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INTRODUCTION

In two basic papers ([3], [4]) M. Artin has developed the theory of rational singu-

larities of algebraic surfaces. Roughly speaking, these are isolated singularities of a surface

whose resolution has no effect on the arithmetic genus of the surface; alternatively, they

are singularities which are c( cohomologically trivial 5?. Among these singularities are

included all normal points which birationally dominate a regular (i.e. simple) point,

and in particular — by abuse of the term cc singularity 55 — the regular points themselves
(cf. § i for precise statements) (1).

Our purpose is to fill in the theory, and to demonstrate its wide applicability by

expanding upon a number of familiar topics in the theory of surfaces:

— Resolution of singularities of surfaces by means of quadratic transformations
and normalizations (cf. [22]).

— Factorization of birational maps of non-singular surfaces into quadratic trans-
formations (cf. [24, § II.i]).

— Complete ideals in two-dimensional regular local rings (cf. [21] and
[25, Appendix 5]; cf. also [14] and [14']).

— Factorial henselian two-dimensional local rings (cf. [7, §3]).

— The contractibility criterion of Gastelnuovo and M. Artin (cf. [4]).

In part I, we show that Zariski's method of desingularization by quadratic trans-

formations and normalizations works for any excellent surface (i.e. reduced two-

dimensional noetherian scheme). Resolution of singularities for excellent surfaces has

been established by Abhyankar and Hironaka ([2], [9], [io]), and we must make use

graphSalS t̂L'T^^ have been known and studied for many years; for more historical and biblio-

196



RATIONAL SINGULARITIES ;g-

of their result, at least in its weak form of " local uniformization ". Thus it is the process

— and not the fact — of resolution which is of interest in part I. We also extend the

classical theorem on factorization into quadratic transformations to proper birational

maps /: X^Y where X is a regular surface and Y is a surface having only rational

singularities. From the point of view of novelty, the sine qua non of part I is
Proposition (3.1).

In parts II and V we generalize Zariski's theory of complete ideals in two-

dimensional regular local rings to two-dimensional normal local rings S having a rational

singularity. The principal result in part II is to the effect that any product of complete
ideals in such an S is again complete (cf. Theorem (7. i)). This implies, among other things,

that rational singularities can be resolved by quadratic transformations alone. In part V

we take up the question of unique factorization of complete ideals into simple complete

ideals. Theorem (20.1) states that such unique factorization holds for all complete ideals
in S if and only if the completion (or henselization) of S is factorial. The method used is to

resolve the singular point of Spec (S) and to relate the problem of unique factorization

to the behaviour of exceptional curves on the resulting regular surface. The necessary

preliminaries about curves on surfaces are developed in parts III and IV.

That unique factorization of complete ideals holds when S is regular is a central

point of Zariski's theory. Our approach yields an alternative proof of this fact, and

naturally suggests the question: which S — other than the regular ones — are such that

their completion (or henselization) is factorial? The interest of this question is heightened by

the result: Let R be any two-dimensional analytically normal henselian local ring with algebrai-

cally closed residue field. If R is factorial, then R has a rational singularity. (More

generally, R has a rational singularity if and only if R has a finite divisor class group,

cf. Theorem (17.4).) In part VI we find that the answer to the above question is:

essentially those rings studied by Scheja in [19] (cf. § 25 for details). In particular we

obtain the following generalization of a theorem proved by Brieskorn [7] for local rings
over the complex numbers: let R be any non-regular analytically normal two-

dimensional henselian local ring with algebraically closed residue field of characte-
ristic +2, 3, 5; then R is factorial if and only if the maximal ideal of R is generated
by three elements x,y, z satisfying ^+^+^=0.

