKit (25) for approximately 1500 immune system

and oncology-related genes. Variants were strain-specifically

annotated using data downloaded from ftp://ftp-mouse.sanger.

ac.uk/REL-1505-SNPs_Indels/strain_specific_vcfs/ forC57BL_6NJ,

BALB_cJ, and DBA_1J. Sequencing data were deposited in the

European Nucleotide Archive (accession PRJEB12925).

Targeted sequencing

DNA was isolated from fresh-frozen tumor tissue utilizing

the Qiagen MagAttract kit and concentrations determined by

Nanodrop spectrophotometry. Focused amplicon sequencing

Mosely et al.
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of 64 genes commonly mutated in cancer patients (based

on proprietary datasets and the COSMIC database; ref. 26)

was carried out utilizing a custom AmpliSeq panel (Life Tech-

nologies) to confirm their mutation status. Two pools of

amplicons were generated and 20 ng of DNA was utilized for

each pool. The manufacturer's protocol was followed for target

amplification, adapter ligation, and purification. Libraries

were sequenced on an Ion PGM instrument utilizing the

318 chip. Reads were aligned with Bowtie v2.0 (27) using

the mouse reference version mm10 (B6 strain). Single nucle-

otide variants were called using VarScan v2.3.2 (28) with

minimum average quality ¼ 30, minimum variant allele read

count ¼ 5, and Fisher exact t test P < 0.01. Minimum variant

allele frequencies of 7% were called with a minimum of 200�

total depth at the locus. Annotation was conducted using

Annovar (29).

Transcriptomics

Microarray services were provided by Almac Diagnostics. RNA

was extracted from the tumor, spleen, and lymph node (LN)

tissues from eachmodel using RNAStat 60 (Amsbio), and quality

of total RNA was determined using a 2100 Bioanalyzer (Agilent).

After amplification using the WT-Ovation Pico amplification kit

(NuGEN Technologies), cDNA was generated using WT-Ovation

Exon module. After quality testing, cDNA was fragmented,

labeled and hybridized using the FL-Ovation cDNA Biotin Mod-

ule V2 (NuGEN Technologies) to Mouse Exon 1.0 ST arrays

(Affymetrix). All microarray data are deposited into GEO (acces-

sion number GSE85509). Microarray data underwent Robust

Multichip Algorithm preprocessing and normalization in Omic-

soft ArrayStudio. Exon probes (1,192,934) remainedwith a probe

detection P � 0.05. Quality control excluded two outliers. Log2
transcript expression values were determined as the median of

detected core probes.

To enable cross-comparison of tumor samples between

models, five simulated pooled samples (SPS) were generated

by proportional resampling with replacement of the log2
expression intensities for each gene (R and Omicsoft ArrayS-

tudio). The SPS tumor control group was compared with tumor

samples from each model to identify differentially expressed

genes (DEG) using empirical Bayesian analysis [including ver-

tical (within a given comparison) P value adjustment for

multiple testing; Fios Genomics]. LN and spleen samples were

compared with their tissue, strain, and sex-matched controls.

DEGs were selected using both FDR adjusted P value � 0.05

(Benjamini and Hochberg method) and fold change �2.0 or

��2.0.

DEGs underwent functional enrichment and network analyses

using Ingenuity Pathway Analysis (IPA, Ingenuity Systems).

Enrichment analysis results were cross-compared using the IPA

comparison tool. The differentially regulated non-disease canon-

ical pathways with the top ten highest and lowest activation Z

scores per model were ranked by summed absolute Z score for all

15 models and plotted in a heatmap. Normalized log2 gene

expression intensity per tumor sample for 96 cell type–annotated

genes from the Nanostring nCounter PanCancer Immune Profil-

ing Panel gene-list underwent hierarchical cluster analysis (HCA;

normalized, linkage¼Ward and distance¼ Euclidean) to cluster

samples only, with genes ordered by immune cell type annotation

(Matlab).

