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MAURICE AUSLANDER

Abstract. The main aim of this paper is to relate almost split sequences to
singularity theory by showing that the McKay quiver built from the finite-dimen-
sional representations of a finite subgroup G of GL(2, C), where C is the complex
numbers, is isomorphic to the AR quiver of the reflexive modules of the quotient
singularity associated with G.

Over the past decade, almost split sequences have been playing an increasingly
important role in the representation theories of finite-dimensional algebras and
classical orders (see [5 and 3, 8] for basic existence theorems in these contexts).
While they have been known for some time to exist in higher-dimensional situations
[3], it has not been at all clear how they related to singularity theory, if at all. The
main aim of this paper is to relate almost split sequences to singularity theory by
showing that the McKay quiver built from the finite-dimensional complex represen-
tations of a finite subgroup G of GL(2, C), where C is the complex numbers, is
isomorphic to the AR quiver of the reflexive modules over the quotient singularity R
associated with G. As in the case of finite-dimensional algebras, the AR quiver of
reflexive Ä-modules is defined in terms of the almost split sequences of reflexive
T?-modules.

In the case G c SL(2, C), McKay observed that the underlying graph of the
McKay quiver, with the trivial module removed, is isomorphic to the desingulariza-
tion graph of the associated singularity. Various explanations of this phenomenon
have been given by Knörrer, Gonzalez-Sprinberg-Verdier [6] and Artin-Verdier [1],
which along the way have established, most explicitly in [1], a natural one-to-one
correspondence between the indecomposable reflexive 7\-modules and the nodes of
the desingularization graph. But why the almost split sequences describe the edge of
the desingularization graph still remains to be explained.

An effort has been made to make this paper as self-contained as possible. In
particular, no prior knowledge of almost split sequences is required.

Before describing the contents of the six sections of this paper we fix some
notation. Throughout this paper G is a finite group, k an algebraically closed field of
characteristic not dividing the order of G and F a two-dimensional Ac-representation
of G. Setting S = k[[X, Y]], the Ac-algebra of formal power series, the two-dimen-
sional representation V gives a linear action of G on S as a group of Ac-algebra
automorphisms. We denote by S[G] the skew group ring given by this action.
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§1. In this section the McKay quiver of G with respect to V is defined and shown
to be given by the minimal .S[G]-projective resolutions of the simple ,S[G]-modules.

§2. This section is devoted to showing that the minimal 5[G]-projective resolu-
tions of simple 5[G]-modules are essentially the same thing as the almost split
sequences in the category of reflexive modules of the quotient singularity R = SG in
case F is a faithful G-module having no pseudo-reflections. This is used to show that
the McKay quiver of G with respect to V is isomorphic to the AR quiver of the
reflexive i?-modules.

§3. We continue with the hypothesis that F is a faithful G-module having no
pseudo-reflections and show how the almost split sequences for the reflexive
/v-modules can be constructed from a fixed exact sequence of reflexive Tv-modules
called the fundamental exact sequence.

§4. In this section we assume that Ac is C, the complex numbers. We give a
different proof of the following result in Artin-Verdier [1]. The C-algebras which are
integrally closed, complete, local two-dimensional noetherian domains with residue
class field C having only a finite number of nonisomorphic reflexive indecomposable
modules are precisely the two-dimensional quotient singularities.

§5. In this section the notion of reflexive splitting trace modules over arbitrary
integrally closed noetherian domains is introduced and some elementary properties
established.

§6. In this the last section of the paper, we use the notion of reflexive splitting
trace modules to generalize the results of §3 about the construction of almost split
sequences from the fundamental exact sequences to arbitrary complete, integrally
closed two-dimensional noetherian local domains.

It should be noted that the results of §§5 and 6 have almost exact analogues in the
theory of modular group representations [4].

Finally, I would like to thank M. Artin, R. Buchweitz, H. Knörrer, I. Reiten and
G. Schwarz, for many helpful conversations.

1. The McKay quiver and projective resolutions. We assume throughout this
section that G is a finite group and Ac a field of characteristic not dividing the order
of G. Then Ac[G], the group ring of G over k, is semisimple and we denote by F0,
Vf,...,Vd a complete set of nonisomorphic simple A:[G]-modules with V0 = k, the
trivial representation. Let Kbe a fixed two-dimensional Ac[G]-module. We recall that
the McKay quiver of V is the directed graph with vertices the V0,...,Vd and having
m arrows from V¡ to Vj if and only if the multiplicity of F| in V ® k V-is m. Our aim
in this section is to interpret the McKay quiver in terms of the projective resolutions
of simple modules over certain skew group rings.

Let 5 = k[[X, Y]] be the formal power series in two variables over k. Then the
two-dimensional representation V induces a linear action of G on S as a group of
Ac-automorphisms. We recall that the skew group ring S[G] of G over S is additively
the free S-module with basis the elements of G and with multiplication given by
(sxox)(s2o2) = sxox(s2)oxo2, where the s¡ are in S and the a, are in G for i = 1, 2. An
S[G]-module is an 5-module M together with a G-module structure satisfying
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a(sm) = a(s)a(m) for all o in G, s in S and m in M. Also, if Af, and Af2 are
S[G]-modules, then the morphisms from M, to Af2 consist of the S-module mor-
phisms which are also G-module morphisms.

Next we observe that if Af and TV are S[G]-modules, then Homs(Af, TV) will be
considered an S[G]-module by means of the usual action of G on Homs(Af, TV)
given by (af) = o(f(o~lm)) for all a in G,/in Homs(Af, TV) and m in Af. As usual,
we have that HomS[C](Af, TV) = Homs(Af, TV)G, the fixed points of the action of G
on Homs(Af, TV). An easy consequence of these remarks is the following useful
criterion for when an S[G]-module is projective.

Lemma 1.1. An S[G]-module X is projective if and only if it is a free S-module.

Proof. Since S[G] is a free S-module, any projective S[G]-module is a projective
and therefore free S-module.

Suppose X is an S[G]-module which is a free S-module. Let 0->,4->f?->C->0
be an exact sequence of S[G]-modules. Then 0 -* Homs(Ar, A) -* Homs(Ar, B) -*
Homs(A', C) -> 0 is an exact sequence of S[G]-modules. Since Ac[G] is semisimple,
the fixed point functor is exact, so HomS[c,(X, B) -» Homsxc](X, C) -» 0 is exact.
This shows that Xis S[G]-projective.

Our next aim is to use Lemma 1.1 to obtain an explicit description of the
projective S[G]-modules which will be useful in describing the projective resolutions
of the simple S[G]-modules. The first step in this direction is based on the following
definitions.