To obtain this result we follow the same strategy as Brieskorn: we first show that
a ring of the desired type has multiplicity two (§ 22), and then describe explicitly all

rational " double points " together with their divisor class groups (§§ 23-24). The

rational double points are classified according to the " configuration diagram " of

exceptional curves on a minimal desingularization. These diagrams turn out — a poste-
riori — to be precisely the Dynkin diagrams used in the theory of Lie groups and algebras
(cf. § 24). This means that the intersection matrix

/2(E^E,)\
\ tv v\j (E,, Ej exceptional curves)
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198 J O S E P H L I P M A N

is identical with a <( Cartan matrix ", and conversely each Gartan matrix appears as

such an intersection matrix for the minimal desingularization of some rational double

point. This striking phenomenon was observed by Du Val, who first classified rational

double points with algebraically closed residue field, thereby obtaining (in effect) all

Dynkin diagrams in which only the integer (c i " appears (cf. [7 1/2]). By allowing

arbitrary residue fields, we get the remaining types of diagram. Is there some deeper

connection with Lie algebras, or is this all mere coincidence??

The main unanswered question is: does every complete two-dimensional factorial local

ring R have a rational singularity? (1) The answer is affirmative, as we have already noted,

if R has an algebraically closed residue field. This restriction on the residue field is

entirely due to the same restriction in Complement (11.3). What the question comes

down to, in part, is: when does the Picard scheme of a one-dimensional algebraic scheme

over an arbitrary field k have just one ^-rational point in its connected component?

In the Appendix, we include two basic theorems about surfaces. The first is

essentially a well-known theorem of Zariski on the elimination of indeterminacies of

rational maps; it is of constant use throughout the paper. The second is a generalization

of the contractibility criterion of Castelnuovo and M. Artin; the proof involves most of
the theory of rational singularities.

For more details about the contents of the individual parts and sections, we refer
to their respective introductory remarks.

There is a certain amount of material of an expository nature included for the

usual reasons: <( in order to be self-contained " or c( for the convenience of the reader ".

Generally this consists of facts which are very well known for surfaces over algebraically

closed fields, and readily worked out, but not conveniently available, in the context of

arbitrary two-dimensional schemes (in which generality they are required, since we

work throughout with arbitrary two-dimensional local domains subject only to some

restriction of the type (c analytically normal "). Similar expositions can be found
in [13] and [20].

I wish to express my appreciation for stimulating conversations with Professors

S. S. Abhyankar, H. Hironaka and R. Hartshorne. I am much indebted to the two

cited papers of M. Artin without which I could not have begun. Finally, I am dedi-

cating this paper to Professor Oscar Zariski, from whom I have learned so much.

§ o. Some terminology and notation.

In the absence of explicit indications to the contrary., the following conventions will be in force

throughout the paper:

i. All rings and schemes are noetherian. All schemes and maps (==morphisms)

are separated.

(1) (Added in proof.) No ! (P. SALMON, Rend. Lincei, May 1966). But cf. Proposition (17.5).
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RATIONAL SINGULARITIES 199

2. Whenever we speak of a birational map /: X^Y, it is tacitly assumed that
both X and Y are reduced schemes.

3. A point x of a scheme X is regular if the local ring 0^ is regular; otherwise x

is singular. X is regular, or non-singular, if all of its points are regular. A map /: X^Y

is called a desingularization iff is proper and birational and X is regular. Sometimes,

by abuse of language, we say that " X is a desingularization ofY " meaning that " there
exists a desingularization f:'X->Y ".

4. We say that a map /: X->Y is a quadratic transformation if/is obtained by

blowing up a closed point (i) of Y. If Y is reduced, then such an / is birational

(cf. [8, chapter II, § 8. i], or, as we will write from now on [EGA II, § 8. i]).

5. The word " surface " will mean " reduced noetherian separated scheme of dimension two ".

We shall often use, without explicit mention, the following facts:

A) The normalisation (= integral closure) of a surface in its total ring of fractions is

a surface (cf. [EGA II, (6.3.8)] and [17, Theorems (33.2) and (33.12)]).

B) IfY is a surface and g : W^Y is a proper birational map, then W is a surface.

(For, W is clearly noetherian, separated, and of dimension ̂  2 (dimension formula),

and dim W^ 2 because the inverse image of any non-closed, non-maximal point of Y
is a non-empty collection of non-closed, non-maximal points of W.)

6. If X is a scheme and ,̂ <S are ^x-'^odules, we may write " y® '& " for
" y®<s^ " if no confusion is possible. Similarly, we may denote cohomoloey groups
by " H"(^-) " instead of " IP(X, ̂ ) " .