Flow cytometry

Tumors were disaggregated using the GentleMACS Mouse

Tumor Dissociation kit (Miltenyi Biotech). Spleens and TDLNs

were dissociated through a 70-mm nylon cell strainer. Spleens

were resuspended in red blood cell lysis buffer (Sigma) for 1

minute. All cells were then stained with a viability dye (Thermo

Fisher) and blocked with antibodies to CD16/CD32

(eBioscience) before staining with fluorescence-conjugated anti-

bodies (Supplementary Table S4) in flow cytometry staining

buffer with Brilliant Stain Buffer (BD Biosciences). Intracellular

staining was performed using the FoxP3/transcription factor

staining buffer set (eBioscience) and cells were fixed in 3.7%

formaldehyde/PBS. Counting beads (123Count eBeads;

eBioscience) were added to the samples before acquisition on

an LSRFortessa (BD Biosciences) and analysis using FlowJo

(TreeStar). Gating strategies are shown in Supplementary Fig.

S2. To enable comparisons between tumors, cell counts were

normalizedbydividing the cell count obtainedusing the counting

beads by the tumor volume.

Cytokine quantification

Tumors were snap-frozen in liquid nitrogen, then lysed on a

TissueLyser II (Qiagen) in 1% Triton-X/PBS with phosphatase

inhibitors (PhosSTOP; Roche), protease inhibitors (cOmplete;

Roche), and tungsten carbide beads (Qiagen). Lysates were freeze-

thawed, centrifuged and diluted to 0.5 mg/mL before analysis of

10 cytokines using the mouse Proinflammatory Panel 1 V-PLEX

immunoassay (Meso ScaleDiscovery). Datawere log transformed

and plotted using Matlab.

Statistical analyses

Flow cytometry data were analyzed in GraphPad Prism using

one-way ANOVA with Tukey correction for multiple compari-

sons. For tumor growth studies, group sizes were determined

using power analyses based on the variability of the models in

pilot studies. Tumor growth data were log10 transformed, and the

effectiveness of the therapy (Tr) with respect to the baseline

treatment performance was assessed with a linear mixed-effect

model (30, 31). The Yij, representing log10-transformed ith tumor

volume observed at jth assessment point (T), follows the linear

growthmodel: Yij¼ a0iþ a1i � Tjþ eij, where a0i and a1i denote

individual intercept and slope parameters, respectively, and eij �

N(0,s) represents model error. Both intercept and slope are

assumed to express random effects:

a0i¼ g00þ g01�Triþ u0i, a1i¼ g10þ g11�Triþ u1i, with u0i

�N(0,s0) andu1i�N(0,s1). The parameters g00, g10, and g01,

g11 represent the parameter's fixed effects; s, and s0, s1 corre-

spond to intra- and intertumor variance, respectively. Models

were defined as "responsive" if the growth kinetics of the treated

group comparedwith the control groupwas significantly different

(P < 0.05).

Results

Model-dependent differences in antitumor response to anti–

CTLA-4 and anti–PD-L1

During our preclinical investigation of CTLA-4 and PD-L1 as

targets for immune-checkpoint blockade, we tested the antitu-

mor activity of surrogate antibodies in several murine syngeneic

tumor models (32). Significant tumor growth inhibition was

seen following anti–CTLA-4 treatment in the CT26 (P �

Characterization of Murine Syngeneic Tumor Models
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0.0001) and RENCA (P � 0.0001) models (Fig. 1A), whereas

PD-L1 demonstrated activity only in the CT26 model (P �

0.0001; Fig. 1B). This highlighted a need to better understand

the underlying immunobiology of murine syngeneic tumor

models in order to identify potential drivers of response and

enable rational selection of appropriate models for preclinical

activity testing.

Genomic analysis reveals a high degree of diversity in copy

number variations

We performed genome-wide aCGH analysis on 16 in vitro

murine tumor cell lines to gain an understanding of broad

amplification and deletion events. CNV levels were not affected

by the method of tumor cell line generation because CNV

frequency of carcinogen-induced CT26, genetically induced
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Figure 1.

