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Abstract. Two examples of rational singularities of schemes over an

algebraically closed field of characteristic zero are given: Singularities

occurring as the quotient of a regular scheme by a finite group and

singularities of the type u2 - v2 — g(tv . . ., tN).

Unless otherwise explicitly mentioned, we assume that all schemes are

irreducible, reduced and of finite type over an algebraically closed field k of

characteristic zero and that all points are /c-rational.

Let U be a scheme, X a regular scheme and g: X —> U a proper, surjective,

birational morphism. We call g: X —> U a resolution of U.

Definition 1. Let F be a scheme and y G Y. Then Y has a rational

singularity at y if there exists a neighbourhood U of y in Y, such that for

every resolution g: X -+ U we have g*&x = t9u and R'g*&x = 0 for ; ?*= 0

(henceforth we write Rg^Ö^- = 0^).

In this paper we want to discuss two examples of rational singularities

needed in [5, §5].

Remarks, (i) Using "flat base change" [1] it is easy to see that the question

whether v G F is a rational singularity depends only on 0 K (""" denotes the

completion with respect to the maximal ideal).

(ii) If the base field has positive characteristic, one needs additional

conditions to define rational singularities [3].

(iii) Every regular point of a scheme is a rational singularity [2].

(iv) In Definition 1 it is sufficient to consider one resolution of U.

This last statement follows from (iii) and the Leray spectral sequence.

Using the same kind of argument one gets

Lemma 1. Let h: Y' —> Y be a proper, surjective, birational morphism of

schemes. Assume that Y' has only rational singularities; then Rh^&r = 0y, if

and only if Y has only rational singularities.

We first consider quotient singularities:

Definition 2. Let F be a scheme and v G Y. Then Y has a quotient

singularity at v if there exist a regular scheme Y' and a finite group G acting
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on Y' such that Y'/G exists and is isomorphic to some neighbourhood of v in

Y.

Let If be a regular scheme and D C W a closed, reduced subscheme of

codimension 1. We say that D has normal crossings if the irreducible compo-

nents of D are regular and if for every point w E W regular parameters

x,,. . ., xn exist such that D is defined by xx ■ x2 • ... • xr = 0.

Lemma 2. Let W be a regular scheme and f: Y -> W a finite morphism of

normal schemes. Assume that the ramification locus A(K/ W) {see [4]) has only

normal crossings. Then Y has quotient singularities and f is flat.

Proof. The first statement follows from Abhyankar's lemma: The proof is

exactly that used in [4, pp. 32-33] to prove "Satz 4.1". One must simply add

"and hence P2 is a regular point of A2" after the 18th line of p. 33.

Since flatness is a local property, we may assume that for some regular

scheme Y' and for some group G we have h: Y' —» Y'/G s Y. Then/- h is a

finite morphism of regular schemes, and hence (/• h)t6Y. is locally free. Let

tj: 6y -» hm&Y, be the map "multiplication with ord(G)-1", and Tr: h^6Y, —»

0y the trace map. Then Tr • tj is an isomorphism and, therefore, /„ 6 Y a direct

summand of (/• A)#0y,.

Proposition 1. Every quotient singularity is a rational singularity.

Proof. Assume that for some n > 1 and every scheme Y having quotient

singularities we already know:

For every resolution g: X —» Y we have R'g^Gx = 0 for 0 < i < n.

Let Y = Y'/G (as in Definition 2) and g: X —> Y be a resolution. Denote

the normalization of X in the function field of Y' by A" and choose a

resolution h'\ W —► X' of A". We denote the natural morphisms by:

Using "embedded resolution of singularities" [2] we may assume that

à(X'/X) has normal crossings. A" also has quotient singularities (Lemma 2)

and, by assumption, R'h'^Q^. =0 for 0 < / < n. The Leray spectral

sequence gives an injection Rng'*(K®w) ~> R"(g' ■ h\®w Since 8' • A' is a

resolution of a regular scheme, Ä"(g' • A')*©^ « 0 and therefore 0 =

f*R"g'*&x. = /?"£„(/;IV). Since 0, is a direct summand of/;©*, (proof of

Lemma 2), we get R"gt&x = 0.

The second example is given by an explicit equation:

Proposition 2. Let Y be a scheme and y G Y such that

%,r -*[K..., tn, u, v]]/ (u2 -v2- g(tx, ..., /„)),
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0 ¥= g{tx, . . . , t„) G k[[tx, . . . , t„]]. Then we have:

(i) Gy>Y {and hence &y¡Y)¡í Cohen-Macaulay and normal.

(ii) ey¡Y is flat over k[[tx, . . . , t„]].

(iii) y is a rational singularity of Y.

Proof. Qy Y is a complete intersection and, hence, Cohen-Macaulay. The

normality follows from Serre's criterion.

(ii) is true since the induced morphism of schemes is equidimensional. We

may assume that

Y = Specif/,, ...,/„]][«, v]/ (u2 -v2- g(tx, ..., O))

and W = Spec(£[[f,, . . . , /„]]). Let D be the subscheme of W defined by

g(tx, . . . , tn) = 0. Using "embedded resolution of singularities" [2], "flat base

change" [1] and Lemma 1, we may assume that Z)red has normal crossings.

After choosing another system of regular parameters in W, we get

g(tx, . . . , tn) = ?,"' • t22 ■ . . . ■ t¡¡; v¡ G N. Although singularities of this type

are known to be rational [3], we prove it directly:

Step 1. Blow up ideals of the form (w, v, 0 to decrease the v/s until vi = 1

or vt■ = 0 for /' = 1, . . . , n.

Step 2. Blow up ideals of the form (u, v, t¡, 0, i ¥= j, to decrease the

number of variables occurring in g(tx, . . . ,  tn).

Denote one of the morphisms in Step 1 or Step 2 by h: X —> Y and the

exceptional locus by E. It is easy to see Hq(E, 0E(p)) = 0 for q > 0 and

p > 0. Using decreasing induction on/? and the exact sequence

o -* ex(P + i) - ex(P) -► eE(P) -* o,

we obtain Rhm6x as 0y.

Remarks, (i) The type of singularities discussed in Proposition 2 occurs in

stable curves over a regular base scheme. Using flat base change, it follows

that a stable curve over a scheme with rational singularities has rational

singularities itself, (ii) One example: Surprisingly u2 - v2 - t] - t\ defines a

rational singularity while u2 - t\ — t\ does not.
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