Let Af be an S[G]-module and IF a Ac[G]-module. We consider Af ® kW an
S[G]-module by means of the operation sa(m <8> w) = sa(m) ® a(w) for all s in S, a
in G, m in Af and w in IF. Also, we denote by S the projective S[G]-module which is
the S-module S together with our given operation of G on S. As an easy consequence
of these definitions and Lemma 1.1 we have the following

Lemma 1.2. If P is a projective S[G]-module, then P ®k W is a projective S[G]-mod-
ule for all k[G]-modules W. In particular, S ® kW is a projective S[G]-module for all
k[G]-modules W.

Proof. It follows from the definition of P <8>kW, that P ®AW is S-free and
therefore S[G]-projective.

We now show that all projective S[G]-modules can be written uniquely up to
isomorphism in the form S ®k IF with IF in mod Ac[G].

Let m be the maximal ideal (X, Y) of S. Since a(m) = m for all a in G, it follows
that mS[G] is a two-sided ideal in S[G]. This implies that mS[G] is contained in the
radical of S[G] since m is the radical of S and S[G] is a finitely generated S-module.
From this it follows that mS[G] is the radical of S[G] since S[G]/mS[G] = Ac[G]
which is semisimple. Thus, if P is a projective S[G]-module, then P/mP is a
Ac[G]-module. Moreover, since S is complete, the natural epimorphism P -» P/mP
is a projective cover. Consequently, two projective S[G]-modules P and Q are
isomorphic if and only if P/mP is isomorphic to Q/mQ. As a consequence of these
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remarks we have the following

Proposition 1.3. (a) If P is a projective S[G]-module, then P = S ®k P/mP.
(b) 7/ the projective S[G]-modules S ®kW and S <S>kW are isomorphic, then the

k[G]-modules Wand W are isomorphic.

Proof. Follows from previous observations and the fact that S <8>kW is the
projective cover of S/m ® k W ~ W for all Ac[G]-modules IF.

As an immediate consequence of Proposition 1.3, we have the following

Corollary 1.4. Let V0, Vx,...,Vd be a complete set of nonisomorphic simple
k[G]-modules. Then S ®k V0,... ,S ®k Vd is a complete set of nonisomorphic indecom-
posable projective S[G]-modules.

We are now ready to describe the projective resolutions of the simple S[G]-mod-
ules. We begin with the simple S[G]-module Ac with trivial group action. Since
S = k[[X, Y]], we know that the minimal projective S-resolution 0 -> S -» SllS -»
S —> S/m —> 0 is given by the Koszul complex which can be written as 0 -> S
®¿A2F—S®AF->S^Ac->0 where F has been identified with kXukY. But it
can easily be checked that the morphisms involved are also G-morphisms where G
acts on the modules involved as defined above. Therefore this sequence is also a
minimal projective S[G]-resolution of Ac. Now to obtain the minimal projective
S[G]-resolution of an arbitrary simple S[G]-module V, we simply tensor the Koszul
complex with V- over k, getting

0 -> S »k (A2 V ®k V^S ®k(V8k Vj)^S 9k Vj -> Vj - 0.

This shows that the McKay quiver for F is isomorphic to the following quiver Y
associated with S[G] in analogy with the situation for artin algebras.

Let P¡ be a S[G]-projective cover of the simple S[G]-module V¡. Then P0,.. .,Pd is
a complete set of nonisomorphic indecomposable projective S[G]-modules which we
consider the vertices of T. For each y = 0,... ,d, let

0 -+ Q2n _» qU) _* QiJ) -*Vj^0

be a minimal projective resolution of V. Then the number of arrows from P¡ to Pj in
T is the multiplicity of P, in a decomposition into indécomposables of Q[J). Denote
this quiver by T(V). Clearly, we have an isomorphism of T(V) with the McKay
quiver of F by sending P, to V¡ for all i = 0,..., d.

2. McKay quivers and AR quivers. In addition to the hypothesis of §1, we assume
Ac is an algebraically closed field and that the two-dimensional Ac[G]-module F has
no pseudo-reflections, i.e. no a ^ {1} in G has 1 as an eigenvalue. Then the invariant
algebra R = SG is a complete, integrally closed, two-dimensional domain and S is a
finitely generated T?-module. The hypothesis that G has no pseudo-reflections in V is
equivalent to the height one primes in R being unramified in S (cf. [2]). Our aim in
this section is to give a description of the quiver F( V ), and therefore of the McKay
quiver, in terms of the almost split sequences in the category ß of reflexive
Tî-modules.
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Recall that an Ä-module Ai is said to be reflexive if the natural morphism
M -» HomÄ(HomR(Af, R), R) is an isomorphism. Since R is integrally closed of
dimension two, it follows that the reflexive f?-modules are the Cohen-Macaulay
Ä-modules. Hence S is a reflexive Ä-module. We denote by add S the full
subcategory of ß consisting of the summands of finite sums of S. Clearly, add S is
an additive category in which idempotents split. For the sake of completeness, we
prove the following well known fact [7]:

Proposition 2.1. Up to isomorphism, the indecomposable reflexive R-modules are
precisely the indecomposable R-summands of S. Hence S = add S has only a finite
number of nonisomorphic indecomposable reflexive R-modules.

Proof. Let L be an indecomposable reflexive T?-module. The fact that the
characteristic of Ac is relatively prime to the order of G implies that the inclusion of
T?-modules 0 —> R -» S splits. Therefore, we have that the monomorphism of
Ä-modules 0 -» HomR(M*, R) -» HomÄ(Af*, S) also splits, where Af* =
HomÄ(Af, R). Since HomR(Af*, S) is a Cohen-Macaulay S-module, it is a free
S-modules, so Af = Af** is a summand of a finite sum nS as Ä-modules. Because R
is complete, mod R is a Krull-Schmidt category. Hence, the fact that L is indecom-
posable and a summand of a finite sum of copies of S implies that L is a summand
of S. The rest of the proposition is trivial.

Our aim now is to describe an equivalence of categories between iß, the category
of projective S[G]-modules and S = addR S, the category of reflexive f?-modules.

Straightforward calculations show that the Ä-submodule S[G]G of S[G] consists
of all elements of the form ZoeC a(s)a with í in S. Thus, we obtain the Ä-module
isomorphism S -» S[G]G given by s <-* LalECa(s)o for all s in S which we view as
an identification. Therefore, Pc is in add^S for all P in s#, and so the functor
mod S[G] —> mod R given by A -* AG induces a functor s# —> addR S which we now
show is an equivalence of categories.