The antitumor activity of anti–CTLA-4 and anti–PD-L1 treatment varies across a range of syngeneic models. Tumor growth curves for 6 subcutaneous murine

syngeneic tumor models treated with either (A) CTLA-4 antibody clone 9D9 (10 mg/kg) or (B) PD-L1 antibody clone 10F.9G2 (10 mg/kg). Treatment was

given by intraperitoneal injection on the days marked with ticks on the x-axis of the graphs. n� 6mice per group. ��� , P < 0.0001, ns: nonsignificant P� 0.05, linear

mixed-effect model test. Data are representative of at least two independent experiments.
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TRAMP-C2, and spontaneous LL/2 cell lines were not markedly

dissimilar (5.74%, 5.75%, and 5.04% respectively; Fig. 2). No

difference in the overall burden of genomic aberrations was

seen in the CT26 cell line compared with the others (5.74% of

genes studied had CNV in CT26 vs. a mean of 6.05% across the

other 15 cell lines). In order to assess CNVs against a paired

background strain as opposed to a reference genome, we also

investigated somatic gene copy number using WES (Fig. 3A–

D). Gain of a single gene copy was frequent (>5% of genes

studied) in the RENCA and P815 lines, but amplifications of

more than one extra copy much less so. We observed few

deletions in the cell lines, although the most common feature

across the models was the heterozygous or homozygous dele-

tion of the Cdkn2a tumor suppressor gene (found in 9 of 11 cell

lines; Fig. 3B).

Comparing mutational status permits model selection for

tumor-targeted therapies

We also characterized the somatic mutational status of these

genes using WES on a subset of the murine in vitro cell lines and

further investigated 64 prominent cancer genes using targeted

deep sequencing (Supplementary Table S3 and Supplementary

Fig. S3). Our analysis revealed that several tumor cell lines did not

carry mutations prevalent in the matched clinical disease. For

example, Pan02 is often used as a pancreatic cancer model but

lackedmutations in the Kras gene, which are observed in >90%of

human pancreatic cancers (33) so itmay only be a relevantmodel

for a rare subtype of the disease. CT26 cells harboredmutations in

the Apc and Kras genes, which are frequently observed in human

colorectal cancer (34), but lacked the frequent mutation in Trp53.

In contrast, LL/2 had many of the major mutations found in lung

cancer, such as Trp53 and a Cdkn2a deletion (35). The B16 lines

bore a mutation in the Braf gene, as is frequently observed in

human melanoma (36); however, this mutation was not analo-

gous to the V600E mutation that underlies sensitivity to BRAF

inhibitors (37). Comparison of the mutational profile of the

murine tumor cell lines with frequently mutated genes found in

the cancer type from the same tissue of origin revealed that,

although the cell lines carried at least one recurrent mutation

seen in the corresponding cancer type, 4 out of 9models analyzed

lacked mutations in the gene most frequently mutated in the

corresponding human cancer type (Supplementary Fig. S4). The

mutational status of immune-relevant genes was also evaluated

across the cell lines to investigate whether cell-intrinsic genetic

changes were present that could affect the ability of cell lines to

recruit an immune response (Fig. 3D). We found that the most

prevalent aberrations affected the complement system, including

6 of the top 50 most mutated or amplified genes in the dataset.

Tumor-derived complement has been previously shown to both

promote tumor growth but also contribute to the immune sur-

veillance of tumors (reviewed in ref. 38) and even impact the

tumor immune infiltrate by affecting the number of infiltrating

CD8þ T cells and myeloid cells, although these immunomodu-

latory effects are very context-dependent (39, 40). Several other

genes with aberrations in the cell lines have also been shown to

affect tumor growth such as fibronectin (Fn1; ref. 41), Cd40 (42),

or Nfatc3 (43). This analysis also revealed that CT26 and MC38

(both derived from carcinogen-induced colorectal tumors) had

Figure 2.