7. We say that a ring R is factorial if R is a Unique Factorization Domain.

1
 — APPLICATIONS TO THE BIRATIONAL

THEORY OF SURFACES

§ i. Birational behavior of rational singularities.

We recall the definition of rational singularity (cf. [4]):

Definition (i. i). — A normal local ring R of dimension 2 is said to have a rational
singularity if there exists a desingularization f : X->Spec(R) such that H^X, 0^=0.

Note that if R is regular then R has a rational singularity (take X=Spec(R)).

Two important facts about rational singularities are given in the next proposition.

Proposition (i.a). — Let R be a two-dimensional normal local ring having a rational
singularity, and let g : W^Spec(R) be a birational map of finite type.

1) If weW is a normal point of codimension two, then the local ring (9^^, has a rational
singularity.

2) If W is normal and g is proper then H^W, 0^) = o.

(1) With reduced subscheme structure.
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200 J O S E P H L I P M A N

Proof. — The proposition follows from two familiar facts:

A) If X is any regular surface and j : Z-^X is a quadratic transformation, then

H^Z.^H^X,^).

B) Let f : X-^Spec(R) be a desingulari^ation. Ifg is proper, then there exists a commu-
tative diagram of proper birational maps

Z ——L-> w

3 Q

X -^ Spec(R)

with j a product of (i.e. succession of) quadratic transformations.

A) is proved in [20, pp. 59-61]; for convenience we will give the proof again below.

B) is a special case of Theorem (26. i) of the Appendix ( (< elimination ofindeterminacies 5?).

By induction A) holds also whenj is a product of quadratic transformations; consequently

if X and Z are as in B), and we assume, as we may, that H^X, 0^)==o, then also

H^Z, 0z)==o. If furthermore W is normal, then ^(^z)==^; since there is a canonical
imection

til(W,h^))^Hl{Z,^)=o

we conclude that H^W, 0^)==o, proving 2).

To prove i), we first remark that some affine open neighborhood of w is a dense

open subscheme of a scheme W* which is projective over Spec(R); we may replace W

by W*, i.e. we may assume that g is projective. Let h : Z->W be as in B) with

H^Z.^-o as before, and let V=Spec(^,JXwZ. V is proper and birational

over Spec(^J, V is regular, and since H^Z.^-o [EGA III, (1.4.15) (espe-
cially p. 94)] shows that H^V, ^y)==o (1). Q.E.D.

We can prove statement A) by showing that R^^) == o : the desired conclusion then follows from the exact

sequence ° -> HI(X, ̂ ) -> Hi(Z, ̂ ) -> H"(X, R^(^))

of terms of low degree in the spectral sequence for H%. (Note that ^ =J*(^z)-)

Since R1;'̂ ) is concentrated at the point x which is blown up, we may replace X by an affine neighborhood

Spec(T) ofx which is such that x corresponds to a maximal ideal in T generated by two elements, say b and c. We
have then to show that H^Z, ^z)==o.

Z is covered by the affine open sets U&== Spec(T|>/&]), U,== Spec(T[^/c]). For this covering, the alternating

one-cochains with values in ^ are the elements of rCU^OUg, ^z)=T?» bfc]. Since

y/'.^V^V y.^V^' v / J^V"'~M A M - 1 = 2J ^ 1 1 — 2J (—^') I -1,3 \bf \ c J j < ^ i - \ b / j ^ i ' • " \ c J

every alternating one-cochain is a coboundary. Thus H l(Z,^)=o. Q.E.D.

(Another proof of A) can be obtained from Corollary (^3.?).)

(1) We must first show that R^(^) =o ! By [EGA III, (4.2.2)], H^W, h,(^)) ==o and R^(^) has
support ot dimension <_ o ; now use the exact sequence

Hi(Z, ^) -> H"(W, R^(^)) -̂  H2(W, A,(^))

.2̂



RATIONAL SINGULARITIES 201

§ 2. Resolution of singularities by quadratic transformations and normali-

zation (method of Zariski).