First of all it is easy to see that s$ -> addR S is an equivalence if and only if the
Ä-algebra morphism EndS[C](S[G]) -» EndR(S) given by /->/|S for all / in
EndS[C](S[G]) is an isomorphism. Next we have the Ä-algebra isomorphism ß:
S[G]op -» EndS[C](S[G]) given by ß(sa)(x) = x ■ sa for all s in S, a in G and x in
S[G]. Also, we have the Ä-algebra isomorphism S[G] -* S[G]op given by sa <-*
a~l(s)a'1 for all 5 in S and a in G. Finally, it is straightforward to check that the
composition of Ä-algebra morphisms

S[G] -» S[Gr - EndS[C](S[G]) -» End^S)

is the standard Ä-algebra morphism y: S[G] -» EndR(S) given by y(sa)(x) = sa(x)
for all s in S, a in G and x in S. Hence we have that y: S[G] -» End/,(S) is an
isomorphism if and only if EndS[C](S[G]) -* End^(S) is an isomorphism if and
only if 5B -» add R S is an equivalence. But the fact that the height one primes in R
are unramified in S implies that y:  S[G] -» EndR(S) is an isomorphism [2].
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Therefore, we have established the following

Proposition 2.2. The functor SB -» S = addÄ S given by P >-> PG for P in SB is an
equivalence of categories.

Our aim now is to apply this proposition to construct in terms of the almost split
sequences in ß a quiver which is isomorphic to the quiver T(V) defined in the
previous section. To this end it is convenient to introduce some notation. As usual,
let F0,..., Vd be a complete set of nonisomorphic simple S[G]-modules with F0 = Ac,
the trivial simple, and let P, be a projective cover for V¡ for all i = 0,...,d with
P() = S. Then P0,...,Pdis a complete set of nonisomorphic indecomposable projec-
tive S[G]-modules. Furthermore, we know that P¡ — S ®kVj for all i = 0,... ,d. Also
we obtained in the previous section the minimal projective resolutions

0
/   2

Av®kV,} ^ S ®k(V®kV,) ^ S ®kV, ^ F,-0.
I

Since A2 F is of dimension 1 over k, we have A2 V ®k V¡ is a simple Ac[G]-module
which we denote by t(V¡). Clearly, r(V¡) - t(V¡) if and only if V¡ — V¡. Therefore,
S ®k t(V¡) is an indecomposable projective S[G]-module. We define t(P¡) to be the
unique P. isomorphic to S ®k(Vi). Then we can write the minimal projective
resolutions of the V¡ as

0 -» t(P,) * Q,A P,,-» Vt-*0
where Q, = S ®k(V ®k V¡). Now denoting Pf, QG and t(P,)g by L„ E¡ and t(L,),
respectively, we have that the L0,...,Ld are a complete set of nonisomorphic
indecomposable reflexive P-modules and so are the r(LQ),.. .,r(Ld).

Applying the fixed point functor to the exact sequence

0-t(Po)-Oo-Po-A:^0,

we obtain the exact sequence of Ä-modules

.   £o /o
0^t(P)->£o^P-^Ac-^0.

We first observe that/0: E0 -» R has the property that if a morphism h: L -» R is
not a splittable epimorphism then it can be lifted to E0, i.e. there isy: L -> E0 such
that f0j = h. To see this we use the equivalence SB -* 2. Let A : P —> S be a
morphism in SB such that A;G: PG -» SG is the morphism h: L -> P. Since /î is not a
splittable epimorphism, A is not a splittable epimorphism. Therefore, Im hp c mS
= Im f0, which means that A can be lifted to u0. Hence A can be lifted to E0.

We now show that if
g      f

0->A->B->R^>k->0

is an exact sequence of P-modules with A, B and R in S with .4 indecomposable
having the property that any morphism A: L —> R in 2 which is not a splittable
epimorphism can be lifted to B, then 0 -* A ->P->P->Ac->0is isomorphic to
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0 -» t(R) -» E0 -» R -* Ac. For by definition we have a commutative diagram

0 -*     A   -> B   -> R -> Ac -» 0
sj, 4        II       II

0 -» r(R) ^Eo->R->k-*0
It       |        II       II

0 ^    A    ^P-»P->Ac->0

Now the endomorphism Ext2(Ac, ts): Ext2(Ac, /I) -> Ext2(Ac, A) induced by the
endomorphism ts: A -» A has the property that Ext2(Ac, ts)(x) = x, where x is the
nonzero element 0->/l->P->P^>Ac->0 in Ext2(Ac, A). Therefore by
Nakayama's lemma, ts is not in the radical of EndR(A) and therefore is an
isomorphism since EndR(^4) is a local ring. Therefore, s: A -> t(P) is an isomor-
phism since t(R) is indecomposable, showing that 0-».4-»P-»P—>Ac^>0 is
isomorphic to 0 -» t(P ) -» £0 -> R -» k -» 0. This uniquely determined exact se-

«0 "0
quence 0->t(P)->£0->P->Ac->0 in mod R is called the fundamental exact
sequence.

Suppose now that V¡ ¥= Ac. Then VG = 0. Hence applying the fixed point functor
to the exact sequence

o^t(p,)-ô,-p,- rç-o,
we obtain the exact sequence of reflexive P-modules

0 -» t(L() ̂ >eAl¡ -* °-

Obviously / is not a splittable epimorphism. Using an argument similar to the
argument used to characterize the fundamental exact sequence, it is not difficult to
show that an exact sequence 0 —> A -> P -> L,- -» 0 with A and B in S is isomorphic

g,       f,
to 0 -» t(L,) -» P, -» L,■ -> 0 if and only if it satisfies the following conditions:

(a) /I is indecomposable;
(b) it does not split;
(c) every morphism A: L -» L, in 2 which is not a splittable epimorphism can be

lifted to B.
Thus for each L, + R the exact sequence 0 —> t(L,) -* £, -» L, -» 0 is uniquely

determined by L, and is called the almost split sequence determined by L¡.
Following the procedure used in the theory of artin algebras we define for R the
following quiver, usually called the AR quiver of 2 which we will denote by AR( 2).

The vertices of the AR quiver of 2 are the indecomposable reflexive P-modules
L0, Lf,... ,Ld and the number of arrows from L to L¡ is the multiplicity of L; in a
decomposition of Ei into a sum of indecomposable modules. It is obvious that by
construction there is an isomorphism /1P(2) -» T(V) sending L, to P, for all i.
Combining this isomorphism with the isomorphism between T(V) and the McKay
quiver of F already described in §1, we obtain an isomorphism between the AR and
McKay quivers.
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3. Construction of almost split sequences. We continue with the same hypothesis
and notation as in the previous section. Our main aim in this section is to show how
all the almost split sequences in 2 can be derived from the fundamental exact
sequence in a rather simple way. It is for this reason that the exact sequence
0-»t(P)-»P0-»P-»Ac->Oís called the fundamental exact sequence. We begin
with some preliminaries.

Since P is a complete local ring, we know that it contains a complete regular local
ring T of dimension 2 such that P is a finitely generated P-module. In [3] it was
shown that t(P) = Homr(P, T). Therefore, t(P) = w, the dualizing P-module.
Therefore, Ext2R(k,w) = Ac and the fundamental exact sequence is any one of the
nonzero elements in Ext^(Ac, w). We will denote t(P) by w from now on.