CNVs strongly differ between the cell lines. CNVs for 16 cell lines determined using aCGH analysis. Genomic regions are sorted by chromosome, and copy

number changes of roughly 10 genes displayed, with amplifications� 5 copies as light red lines, amplifications > 5 copies as dark red lines, loss of one copy as light

blue lines, and deletions of both copies as dark blue lines.
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the highest somatic nonsynonymous mutational burden, with

2,955 and 3,018 mutations, respectively (Fig. 3E). ID8, derived

from a spontaneous tumor, had the lowest mutational burden

(102 mutations), followed by TRAMP-C2, derived from a tumor

in a genetically engineered mouse (104 mutations). Thus, muta-

tional burden appeared to be associated with the method of cell

line generation in this panel, with cell lines derived from carcin-

ogen-induced tumors having on average a higher mutational

burden (1,827 mutations) than spontaneous (1,220 mutations)

or GEMM-derived tumors (104 mutations).

Given that clonal selection and evolution can take place

during in vivo tumor development, we performed WES of CT26

cells grown in vitro and in vivo (Fig. 3F and G). In the tumor, we

detected 2,580 out of 2,955 (87.3%) somatic mutations found

in the cell line. A high correlation (r ¼ 0.766) was observed

between the mutant allele frequency in vitro versus in vivo (Fig.

3F). Disparities in these data may be due to the use of an

unfractionated tumor preparation for this analysis. There were

genomic alterations in 57 cancer and immune-relevant genes

found in the CT26 cell line which were not detected in the

tumor, but these were mostly copy number gains that are more

difficult to accurately quantify in heterogeneous in vivo samples

(Fig. 3G). There were only four somatic mutations detected in

the tumor which were not in the cell line (Erbb3, Ikbkb, Mnx1,

and Notch2). These could have arisen due to selective pressures

at play in the tumor microenvironment.

Transcriptomic comparison reveals striking immunologic

heterogeneity

To investigate the baseline characteristics of the syngeneic

tumor models that could underlie their differential responsive-

ness to immune-checkpoint blockade, we analyzed the tran-

scriptomes of untreated established in vivo tumors. Pathway

enrichment of differentially expressed genes in tumors revealed

activation of multiple immune pathways with a high degree

of heterogeneity across the models. These included innate

immune–related pathways, such as pattern recognition recep-

tors, IL8, TREM1, phagocytosis, and IL6 signaling (Fig. 4A).

These pathways revealed reduced activation in tumors from

B16 cell lines compared with other models. However, a limited

number of pathways (PPAR, RXR, LXR, and PTEN) were more

highly activated in the B16 tumors compared with the other

models. These data supported the hypothesis that tumors from

B16 cell lines are more immunologically "silent" compared

with other tumor types, potentially underlying their reduced

responsiveness to immune-checkpoint blockade. Hierarchical

cluster analysis (HCA) revealed that the pathway activation

profile in CT26 tumors was not substantially different from

those of other tumor types, suggesting that transcriptomic

differences do not completely define response to immune-

checkpoint inhibitors (Fig. 4A). We also specifically investigat-

ed the expression of MHC class I and II pathway genes in the

tumors and found that the B16 tumors, TC1 and LL/2 had less

Figure 3.

Profiling of somatic mutations reveals heterogeneity across syngeneic models. Profiling by aCGH, whole-exome and targeted sequencing across 11 cell lines

showing (A) the percentageof alteredgenes from332 cancer-associated genes (selected from theCOSMICdatabasewhere both copy number andmutational status

data was available), (B) the top 50 most altered cancer-associated genes, (C) the percentage of altered genes from 252 immune-related genes (from the

Nanostring nCounter Mouse Immunology panel gene list, excluding those already present in the cancer-associated gene list, and where both copy number and

mutational status data was available), and (D) the top 50 most altered immune-related genes. Somatic mutations and CNVs are marked for each gene with the

percentage of samples altered along the side of the heatmap. Sideway bargraphs show the total number of genomic alterations across samples, with genes

ordered genes from most to least altered. Human homolog genes are stated in brackets beside the mouse gene names where these differ. E, Number and type of

somatic mutations in protein-coding regions across cell lines. F, Somatic mutant allele frequency of protein-coding genes in the CT26 tumor compared with the

