RATIONAL SINGULARITIES OF HIGHER DIMENSIONAL SCHEMES

ECKART VIEHWEG

Abstract

Two examples of rational singularities of schemes over an algebraically closed field of characteristic zero are given: Singularities occurring as the quotient of a regular scheme by a finite group and singularities of the type $u^{2}-v^{2}-g\left(t_{1}, \ldots, t_{N}\right)$.

Unless otherwise explicitly mentioned, we assume that all schemes are irreducible, reduced and of finite type over an algebraically closed field k of characteristic zero and that all points are k-rational.

Let U be a scheme, X a regular scheme and $g: X \rightarrow U$ a proper, surjective, birational morphism. We call $g: X \rightarrow U$ a resolution of U.

Definition 1. Let Y be a scheme and $y \in Y$. Then Y has a rational singularity at y if there exists a neighbourhood U of y in Y, such that for every resolution $g: X \rightarrow U$ we have $g_{*} \theta_{X} \cong \mathcal{\theta}_{U}$ and $R^{i} g_{*} \mathcal{O}_{X}=0$ for $i \neq 0$ (henceforth we write $\mathbf{R} g_{*} \mathcal{\theta}_{X} \cong \mathcal{O}_{U}$).
In this paper we want to discuss two examples of rational singularities needed in [5, §5].
Remarks. (i) Using "flat base change" [1] it is easy to seee that the question whether $y \in Y$ is a rational singularity depends only on $\theta_{y, Y}$ ("‘") denotes the completion with respect to the maximal ideal).
(ii) If the base field has positive characteristic, one needs additional conditions to define rational singularities [3].
(iii) Every regular point of a scheme is a rational singularity [2].
(iv) In Definition 1 it is sufficient to consider one resolution of U.

This last statement follows from (iii) and the Leray spectral sequence. Using the same kind of argument one gets

Lemma 1. Let $h: Y^{\prime} \rightarrow Y$ be a proper, surjective, birational morphism of schemes. Assume that Y^{\prime} has only rational singularities; then $\mathbf{R} h_{*} \theta_{Y^{\prime}} \cong \mathcal{\theta}_{Y}$, if and only if Y has only rational singularities.

We first consider quotient singularities:
Definition 2. Let Y be a scheme and $y \in Y$. Then Y has a quotient singularity at y if there exist a regular scheme Y^{\prime} and a finite group G acting

[^0]on Y^{\prime} such that Y^{\prime} / G exists and is isomorphic to some neighbourhood of y in Y.

Let W be a regular scheme and $D \subseteq W$ a closed, reduced subscheme of codimension 1. We say that D has normal crossings if the irreducible components of D are regular and if for every point $w \in W$ regular parameters x_{1}, \ldots, x_{n} exist such that D is defined by $x_{1} \cdot x_{2} \cdot \ldots \cdot x_{r}=0$.

Lemma 2. Let W be a regular scheme and $f: Y \rightarrow W$ a finite morphism of normal schemes. Assume that the ramification locus $\Delta(Y / W)$ (see [4]) has only normal crossings. Then Y has quotient singularities and f is flat.

Proof. The first statement follows from Abhyankar's lemma: The proof is exactly that used in [4, pp. 32-33] to prove "Satz 4.1". One must simply add "and hence P_{2} is a regular point of X_{2} " after the 18th line of p. 33.
Since flatness is a local property, we may assume that for some regular scheme Y^{\prime} and for some group G we have $h: Y^{\prime} \rightarrow Y^{\prime} / G \cong Y$. Then $f \cdot h$ is a finite morphism of regular schemes, and hence $(f \cdot h)_{*} \theta_{Y^{\prime}}$, is locally free. Let $\eta: \mathcal{O}_{Y} \rightarrow h_{*} \mathcal{O}_{Y^{\prime}}$ be the map "multiplication with $\operatorname{ord}(G)^{-1 "}$, and $\operatorname{Tr}: h_{*} \mathcal{Q}_{Y^{\prime}} \rightarrow$ ϑ_{Y} the trace map. Then $\mathrm{Tr} \cdot \eta$ is an isomorphism and, therefore, $f_{*} \theta_{Y}$ a direct summand of $(f \cdot h)_{*} \Theta_{Y^{\prime}}$.

Proposition 1. Every quotient singularity is a rational singularity.

Proof. Assume that for some $n \geqslant 1$ and every scheme Y having quotient singularities we already know:

For every resolution $g: X \rightarrow Y$ we have $R^{i} g_{*} \theta_{X}=0$ for $0<i<n$.
Let $Y=Y^{\prime} / G$ (as in Definition 2) and $g: X \rightarrow Y$ be a resolution. Denote the normalization of X in the function field of Y^{\prime} by X^{\prime} and choose a resolution $h^{\prime}: W^{\prime} \rightarrow X^{\prime}$ of X^{\prime}. We denote the natural morphisms by:

Using "embedded resolution of singularities" [2] we may assume that $\Delta\left(X^{\prime} / X\right)$ has normal crossings. X^{\prime} also has quotient singularities (Lemma 2) and, by assumption, $R^{i} h_{*}^{\prime} \theta_{W^{\prime}}=0$ for $0<i<n$. The Leray spectral sequence gives an injection $R^{n} g_{*}^{\prime}\left(h_{*}^{\prime}{ }^{(}{ }_{W} W^{\prime}\right) \rightarrow R^{n}\left(g^{\prime} \cdot h^{\prime}\right)_{*}{ }^{(}{ }_{W} W^{\prime}$. Since $g^{\prime} \cdot h^{\prime}$ is a resolution of a regular scheme, $R^{n}\left(g^{\prime} \cdot h^{\prime}\right)_{*} \theta_{W^{\prime}}=0$ and therefore $0=$ $f_{*} R^{n} g_{*}^{\prime} \Theta_{X^{\prime}}=R^{n} g_{*}\left(f_{*}^{\prime} \vartheta_{X^{\prime}}\right)$. Since ϑ_{X} is a direct summand of $f_{*}^{\prime} \vartheta_{X^{\prime}}$ (proof of Lemma 2), we get $R^{n} g_{*}\left(\theta_{X}=0\right.$.