Now given two S[G]-modules A and P we consider the S-module A ®SB given by
a(a ® b) = a(a) ® a(b) for all a in G, a in A and b in P. It is easily seen that for all
A, B and C in mod S[G] we have the S[G]-isomorphisms

Homs(^ ®SB,C) -* Homs(,4,Homs(P,C))

which are functorial in A, B and C. Applying the G-fixed point functor we have
functorial isomorphism

HomS|C](^ ®SB,C) -> HomS{C](A,Homs(B,C)).

Now if P and Q are S[G]-projective, then P ®s<2 is S-free and hence S[G]-projec-
tive. Since

S/m(P ®SQ) = P/mP ®kQ/mQ,
the functor SB -» mod Ac[G] commutes with tensor products. Also we have that
(S ®k Wf) ®S(S ®k W2) ̂  S ®k(Wx ®k W2) for all Wx and IF, in mod k[G]. There-
fore the projective S[G]-resolutions

0->S®kl/\V®kv\^S ®, (V ®, Vj) - S ®, Vj - Vj -* 0

can be rewritten as

/ 2     \
0^\s®kAv\®s(S®kVJ)^(S®kV)®s(S®k Vj) - S ®, Vj - Vj - 0

and therefore as

0 - t(S) ®sPj -* 2o ®SP, - Pj - Vj - 0.

Therefore it is of importance to know which reflexive P-module (P ®SQ)G is for P
and Q in SB. To this end we review some well-known facts about reflexive P-mod-
ules.

Let L be a reflexive P-module. Then it is easily seen that Hom/((Ar, L) is
P-reflexive for all P-modules X. Hence X* and X** are reflexive P-modules for all
P-modules X, where X* = Hom/;(Ar, P). Also the canonical morphism X -* X**
induces isomorphisms HomR(A'**, L) -* HoraR(X, L) for all reflexive P-modules
L. This obviously uniquely determines the reflexive P-module X**.
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Suppose now that L, and L2 are in 2. We want to define the "tensor product"
L, • L2 of Lx and L2 in 2. In general, L, ®„ L2 is not even torsion free, let alone
reflexive. So we define L, • L2 to be (L, ®Ä L2)**. Now for each reflexive P-module
L, we know that the natural morphism L, ®R L2 -> L, • L2 induces an P-isomor-
phism Hom^L, • L2, L) -> HomR(L! ®R L2, L) which is functorial in L,, L2 and
L. Also we have the usual P-isomorphisms

HomR(Lx ®R L2, L) -» HomR(Lx, HomR(L2, L))
which are functorial in Lx, L2 and L. Hence we obtain the P-isomorphisms of
reflexive   P-modules   HornR(LX ■ L2, L) ^> HornR(Lx,HomR(L2, L))   which   are
functorial in Lx, L2 and L. It is for this reason that Lx ■ L2 is called the "tensor
product" of Lx and L2 in 2. With these observations in mind, we prove the following

Lemma 3.1. Let P and Q be projective S[G]-modules. Then we have the following:
(a) Homs(P, Q)G = HomR(PG, QG);
(h)(P®sQ)G = PGQG.

Proof, (a) Homs(P, Q)G = Homs|c](P, Q) ^ HomR(PG,QG) since the fixed
point functor SB -» 2 is an equivalence of categories.

(b) Let L be in 2 and let t/be a projective S[G]-module such that UG = L. Now

HomR((P ®SQ)G, U) = HomR((P ®SQ)C, UG)

= Homs[C](P®sQ,U) =Homs[G](P,Homs(Q,U))

= HomR(PG,HomslG](Q,U)) = Horn R{PG,Horn R(QG,UG))

= HornR(PG,HornR(QG, L)) = HomR(PG • QG, L).

Hence we have an isomorphism of P-modules

HomR(( P ®SQ)G, L) - HomR(PG • QG, L)

which is functorial in L. Therefore (P ®5Ô)C = ^G-ÔC-
As an immediate consequence of this lemma we have the following

Proposition 3.2. For each Lj =£ R we have the following:
(a)r(LJ)=wLJ;
(h) tensoring the exact sequence 0 -* w -* E0 -> R with Lj, we obtain the exact

sequence 0 -» w ■ Lj.-* E0 ■ Lj. -> L¡ -* 0 which is the almost split sequence for Lj.

Proof. Since (a) follows from (b), it suffices to prove (b). We have already seen
that the minimal projective S[G]-resolution of Vj can be obtained by tensoring the
minimal projective S[G]-resolution of Ac with Py over S obtaining

0 -> t(S) ®sPj - Q0 ®SPJ - S ®SPJ - k ®SPJ = Vj - 0.
Applying the fixed point functor, we obtain the almost split sequence 0 -> w ■ Lf—>
E0 ■ Lj -* Lj -> 0, giving our desired result.

As an immediate consequence of this result we have the following slightly
different description of the AR quiver of 2.

Corollary 3.3. In the AR quiver of 2 we have that the number of arrows from L, to
Lj is the multiplicity of Li in the decomposition of E0 ■ Lj into indecomposable modules.
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4. Algebras with finitely many indecomposable reflexive modules. Suppose C is the
complex numbers, G a finite subgroup of GL(2, C) such that the induced linear
action on S = C[[X, Y]] has the property that every height one prime in P = SG is
unramified in S, or equivalently, G has no pseudo-reflections. Then we know that 2,
the category of reflexive P-modules is of finite representation type, i.e. 2 has only a
finite number of nonisomorphic indecomposable modules. In this section we show
how the ideas developed in the previous sections can be used to prove the converse,
which is also proved in [1] using different techniques. We begin by pointing out
some generalizations of results given in the previous sections.

Let Ac be a field and S an arbitrary local Ac-algebra with maximal ideal m such that
S/m = k. Suppose G is a finite group of Ac-automorphisms of S such that the order
of G is not divisible by the characteristic of k. Then, as before, mS[G] is the radical
of the skew group ring S[G] and S[G]/mS[G] = Ac[G], the ordinary group ring of G
over Ac, which is semisimple. As in the previous section, given two S[G]-modules A
and B, we can form the S[G]-modules Homs(y4, B) and A ®SB. Likewise the
argument given before shows that an S[G]-module A is projective if and only if A is
S-free. Therefore Homs(/l, B) and A ®SB are S[G]-projective if A and B are
S[G]-projective.

Proposition 4.1. Let SB be the category of projective S[G]-modules. Then the
functor SB -» mod Ac[G] given by P >-» P/mP for all P in SB has the following
properties:

(a) the natural epimorphism P -» P/mP is a projective cover for all P /«SB;
(b) SB -* mod Ac[G] is full and dense;
(c) P and Q in Sß are isomorphic if and only if the k[G]-modules P/mP and Q/mQ

are isomorphic,
(d) suppose P and Q are projective S[G]-modules; then P ®SQ >-» P/m ®k Q/mQ

andWoms(P, Q) -* Homk(P/mP, Q/mQ);
(e) ranksP = dim¿ P/mPfor all P m SB.