We show now that the methods of Zariski's original paper [22] on the resolution

of singularities can be applied to any excellent surface (cf. [EGA IV, (7.8.5)]) once

some form of local uniformization is known. Local uniformization for excellent surfaces

has been established through the work ofAbhyankar [2] and Hironaka [9], [io]. The

following theorem shows therefore that any excellent surface can be desingularised by a succession
of quadratic transformations and normalisations.

Since the normalization of an excellent surface is a disjoint union of integral excel-

lent surfaces, plus possibly some regular schemes of dimension ̂  i, we need only consider

the integral case. Whenever it is convenient, we will take the point of view of models,

i.e. given any integral scheme Y, with field of rational functions K, and a birational

map /: X->Y, we will regard X as a collection of local rings with field of fractions K

(in particular we regard Y in this way), and then / associates to each element S

of X the unique element of Y which is dominated by S (cf. ['25, chapter VI S 17!
and [EGA I, § 8]).

If A, B, are subrings of a ring C, then « [A, B] 5? denotes the least subring

of G containing both A and B. G is (< essentially of finite type " over A if there

are finitely many elements c^c^ . . . ,^ in C such that G is a ring of fractions
of A[^,^, . . . ,^J.

Theorem ( 2 . 1 ) . — Let Y be an integral excellent surface, with field of rational functions K.

Suppose that each valuation v of K which dominates a local ring ReY also dominates a regular

local ring A whose quotient field is K, and which is such that the unique localisation of [R, A]

dominated by v is essentially of finite type over both R and A. Let Yi be the normalisation ofY
in K, and let

(S) Y^Y,<-Y3^...

be a sequence such that, for i>i, Y, is the normalisation of a surface obtained by blowing up a
singular point on Y,_^. Then the sequence (S) is finite.

Proof. — We follow the line of reasoning in [22]. A normal sequence in K is defined
to be a sequence (finite or infinite)

Ri<Ra<R3<...

of normal two-dimensional local rings with quotient field K such that, for i> i, R^ belongs

to the normalization of the surface obtained by blowing up the maximal ideal ofR,_^.

Such a normal sequence will be called singular if none of its members is regular. We are

going to show that there are only finitely many singular normal sequences as above with

RieYi. Since clearly any local ring which is blown up somewhere in the sequence (2)

is a member of such a singular normal sequence, Theorem (2.1) will thereby be
proved.

201

26



202 J O S E P H L I P M A N

The excellence of Y will be needed only so that the following statement holds
(cf. [EGA IV, (7.8.6)]):

For any W birational and of finite type over Y, (i) the normalization W o/W in K is finite

over W, and (ii) W has only finitely many singular points (1).

Now let S^(re^i) be the set of surfaces denned inductively by:

Si={Spec(R) JReYi, Knot regular);

^i^ normalizations of all those surfaces which can be obtained by blowing up
a singular point on a member of S,}.

By induction we see that S,. is a finite set for all n.

Let T,, (n^ i) be the set of all local rings Q, such that there exists a singular normal
sequence

RI<R,<...<R,=Q

with Pi e YI . Each element of T,, is a singular point on one of the finitely many members
of S,,; hence T,, is a finite set for all n.

Suppose there were infinitely many singular normal sequences beginning with an

element of •I\. Since Ti is finite, there would be infinitely many beginning with a

specific member R^. Since T^ is finite, there would be some R^eTg such that among

those sequences beginning with R^, infinitely many begin with R^R^.. . Since T3

is finite, infinitely many of these latter sequences would begin with R^R^R <.

for some fixed R3eT3. Continuing in this manner, we define R^, Rg, . .., and so obtain
an infinite singular normal sequence

Ri<R2<R3<R,<Rg<...

Now U^R, is a valuation ring R,. (This is proved in [i, p. 337] under the assumption

that the R, are regular. The proof in the general case is essentially the same; it can be

reconstructed by piecing together the following information in [25]: Corollary, p. 21;

Proposition i, p. 330; Corollary 2, p. 339; and the argument in the middle of p. 392.)'

v dominates RieYi, and it follows from the hypotheses of Theorem (2. i) that v dominates

a local ring of the form By, where p is a prime ideal in B=RJ^, ^, ..., b^\, such

that Bp is essentially of finite type over a regular local ring A with quotient "field K.