CT26 cell line. Pearson correlation coefficient is also reported. G, Somatic mutations and CNVs (determined using Seq2C fromWES data) of 177 cancer or immune

system–associated genes in the CT26 cell line and tumor. Gene aberrations that are not found in both the cell line and tumor are in the enlarged display.
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expression of these genes compared with the other models. The

TRAMP tumors had low expression of MHC class I pathway

genes, whereas the MC38 tumors had low expression of MHC

class II pathway genes (Fig. 4B).

To determine whether differences in the tumor immune

infiltrate could be affecting responsiveness to immune-check-

point blockade, we investigated the expression of immune cell

type–specific genes. Unsupervised HCA revealed clustering by

tumor model and clear changes in expression, suggesting var-

iation in tumor immune infiltrates across the models (Fig. 5).

Several findings supported the validity of this approach, such as

the elevated expression of a subset of mast cell–specific genes

including Kit (20-fold increase compared with the SPS tumor

control group), Ctsg (22-fold increase), and Cma1 (2.5-fold

increase), which occurred only in the P815 mastocytoma

tumors where these genes are expected to be expressed in the

tumor cells, as well as potentially in the immune infiltrate. B16

tumors again appeared immunologically "silent" with low

expression of immune cell type–specific genes, apart from some

NK-cell–specific genes. Elevated gene expression was observed

for cytotoxic cell–specific genes Gzma (5.2-fold increase) and

Klrd1 (1.8-fold increase) in the CT26 tumors, potentially link-

ing effector function of tumor-infiltrating immune cells and

responsiveness to immune-checkpoint inhibitors.

Flow cytometric immune profiling reveals heterogeneity in

tumor immune infiltrates across models

Given the diversity in the expression of immune-related genes,

we further profiled the tumor immune infiltrate across both our

immune-checkpoint blockade responsive and nonresponsive

models by flow cytometry. Tumors were collected at an average

volume of 150 mm3, as this often corresponds to the tumor

Figure 4.

Transcriptomic analysis of in vivo tumors reveals predominance of immune pathways among differentially expressed genes and reduced immune involvement

in B16 tumors. Transcriptomic analysis of murine syngeneic in vivo tumor samples showing (A) a clustergram of differentially expressed gene-sets per model

(FC � 2.0, FDR � 0.05) where the top ten highest and lowest pathway Z scores (IPA comparison tool) per model were selected (sorted for nondisease canonical

pathways). HCA (normalized, Ward linkage and Euclidean distance) for models only, with pathways ranked by absolute activation score (summed absolute

Z score across all 15 lines). B, Clustergram of murine syngeneic in vivo tumor samples based on differential expression of MHC class I and II pathway genes. HCA

(normalized, Ward linkage and Euclidean distance) for models only, of normalized log2 gene expression intensity.
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volume at initiation of dosing in activity studies. The immune

infiltratewas profiled by staining for 9 nonoverlapping innate and

adaptive cell phenotypes and their frequency determined both as

a proportion of the CD45þ cells and as absolute cell count per

mm3 of tumor. Immune cell numbers permm3 of tumor revealed

striking variations across models (Fig. 6A and B). B16F10 AP-3

tumors contained the smallest immune infiltrate with roughly

800 CD45þ cells per mm3, whereas LL/2 tumors had the largest

infiltrate with 5,500 CD45þ cells per mm3 (P < 0.0001). More-

over, the relative proportions of immune cell types also differed

profoundly. For example, 4T1 tumors predominantly contained

granulocyticmyeloid-derived suppressor cells (gMDSCs, >40%of

their immune infiltrate), whereas LL/2 and MC38 tumors con-

tained mainly monocytic MDSCs (mMDSCs, 33% and 47%,

respectively). Notably, CT26 tumors contained the highest num-

ber of NK cells (520 per mm3) and an increased proportion of

granzyme Bþ NK cells compared with other models (Fig. 6C). In

addition, the CT26 and RENCA models contained the highest

proportions of T cells. Within the CD8þ T-cell population, the

proportion of reinvigorated cells [expressing markers of T-cell

exhaustion (PD-1 and Eomes) but having undergone a reversal of

this exhaustion leading to upregulation of Ki67 and granzyme B;