The second example is given by an explicit equation:
Proposition 2. Let Y be a scheme and $y \in Y$ such that

$$
\hat{\theta}_{y, Y}=k\left[\left[t_{1}, \ldots, t_{n}, u, v\right]\right] /\left(u^{2}-v^{2}-g\left(t_{1}, \ldots, t_{n}\right)\right),
$$

$0 \neq g\left(t_{1}, \ldots, t_{n}\right) \in k\left[\left[t_{1}, \ldots, t_{n}\right]\right]$. Then we have:
(i) $\hat{\theta}_{y, Y}$ (and hence $\hat{\theta}_{y, Y}$) is Cohen-Macaulay and normal.
(ii) $\hat{\mathcal{O}}_{y, Y}$ is flat over $k\left[\left[t_{1}, \ldots, t_{n}\right]\right]$.
(iii) y is a rational singularity of Y.

Proof. $\hat{\mathcal{O}}_{y, Y}$ is a complete intersection and, hence, Cohen-Macaulay. The normality follows from Serre's criterion.
(ii) is true since the induced morphism of schemes is equidimensional. We may assume that

$$
Y=\operatorname{Spec}\left(k\left[\left[t_{1}, \ldots, t_{n}\right]\right][u, v] /\left(u^{2}-v^{2}-g\left(t_{1}, \ldots, t_{n}\right)\right)\right)
$$

and $W=\operatorname{Spec}\left(k\left[\left[t_{1}, \ldots, t_{n}\right]\right]\right)$. Let D be the subscheme of W defined by $g\left(t_{1}, \ldots, t_{n}\right)=0$. Using "embedded resolution of singularities" [2], "flat base change" [1] and Lemma 1, we may assume that $D_{\text {red }}$ has normal crossings. After choosing another system of regular parameters in W, we get $g\left(t_{1}, \ldots, t_{n}\right)=t_{1}^{\nu_{1}} \cdot t_{2}^{\nu_{2}} . \ldots \cdot t_{n}^{\nu_{n}}, \nu_{i} \in \mathbf{N}$. Although singularities of this type are known to be rational [3], we prove it directly:

Step 1 . Blow up ideals of the form $\left\langle u, v, t_{i}\right\rangle$ to decrease the ν_{i} 's until $\nu_{i}=1$ or $\nu_{i}=0$ for $i=1, \ldots, n$.

Step 2. Blow up ideals of the form $\left\langle u, v, t_{i}, t_{j}\right\rangle, i \neq j$, to decrease the number of variables occurring in $g\left(t_{1}, \ldots, t_{n}\right)$.

Denote one of the morphisms in Step 1 or Step 2 by $h: X \rightarrow Y$ and the exceptional locus by E. It is easy to see $H^{q}\left(E, \mathcal{O}_{E}(p)\right)=0$ for $q>0$ and $p \geqslant 0$. Using decreasing induction on p and the exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(p+1) \rightarrow \mathfrak{\vartheta}_{X}(p) \rightarrow \mathfrak{\vartheta}_{E}(p) \rightarrow 0
$$

we obtain $\mathbf{R} h_{*} \mathcal{O}_{X} \cong \mathcal{O}_{Y}$.
Remarks. (i) The type of singularities discussed in Proposition 2 occurs in stable curves over a regular base scheme. Using flat base change, it follows that a stable curve over a scheme with rational singularities has rational singularities itself. (ii) One example: Surprisingly $u^{2}-v^{2}-t_{1}^{3}-t_{2}^{7}$ defines a rational singularity while $u^{2}-t_{1}^{3}-t_{2}^{7}$ does not.

References

[^1]Institut für Mathematik und Informatik, Universität Mannheim, D-68 Mannheim, Federal Republic of Germany

[^0]: Received by the editors June 17, 1976.
 AMS (MOS) subject classifications (1970). Primary 14E15, 14B05; Secondary 14E20.
 Key words and phrases. Rational singularities, resolution of singularities, higher direct images, quotient singularities, ramified covers, families of stable curves.

[^1]: 1. A. B. Altman, R. T. Hoobler and S. L. Kleiman, A note on the base change map for cohomology, Compositio Math. 27 (1973), 25-38. MR 49 \#2740.
 2. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109-326. MR 33 \#7333.
 3. G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., vol. 339, Springer-Verlag, Berlin and New York, 1973. MR 49 \# 299.
 4. H. Popp, Fundamentalgruppen algebraischer Mannigfaltigkeiten, Lecture Notes in Math., vol. 176, Springer-Verlag, Berlin and New York, 1970. MR 43 \# 3273.
 5. E. Viehweg, Canonical divisors and the additivity of the Kodaira dimension for morphisms of relative dimension one, Compositio Math. (to appear).