Proof, (a) This is a consequence of the fact that the idempotents in Ac[G] can be
lifted to S[G] since the composition Ac[G] -> S[G] -> k[G] is the identity, where the
first morphism is the inclusion.

(b) Obvious.
(c) and (d) Same as previous proofs in case S = k[[X, Y]].
(e) Obvious.
As an immediate consequence of this proposition we have the following which we

will need in this section:

Corollary 4.2. Let S and G be as above.
(a) Let V0, Vf,..., Vd be a complete set of nonisomorphic simple k[G]-modules and

P0, Pf,...,Pd their projective covers respectively. Then P0,... ,Pd is a complete set of
nonisomorphic indecomposable projective S[G]-modules.

(b) SB is a Krull-Schmidt category, i.e. each P in SB is isomorphic to a unique sum

LI?_o",P,.
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We now generalize some of the other results in a different direction.
Let R be an integrally closed noetherian domain with field of quotients K. Let L

be a finite galois extension of K with group G such that S, the integral closure of P
in L, is a finitely generated P-module and every height one prime in P is unramified
in S. Then, as before, the P-morphism S -> S[G]G given by s >-* £o6Ca(s)a is an
isomorphism which we view as an identification. Hence we have the functor
SBS[G] -* addflS given by P -» PG for all P in SßS[G], the category of projective
S[G]-modules. Also because every height one prime ideal in P is unramified in S, we
have that the natural P-algebra morphism S[G] -> EndR(S) given by sa(x) =
s(a(x)) for all í in S, a in G and x in S is an isomorphism [2]. As before, this implies
that the natural P-algebra morphism EndS[C](S[G]) -» EndÄ(S) given by/—>/|S
for all/in Ends[c](S[G]) is an isomorphism. This yields the following result:

Proposition 4.3. The functor SßS[G] -> addRS given by P -* PG for all P in
SßS[G] is an equivalence of categories.

As before, S is a reflexive P-module. Suppose Lx and L2 are reflexive P-modules.
Then we have that rIomÄ(L,, L2) is a reflexive P-module. Also, as before, we define
the tensor product Lx ■ L2 of L, and L2 in the category of reflexive P-modules by
L, • L2 = HomR(HomR(L, ®R L2, R), R). Again, given two S[G]-modules A and
B, we consider Y\oms(A, B) and A ®SB as S[G]-modules in the usual way.
Moreover, Homs(y4, P) and A ®SB are projective S[G]-modules if A and B are
projective S[G]-modules since an S[G]-module X is projective is and only if X is a
projective S-module.

As before we have the following

Proposition 4.4. The functor SBS[G] -> add^S has the following properties for P
and Q in SBS[G]:

(a) Homs(P, Q) -» HomÄ(PG, QG);
(b)P ®SQ -» PG ■ QG.

As an immediate consequence of Proposition 4.4 we have the following

Corollary 4.5. Let Lx, L2 be in addR S. Then HomÄ(L,, L2) and Lx ■ L2 are in
addRS.

For the rest of this section we assume we have a fixed algebraically closed field Ac.
By a Ac-algebra T we will always mean a Ac-algebra which is a complete integrally
closed noetherian local domain with residue field Ac. As a consequence of the above
discussion we have the following

Theorem 4.6. Let R be a k-algebra with field of quotients K. Let S be the integral
closure of R in a finite galois extension L of K with galois group G whose order is not
divisible by the characteristic of Ac. Moreover, suppose every height one prime in R is
unramified in S. Then the functors %S[G) -> add« S given by P -* PG for all P in
SBS[G] and SBS[G] -» mod k[G] given by P ^ P/mP for all P in SBS[G] induce the
functor F: addRS -» mod Ac[G] given by F(L) = P/mP, where P is the object in
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SB S [G] such that P° = L.  The functor F:  add «S —» mod Ac [G] has the following
properties:

(a) F is full and dense;
(b)F(Lx)~ F(L2) if and only if Lx = L2 for all Lx, L2 in add RS;
(c) L in add« S is indecomposable if and only if F(L) is simple in mod k[G];
(d) for all Lx, L2 in S, we have F(HomR(Lx, L2)) = Homk(F(Lx), F(L2)) and

F(Lx-L2)=F(Lx)®kF(L2);
(e) F(R) = Ac, the trivial representation;
(f) rank« L = dim^. F(L) for all L in add« S.

Corollary 4.7. Under the same hypothesis as Theorem 4.6, the functor F: add« S
-* mod k[G] induces a bijection between the isomorphism classes of indecomposable
objects in add« S and the isomorphism classes of simple objects in mod Ac[G].

We now apply Corollary 4.7 to prove the result promised in the beginning of this
section.

Let Ac = C, the complex numbers, P a Ac-algebra with field of quotients K. Let ß
be the algebraic field extension of K generated by all finite field extensions L of K
such that the integral closure S of P in L has the property that the height one prime
ideals of P in S are unramified. Then Í2 is galois over K.

As an application of Corollary 4.7 we have the following

Proposition 4.8. Let K c L c L' c S2 be field extensions of K. Suppose K c L
and K c L' are finite galois extensions with galois groups G and G', respectively.
Suppose S' -3 S -3 P are the integral closures of R in L' and L, respectively. Then
add « S' D add « S and they are equal if and only if S = S'.

Proof. Since C c P, the usual trace argument shows that S is an S-summand of
S'. Hence add«S' D add«S. Now suppose add«S' = add«S. Then add« S and
add « S' have the same number of isomorphism classes of indecomposable P-mod-
ules. Therefore by Corollary 4.7 we have that C[G] and C[G'] have the same number
of isomorphism classes of simple modules. Hence G and G' have the same number of
conjugacy classes. But this implies that G = G', since G = G'/H where H is the
normal subgroup of G' consisting of the elements of G leaving L fixed. Therefore
S = S'.

We now prove our desired result.

Theorem 4.9. Suppose dim P = 2 and the number of isomorphism classes of
indecomposable reflexive R-modules is finite. Then

(a) Q, is a finite galois extension of K with group G;
(b) the integral closure S of R in Í2 is regular, SG = R and we can choose analytically

independent elements X and Y is S such that S = C[[X, Y]] and the action of G on
C[[X,Y]] is linear.

Proof, (a) Suppose Í2 is not a finite extension of K. Then there is an infinite
proper ascending chain

K c. Lf c_ L2 c. ■■■ cß
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of galois extensions of K. Letting S, be the integral extension of P in L¡, we obtain
the infinite proper ascending chain P c S, c S2 c • • •. Therefore, by Proposition
4.8 we obtain the infinite proper ascending chain add S, c add S2 c • ■ •. Since each
of the S; is a reflexive P-module, this contradicts the fact that there is only a finite
number of isomorphism classes of indecomposable reflexive P-modules.

(b) Let S be the integral closure of P in fi. Then S satisfies the purity of the
branch locus, i.e. if L z> S2 is a finite field extension of fi such that the height one
primes of p in S are unramified in the integral closure S' of S, then S is unramified
in S' or equivalently S = S'. Hence by Mumford we know that S = C[[^, Y]].