ref. 44)] was highest in CT26 tumors (Fig. 6D). The absolute cell

counts revealed that CT26, and to a lesser extent RENCA, tumor

immune infiltrates were rich in cytotoxic immune cells whereas

4T1, B16F10 AP-3, LL/2, andMC38 are predominantly composed

of cell types considered to be immunosuppressive.

In tumor lysates, the highest expression of several proinflam-

matory cytokines such as IL2, IFNg , TNFa, and IL1bwere found in

theCT26,MC38, andRENCAmodels (Fig. 6E). In contrast, higher

levels of Th2-associated cytokines such as IL4 and IL10were found

in theMC38, 4T1, and B16F10 AP-3models. Notably, KC/GRO, a

chemoattractant for neutrophils and MDSCs, was elevated in the

MDSC-rich 4T1, MC38, and LL/2 tumors.

To expand our observations, we also assessed spleens and

tumor-draining lymph nodes from these animals (tissues from

non-tumor–bearing mice were included to highlight changes

from baseline). An >8-fold increase in splenic gMDSCs/

Figure 5.

Differences in immune cell type–specific gene expression suggest marked heterogeneity in the tumor immune infiltrate between models. Clustergram of

murine syngeneic in vivo tumor samples based on differential expression of immune cell type–annotated genes from the Nanostring nCounter PanCancer Immune

Profiling Panel gene-list. HCA (normalized, Ward linkage and Euclidean distance) of normalized log2 gene expression intensity with each column representing

one individual mouse, n � 4 replicates per tumor model. Clustered for samples, with genes ordered by mouse cell type annotation.
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neutrophils was observed in 4T1 tumor-bearing mice compared

with tumor-na€�ve mice (P ¼ 0.0028; Fig. 7A), mirroring the

predominance of these cells in the tumor (Fig. 7E). A common

finding was that spleens from tumor-bearing mice had smaller

percentages of T cells (30%) relative to tumor-na€�ve controls

(42%; P < 0.0001; Fig. 7A and B). In tumor-na€�ve animals, a

comparison of both genetic strains showed that BALB/c LNs had a

larger proportion of CD4þ T cells compared with C57BL/6 LNs

(49.7% vs. 32.3% P < 0.0001), which hadmore B cells (13.9% vs.

23.6% P ¼ 0.0003; Fig. 7C and D). In TDLNs, an expansion of B

cells was seen versus control tumor-na€�ve LNs (P ¼ 0.0003) and

this wasmostmarked in the LL/2 andMC38models, where it was

accompanied by a corresponding decrease in the proportions of T

cells and NK cells. Despite the striking contrasts in the compo-

sition of the tumor immune infiltrate (Fig. 7E and F), this was not

mirrored in the TDLNs.

Discussion

Murine syngeneic tumor models play a central role in the

advancement of novel immunotherapies; however, there is a need

to fully elucidate their distinct molecular and immunologic

characteristics. In the current study, we provide a resource to

rationalize the selection of syngeneic models to test specific

hypotheses; increasing the value of such studies and reducing

the numbers of animals used in scientific research. In addition to
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Figure 6.

Immune phenotyping reveals profound differences in the tumor microenvironment across different syngeneic models. Flow cytometric analysis of the tumor

immune cell infiltrate in (A) 3 BALB/c models (CT26, RENCA and 4T1) and in (B) 3 C57BL/6 models (MC38, LL/2, and B16F10 AP-3) showing cell counts per mm3 of

tumor for 9 immune cell types and their frequencies (as percentages of CD45þ cells). n � 6 mice per group. C, Percentages of NK cells that were positive for

granzyme B in each model. D, Percentages of CD8þ T cells expressing Eomes, PD-1, Ki67, and granzyme B in each model. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001;
���� , P < 0.0001, Tukey multiple comparisons test. E, Heatmap of the logged values for expression of 10 cytokines in the lysates of 6 tumors. Data are

representative of trends observed in at least two independent experiments.
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characterizing the tumormicroenvironment, we provide amolec-

ular annotation of these models to describe the specific driver

mutations that can be leveraged to guide immunotherapy com-

binations with molecularly targeted therapies. Indeed, such com-

binations hold considerable promise to broaden the patient

population benefiting from immunotherapy.

We have identified models in which the dominant immuno-

logic phenotype of the tumor is associated with myeloid immu-

nosuppression, for example, increased gMDSC and mMDSC

infiltration in the 4T1, MC38, and LL/2 models. We have also

identified models, particularly the B16F10 AP-3, that are poorly

infiltratedby immune cells. In contrast, othermodels are both rich
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Figure 7.

Frequencies of immune cell types show much stronger variations between tumor types in the tumor infiltrate compared with the spleen and tumor-draining

lymph nodes. Flow cytometric analysis of the immune cell composition of (A andB) the spleen, (C andD) the tumor-draining lymph node (or inguinal lymph nodes in

na€�ve mice) and (E and F) the tumor of mice bearing (A, C and E) 3 BALB/c models (CT26, RENCA and 4T1) or control na€�ve Balb/c mice and of mice

bearing (B, D and F) 3 C57BL/6 models (MC38, LL/2, and B16F10 AP-3) or control na€�ve C57BL/6 mice, showing frequencies of 9 immune cell types (as percentages

of CD45þ cells). n � 6 mice per group. Data is representative of trends observed in at least 2 independent experiments.
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in tumor immune cell infiltration but also harbor more balanced

populations of effector and suppressive immune cell populations,

for example, CT26 and RENCA. This immunologic diversity

broadly recapitulates the diversity of tumors observed clinically

and therefore provides a powerful resource to evaluate different

immunotherapies in the context of these distinct microenviron-

ments. An example of this could be the selection of an immu-

nologically "cold" tumor model such as B16F10-AP3 to evaluate

the capacity of treatment to transform the tumor microenviron-

ment leading to enhanced immune priming and immune cell

infiltration into tumors, for example, with radiotherapy, agonism

of pattern-recognition receptors, or through vaccine approaches.

Likewise, modeling of immunologically "hot" tumors is also

translationally relevant and the CT26 or RENCA models may

provide suitable settings to evaluate experimental therapeutics.

Our analysis of the somatic mutation profile of the murine cell

lines reveals genetic disparities when comparedwith the prevalent

mutations in the analogous clinical disease. Examples of these

include Trp53 in CT26 or Kras in Pan02. However, many of the

genes that are commonly mutated in the clinical setting are also

mutated across the preclinical models tested, offering opportu-

nities to understand the impact of these mutations in a syngeneic

setting. In particular these data will enable researchers to identify

models with both the relevant pathway addiction for a defined

molecular target, for example, MEK, BRAF (45), and overlay this

with a characterized microenvironment to permit pertinent

and appropriate combinations of immunotherapy and small-

molecule inhibitors to be evaluated.