Clearly SG = R. The rest of the theorem follows from the fact that since G is finite
the action of G on C[[X, Y]] is similar to a linear action.

5. Reflexive splitting trace modules. In this section we introduce the notion of a
reflexive splitting trace module which plays an essential role in the next section
where we show to what extent the method of constructing almost split sequences for
complete two-dimensional quotient singularities described in §3 can be generalized
to arbitrary two-dimensional complete local integrally closed domains. We begin
with some generalities.

Throughout this section P denotes a noetherian, integrally closed domain with
field of quotients K and all P-modules are finitely generated. Suppose Af is a torsion
free P-module. Then End«(Af) c EndK(K ®RM) and the usual trace map t:
EndK(K ®« Af ) -> 7£ has the property that r(End«(Af )) c R since P is integrally
closed. We now point out some important facts concerning the trace t: End«(Af ) -»
R which we will need in our discussion of almost split sequences.

Proposition 5.1. Let R be a local ring with maximal ideal m and M a torsion free
R-module. Then t: End«(Af ) -» R has the property that /(radEnd« Af ) c m.

The proof of this fact goes in several steps.

Lemma 5.2. Let R be a local domain (not necessarily integrally closed) with field of
quotient K. Suppose M is a torsion free R-module andf: M -* M an R-morphism such
that fk(M) c m M for some Ac > 0. Further suppose that x in R is an eigenvalue for
f®RK:K®RM^>K®RM. Then x is in m.

Proof. Suppose v is a nonzero element of K ®RM such that (K ® f)(v) = xv.
Then v = y/s with y in Af and s e P — {0}, from which it follows that f(y) = xy.
Since^ # 0, there is ay such that y is not in m-'Af. But xk+u~l)y = fk+u~1](y) is in
mJM. Therefore x is not a unit, i.e. x is in m.

Proposition 5.3. Let R be an integrally closed local domain with maximal ideal m
and field of quotient K. Let M be a torsion free R-module and f: M -* M an
R-endomorphism with fk(M) c mM for some k > 0. Then the characteristic poly-
nomial g(X) = X" + axX"-1 + ■■■ + a„ of K®Rf: K ® « Af -> K ® « Af has the
property that a¡ is in m for all i > 1. In particular, t(f) = ax is in m.
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Proof. Suppose ux,...,un are the roots of g(X) in some finite field extension of
K. Since g(X) is in R[X], the «, are integral over P, and hence R[ux,...,un] is a
finitely generated P-module because P is noetherian. Therefore R[ux,. ..,un] is
noetherian. Let m' be a maximal ideal of R[ux,...,un] and let S = R[ult...,u„]m..
Then S is a local noetherian domain with maximal ideal m'S having the property
that m'S n P = m and m S is m'S-primary. Let L he the field of quotients of S and
let SAf be the S-submodule of L ®« Af generated by Af. Then L®/:L®«Af->L
®« Af has the property that (L ® f)(SM) c SM and (L ® f)k c (m'S)SAf. Since
g(X) is also the characteristic polynomial for L ® /, it follows that the uv.. .,«„ are
the eigenvalues for L ® f. Hence, by our previous lemma, the «,,... ,w„ are in m'S.
Since the ai are in P and are sums of products of the u¡, they are in m'S n P = m,
giving our desired result.

We now return to the proof of Proposition 5.1. Since A = End«(Af ) is a finitely
generated P-module, we have that A/mA is a finite dimensional P/m-algebra.
Hence (rad A)" c m A for some n > 0. Therefore if /: M -* M is in rad End Af,
then we have that/*(Af ) c mAf for some Ac > 0. Hence by Proposition 5.3 we have
that t(f) G m, which finishes the proof of Proposition 5.1.

Of particular interest to us in this section are the reflexive modules Af over an
integrally closed domain P having the property that P is isomorphic to a summand
of End«(Af ) viewed as an P-module. We now develop various criteria for Af to have
this property.

We begin with the following preliminary observation:

Lemma 5.4. Let M be a reflexive R-module.
(a) The map a: End«(Af) -» Horn «(End «(Af), P) given by a(f)(g) = t(fg) for

all f and g in End«(Af ) is an isomorphism of End R(M ) modules.
(b) a(id) = t and so t is a free generator for Hom«(End«( Af ), P) over End«(M).

Proof, (a) It is easily checked that a is a morphism of End«(Af)-modules which
is an isomorphism whenever Af is free. Thus

<V End«jAf ) -+ Hom«p(End«(M)p), Pp

is an isomorphism for all height one prime ideals £ c P- The fact that a is an
isomorphism now follows from the fact that End«(Af) and Hom«(End(Af), P) are
reflexive P-modules and P is integrally closed.

(b) Trivial consequence of (a).
As an easy consequence of this result we have the following

Proposition 5.5. Let M be a reflexive R-module. Then R is isomorphic to a
summand of EndR(M) (notation: P|End«(M)) if and only if the trace t: End«(Af)
-» P is onto.

Proof. Clearly if t: End«(Af) -» P is onto, then P|End«(Af). Suppose
P|End«(Af ). Then there is an P-module morphism/: End«(Af) -» P which is onto.
But/= ta~l(f) by Lemma 4. Therefore t is onto.
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For obvious reasons we will say that a reflexive module Af over an integrally
closed domain P is a splitting trace module if P|End«(Af) or equivalently
i(End«(Af)) = P.

As an easy consequence of Proposition 5 we have the following

Corollary 5.6. (a) A reflexive R-module M is a splitting trace module //rank Af is
a unit in P.

(b) // P contains the rational numbers, then every reflexive R-module is a splitting
trace module.

Proof, (a) This is a trivial consequence of the fact that ?(id) = rank Af.
(b) Trivial consequence of (a).
Specializing P a bit, we get the following description of when a reflexive P-module

is a splitting trace module:

Proposition 5.7. Let R be a complete local ring with maximal ideal m such that
R/m is algebraically closed. Then an indecomposable reflexive R-module M is a
splitting trace module if and only if p, the characteristic of R/m, and rank Af are
relatively prime when p + 0.

Proof. Clearly (p,rank Af) = 1 whenever p # 0 if and only if rank Af is invert-
ible in P. Thus if ( p, rank Af ) = 1 whenp + 0, then Af is a splitting trace module by
Corollary 5.6.

Suppose now that Af is a splitting trace module. If p = 0, there is nothing to
prove, so suppose p ^ 0 and rank Af and p are not relatively prime. Then rank Af • 1
is in m, the maximal ideal of P. Since P is complete and M is indecomposable, we
know that End«(Af) is a local ring. Because R/m is algebraically closed we have
that End«(Af )/radEnd« Af = R/m. Therefore each/in End«Af can be written as
a I + g where /. is the identity, a is in P and g is in rad End «(Af). Then
t(f) = at(I) + t(g). Since by Proposition 5.1 we have that t(g) is in m and, by
hypothesis, /(/) = rank Af is m, it follows that t(f) is in m. Hence f(End«( Af )) c m,
which shows that Af is not a splitting trace module.