Our study also highlights differences between the activity of

immunotherapies in a preclinical setting and clinical activity in the

analogous human cancer type. An example of this is the contrast

between the strong preclinical responses to anti–CTLA-4 and

anti–PD-L1 treatment in the CT26 model, derived from a murine

colorectal tumor, and clinical responses in colorectal cancer in

which, with the exception of patients with mismatch repair–

deficient disease, limited activity with immune-checkpoint block-

ade has been observed to date (46). Poor responses to treatment

with either anti–PD-L1 or anti–CTLA-4 were observed in the B16

model, derived from a murine melanoma, which contrasts with

the encouraging responses reported for melanoma in the clinic

(47).However,when these responses are assessed in the context of

the distinct tumor microenvironments observed across the pre-

clinical models, our results are broadly in agreement with clinical

findings, which demonstrate an association between CD8þ T-cell

infiltration into the tumor and outcome following immune-

checkpoint blockade (9, 48, 49). Indeed, our work also revealed

that tumors such asCT26, inwhich the immune infiltrate contains

greater numbers of cytotoxic immune cells such as CD8þ T cells

and NK cells, were more responsive to immune-checkpoint

blockade than those with comparatively little immune or pre-

dominantly immunosuppressive infiltrate. Thus, we conclude

that the power of the models lies in recapitulating both a distinct

phenotype of tumor microenvironment and mutation profile,

rather than directly relating to the analogous human disease

setting.

An interesting observation was that although the composition

of the tumor microenvironment across the syngeneic models

testedwas strikingly varied, this contrasted starklywith the relative

homogeneity in the immune phenotype observed in secondary

lymphoid organs such as the tumor-draining lymph nodes and

spleens. This homogeneity was also reflected by gene expression,

with markedly fewer differentially expressed gene pathways

observed in these tissueswhen comparedwith those in the tumors

(Supplementary Fig. S5). Overall, these data suggest that the

greatest differences between models may result from the prefer-

ential chemoattraction, retention, and or differentiation of

immune cells within the tumor microenvironment rather than

from skewing of the systemic immune response, and therefore

the likely factors that are driving response reside within the

tumor rather than within the peripheral immune compartments.

Again, this finding is also in keeping with the majority of data

from the clinic to-date, where the most promising predictive

biomarkers have been found in tumor tissue, rather than in

peripheral blood (49).

Several of our findings are concordant with previous observa-

tions, such as the predominant loss of Cdkn2a among the cell

lines, which has been described to result from cell culture–

selective pressures (50) and is also prevalent across multiple

human cancer types (51). Previous studies have also shown that

different syngeneic tumor models can respond differently to

treatment (16, 49, 52). It has been hypothesized that these

differences could be due to variability in immunogenicity of the

models (13) but, until now, the similarities and differences

between these models have not been comprehensively character-

ized. The most extensive study, to our knowledge, included 6

commonly used syngeneic models with analysis limited to the

expression of 27 immune-related genes and staining for 4–6

immune cell types by IHC and flow cytometry (52). We also saw

a high level of agreement in somatic mutation results with

previous genetic characterization of the CT26 cell line, with

>60% of mutated genes matching those in the study by Castle

and colleagues (53, 54). Although another study described fewer

somatic mutations in CT26 and 4T1, 80%–90%of thosemutated

genes matched our results (54) and the relative proportions of

somatic mutations was conserved, with >10-foldmoremutations

in CT26 compared with the 4T1. Likewise, comparison of our

somatic mutation results in the ATCC B16F10 line with those in

Castle and colleagues (55) showed over 90% concordance in the

mutated genes found in both studies including Brca2, Trp53, Jak3,

Atm, Pten, and Mdm1. Disparities in somatic mutations between

studies could be due to differences in cut-off levels, sensitivity and

methodology, as well as cell line divergence. Our profiling of

CNV, using both aCGH andWES analysis paired with the BALB/c

mouse background, did not show the same large regions of

triploidy and tetraploidy in CT26 seen by Castle and colleagues

(53). However, for suchmultichromosomal regions, it is unlikely

that this would be due to divergence in the CT26 cell lines, but

rather due to methodological differences such as stringency of

CNV calling.

In conclusion, we provide extensive characterization of a

range of commonly used murine syngeneic models to ratio-

nalize model selection based on the biology of the tumor cell

and the tumor microenvironment. Moreover, a greater under-

standing of model biology allows more robust alignment

between response, mechanism of action, and the biology of

human cancer subtypes that may ultimately improve the effi-

ciency of drug discovery.
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