We now want to investigate what P|Hom«(Af, TV), where Af and TV are reflexive
modules over P, means. We begin with the following

Lemma 5.8. Let M be a reflexive module over R and let Y be a module over
T = End«(M).

(a) The trace map t: T -» P induces an R-isomorphism tY: Homr(F, T) -»
Horn «(7, P).

(b) Suppose now that R is a complete local ring and M is indecomposable.
If R is an R-summand of Y, then T is a Y-summand of Y.

Proof, (a) The T-isomorphism a: T -» Hom«(T, P) given a(f)(g) = t(fg) for
all /, g in T induces an isomorphism

Homr(y, T)  -^ Hom(F,Hom«(r, R)).
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Also we have the Standard isomorphism of P-modules v: Homr(7, Hom«(T, P)) -»
Hom«(y, P) given by v(f)(y) = f(y)(\) for all/in Homr(7, Hom«(T, R)),y in Y.
Since tY = v(Y, a), as can easily be checked, we have our desired result that tY is an
P-isomorphism.

(b) If T is not a T-summand of Y, then for each r-morphism /: F->rwe have
that Im / c rad T since T is a local ring. Since /: T -» P has the property that
?(rad T) c rad P, we have by (a) that all P-morphisms g: Y -> P have Im g c rad P.
Therefore P is not an P summand of Y.

We now apply this lemma to prove the following

Lemma 5.9. Let M, X, Y be reflexive R-modules and suppose T = End« Af.
(a) PA<? R-morphism u: Hom«(Ar, Y) -> Horn r„P ( Horn «(Af, X), Hom«(Af, 7)),

given by f '-* Hom«(Af, /)/o/- a///m Hom«(X, 7), « a« isomorphism functorial in X
and 7, tvAere Hom«(Af, Z) is considered an Top-module by means of the operation of
T on M.

(b) The R-morphism u: Hom«(X, 7) -» Homr(Hom«(7, Af), Hom«(X, Af)),
given by f <-* Hom«(/, M)for all fin Hom«(X 7), is an isomorphism functorial in X
andY.

Proof, (a) and (b) Since the morphisms u and v are obviously P-morphisms
between reflexive P-modules it suffices to prove that they are isomorphisms when
localized at height one prime ideals. But if p is a height one prime, then Afp, Xp, 7p
are free Pp-modules, from which it follows that up and vp are isomorphisms by
induction on the rank of the free P „-modules Xp and 7p.

As a consequence of Lemmas 5.8 and 5.9 we obtain the following result which was
the main point of this discussion:

Proposition 5.10. Let M and N be two reflexive indecomposable R-modules when R
is a complete local ring.

(a) 7/P|Hom«(TV, Af ), then TV = Af and M is a splitting trace module.
(b) //Af is a splitting trace module, then M = TV if and only z/P|Hom«(TV, Af ).

Proof, (a) Suppose P|Hom«(TV, M). Then by Lemma 5.8 we know that there is a
T-surjection y: Hom«(TV, M) -> T where F = End«(Af). Then by Lemma 5.9 we
know there is an P-morphism g: M -» TV such that j(f)=fg for all / in
Hom«(TV, Af ). Hence there is an/in Hom«(TV, Af ) such that/g = \M. Therefore g:
Af —> N is a splittable monomorphism and hence an isomorphism since N is
indecomposable.

(b) Trivial consequence of (a).

6. Almost split sequences. Throughout this section we assume that P is a complete
two-dimensional integrally closed local domain. Our aim is to demonstrate to what
extent the method of computing almost split sequences for reflexive P-modules given
in §3 can be generalized to arbitrary P. While it is known that in this context almost
split sequences always exist for reflexive P-modules under our hypothesis on P [3],
this fact will not be used in our discussion here in order to make the paper as
self-contained as possible.
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We begin by pointing out that what we called the fundamental exact sequence for
complete two-dimensional quotient singularities also exists for any P. Recall that the
dualizing module for P, which we denote by w, is Homr(P, T), where T is a
two-dimensional regular local subring of P such that P is a finitely generated
r-module. Then the reflexive P-modules are precisely the P-modules which are
P-free. Therefore X ^> Hom7-(A', T) gives an exact duality on the category Ref P of
reflexive P-modules. From this the well-known fact that ExtlR(X,w) = 0 for all
reflexive P-modules X follows easily.

Another well-known property of w is that Ext2(P/m, w) = R/m where m is the
maximal ideal of P. Therefore all the exact sequences 0->w->P->P-> R/m -* 0
representing nonzero elements of Ext«(P/m,w) are isomorphic. We call any such
sequence a fundamental exact sequence. Using the fact that depth R/m = 2, it is not

p
difficult to show that the E in a fundamental exact sequence 0-»w—>£->P—»
R/m -» 0 is reflexive, see [3]. Now the importance of the fundamental exact
sequence lies in the fact that given any morphism /: X -* P of reflexive P-modules
which is not a splittable epimorphism, or equivalently not an epimorphism, then
there is a g: X —> E such that / = pg. The reason for this is that in the pullback exact
commutative diagram

0     ^     w     ^     E XRX     ^       X      -*     0
ii 1 4/

0     ->     w     -> E -»       R

the exact sequence 0->w->ExRX^>X^>0 splits, giving our desired result.
p

Proposition 6.1. Let 0->w->P->P-> R/m -* 0 be the fundamental exact
sequence. Then for each reflexive R-module X we have that

Hom( X. p )
\m(WomR(X,E)      -*      HomR(X, R))

consists of the nonepimorphisms from X to P.

As an immediate consequence of Proposition 6.1, we have the following

Corollary 6.2. Let M be a nonprojective indecomposable reflexive R-module. Then
p

applying the functor Hom«( M*, ) to the fundamental exact sequence 0 —> w -» E —> P
—> R/m -» 0, we obtain the exact sequence
(*) 0 -> Hom«(Af*, w) -> Hom«( Af*, E) -> Af** = Af -> 0.

Our aim now is to show that the exact sequence (*) in Corollary 6.2 does not split
if and only if Af is a splitting trace module. To this end we need the following

Lemma 6.3. Let M be a reflexive R-module and T = End«(Af). Then for each
reflexive R-module, X, the morphism

ux: Hom«(r, X) -> Horn «( Af, Horn «(Af*, X))
given by (ux(f))(m)(g) = f(8(g ® m)) for all f in Hom«(T, X), m in M and g in
Af*, is an isomorphism of two-sided T-modules which is functorial in X and where 8:
M* ®« Af —> T is given by 8(g ® m)(x) = g(x)m for all g in Af* and m and x in M.
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Proof. Since X is reflexive, we have that 8: M* ®« Af -» T induces an isomor-
phism of two-sided r-modules,

HomÄ(a,;o
Hom«(r, A')       -»       Hom«(Af* ®« Af, X)

which is functorial in X. The standard isomorphism ax: Hom«(M* ®« Af, X) -*
Hom«(Af, Hom(Af*, X)) is also a two-sided T-isomorphism functorial in X. Our
desired result now follows from the fact that ux = axHom«(¿5, X).

We now prove our promised result which we restate as follows:

Proposition 6.4. Let M be an indecomposable reflexive nonprojective R-module.
Then the following are equivalent:

(a) Af is a splitting trace module.
(b) The exact sequence

HomÄ(A/*, p)
0 -» Hom«(Af*,w) -> Hom«(Af*, E)        -»        Af** ̂  0

induced from the fundamental exact sequence does not split.

Proof. By the previous lemma we have the following commutative diagram:

Hom«(r, E) -» Hom«(r, P)
I   »f. I   UR

Hom(Af,Hom«(Af*,P))     -»     Hom«(Af, Af**).

Since the uE and uR are isomorphisms, it follows that the top horizontal map is not
surjective if and only if the bottom horizontal map is not surjective. Because T is
P-reflexive, the basic property of p: E —> R tells us the top morphism is not
surjective if and only if P|T or equivalently if and only if Af is a splitting trace
module. On the other hand, the bottom row is not surjective if and only if
Hom«(Af*, E) —> Af** = Af is not a splittable epimorphism. Hence we have estab-
lished the proposition.

Next we want to show that if Af is an indecomposable nonprojective P-module,
then the exact sequence 0 -> Hom«(Af*, w) -» Hom«(Af*, E) -* Af** -> 0 is al-
most split if and only if it does not split. Clearly all one has to show is that it is
almost split if it does not split. This requires the following preliminary result which
has some interest in its own right:

Proposition 6.5. Let M be an indecomposable nonprojective reflexive R-module
which is a splitting trace module and let T = End « Af. Then

(a) Hom«(T, P) = T as a two-sided Y-module.
(b) The two-sided T-morphism

HomÄ(r, p)
Hom«(r, E)       -»       Hom«(r, P)

is not surjective.
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(c) Let A be a T-module which is a reflexive R-module, then

Im Homr(^,Hom«(r, E)) -» Hom(,4,Hom«(r, P))

consists of the nonepimorphisms from A to Hom«(r, P).

Proof, (a) We have seen that Hom«(T, P) is free with generator t.
(b) Trivial consequence of Af be a splitting trace module.
(c) Let A be a T-module which is a reflexive P-module and let/: A -> Hom«(T, P)

be a T- morphism. If/is in Im Horn « (A, Horn «(T, p)), then/is not an epimorphism
since Hom«(T, p) is not an epimorphism by (b). Suppose now that /: A —>
Hom«(T, P) is not onto. Then for each a in A we have that f(a) is in rad T ■
Hom«(T, P) and therefore there is g g rad T such that f(a) = g ■ t = t ° g. Hence
Im f(a) c m, the maximal ideal of P by Proposition 5.1 for each a in A.

Now we have the commutative diagram

Homr(/4,HomR(r,p))
Homr(y4,Hom«(r, E)) -» Homr(/í,Hom«(r, R))

l<t> i<f>'
HomÄ(/f. p)

Hom«(^4,£) -» Hom«(/l,P)

where the vertical maps are the standard isomorphisms. Now <j>(f)(a) = /(a)(1)
which is in m. Therefore <¡>'(f) is in Im Horn «(^4, p) which means that / can be
lifted to Hom«(r, E), which is our desired result.

We are now in position to finish the proof of the following

Theorem 6.6. Let 0->w->£-»P-> R/m —> 0 be a fundamental sequence. Then
the following are equivalent for an indecomposable reflexive nonprojective R-module M:

(a) Af is a splitting trace module.
(b) The induced exact sequence

0 -» Hom«( Af*, w) -» Hom«( Af*, E) -» Af -> 0
does not split.

(c) The induced exact sequence

0 -» Hom«(Af*, w) -^ Hom«( Af*, E) -> M -> 0

is almost split.

Proof. The equivalence of (a) and (b) has already been shown. Since (c) trivially
implies (a), it only remains to show that (a) implies (c).

Let g: TV -> Af be a morphism of reflexive modules which is not a splittable
epimorphism. Then the induced morphism of rop-modules Hom«(Af, /):
Hom«(Af, TV) -» Hom«(Af, M) is not surjective. Now we have the commutative
diagram of two-sided T-modules

Hom«(Af,Hom«(Af*,p))     ->     Hom«(Af, Af )
1 "¿' 1 »ü1

Hom«(r, E) ->      Hom«(r, P)
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with vertical isomorphisms. Since the composition of rop-modules

Hom(A/, TV) -> Hom«(M, Af) -> Hom«(T, P)

is not surjective, it follows from Proposition 6.5 that it can be lifted to Hom«(T, E).
It then follows from the above commutative diagram that there is a rop-morphism g:
Hom«( Af, TV) -» Hom«(Af, Hom(A/*, E)) such that the diagram of rop-modules

Hom«(M, TV)
gl/ lHomR(M.f)

Hom«(Af,Hom«(Af*,£))      ->       Hom(Af, M)

commutes. But by Lemma 5.9, we know that the functor Hom( Af, ): Ref P -» mod T
given by X <-* Hom( Af, X) is fully faithful. Therefore there is a unique

A: TV -> Hom«(Af*, E)

such that Hom«(Af, A): Hom«(Af, N) -> Hom«(Af, Hom«(A/*, E)) is g. Conse-
quently we have that /: TV -> Af is the composition

h Hom»(M*,/>)
TV^Hom«(Af*,£)        ->        Af.

Therefore
■RomR(M'.p)

Hom«(Af*,£)        ->        M

is right almost split. Since this holds for all morphisms of reflexive P-modules /:
TV -> Af which are not splittable epimorphisms and Hom«(M*, w) is indecomposa-
ble because Af* is indecomposable and Hom«(Af*, w) = WomT(M*, T), it follows
that 0 -* Hom«(Af*, w) -* Hom«(TVf*, E) —> M -» 0 is almost split, finishing the
proof of the theorem.

We now conclude with some final remarks. For Af an indecomposable nonprojec-
tive reflexive P-module which is a splitting trace module, we have given an
independent proof of the existence of an almost split sequence with Af at the
right-hand end, as well as a method for constructing it. Therefore, if P contains the
rational numbers, we have obtained new proof of the existence of almost split
sequences for reflexive P-modules, as well as a method for constructing them from
the fundamental exact sequence. The situation is different when the characteristic of
R/m is p # 0. While, as noted before, we know there are almost split sequences, the
method of constructing almost split sequences from the fundamental sequence given
here only proves the existence for indecomposable, nonprojective splitting trace
modules.
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