Since R,= UR,, R,, contains B for all sufficiently large n, and since R,, dominates R,.,

it follows at once that R,. dominates Bp. Then for m^n, R^ is essentially of finite

type over A, whence, by i) of Proposition (1.2), R^ has a rational singularity.

Let /: X->Spec(RJ be a desingularization. Since v dominates R,,, v dominates

(1) Even ifY is not assumed to be excellent, we find, using theorems ofREES [J. London Math. Soc.,36 (1061)
p 37].and NAGATA [EGA IV (6.13.6)] that for (i) to hold it is sufficient that Nor(Y) contain a non-empty$en
set and that everylocal ring on Y be analytically unramified. For (ii) to hold it is sufficient that furthermore Sing(Y,)
be finite (use [EGA IV, (6. i2.2)]). These conditions on Y and Y; certainly must be satisfied ifY can be desingu-
larized (cf. Lemma (16.1) ) . "
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some SeX, and then as above we see that R^ dominates S for some N>ra. We shall
show below that:

(*) If R has a rational singularity, and f: X^Spec(R) is a desingularization with

X+Spec(R), then X dominates the quadratic transform V o/Spec(R) (i.e. V is the surface

obtained by blowing up the maximal ideal ofR), and hence X dominates the normalization ofV.

Since no R. is regular, an easy induction based on (*) shows that S dominates

^S-n+i. • • - , R N - Hence S=R^, contradicting the fact that R^ is not regular.
This completes the proof, modulo (*).

3. Conclusion of the proof : a key proposition.

(*) is a basic point. A proof was given in [22, Lemma, p. 686] in the case of

surfaces over an algebraically closed ground field of characteristic zero. More generally,

(*) follows from Theorem 4 in [4], at least ifR has an algebraically closed residue field'.

For our purposes, however, a more direct proof is desirable. We will now prove a
generalization of (*) as a separate proposition.

First some notation. Let X be any normal surface and let ̂  be the sheaf of

rational functions on X. For any coherent (Px-submodule ^+(0) of ̂ , let /-v

be the coherent (Px-submodule of ̂  whose sections over any affine open UCX are
given by

^-l{U)={ae^(V) a^(U)C^(U)}

Suppose / is an (?x-ideal. Then / is a subsheaf of (^~1)-1; locally, (^r-1)-1

is the intersection of those primary components of / which belong to height one prime
ideals. We say that / is divisorial if /=[/-l\-l.

Proposition (3.1). — Let R be a local domain with maximal ideal m+(o), and let

•f'- X-^Y=Spec(R) be a proper map, not an isomorphism, with f{0^=<By, where X is a

normal surface such that H^X, (?x)=o. Then the d^-ideal ^=m^ " divisorial.

In particular, if the local rings on X are factorial, then m^x " invertible, so that f factors

through the quadratic transform of Spec(R).

(This proposition generalizes (*) because of (a) of Proposition (1.2).)

Proof. — Write ̂ ' for (^-1)-1. Our aim is to show that ^'/^=o. In the

first place, Supp(^'/^) is a closed subset ofX which clearly contains only points whose

local ring on X has dimension >i. Thus Supp(^/^) is at most zero-dimensional,

and so H^X,^"/^)^. We have then the exact cohomology sequence

o -> r(^'/^) ̂  r(^A^) -> r((px/.0 -> H^X,^'/^)^.

I claim that r(^/^)=R/m. If this is granted, the sequence shows that one

of the R-modules r(^'/^), r(^/^'), must be (o). But Q^Ji' has a non-zero global

section unless Ji'=(9^ in which case G^Ji has zero-dimensional support, which is

impossible (since by assumption/is not an isomorphism) either by some form ofZariski's

" main " theorem, for example [EGA III, (4.4.1)], or, in view of [EGA III, (4.2.2)],
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by Serre's criterion [EGA II, (5.2.2)]. Hence r(^'/^)=o, and since Ji'\J( has

at most zero-dimensional support, J ( ' [ J ( = Q as desired.

Now since ^=m^x? we have an exact sequence

o->jT-^(9^->Jl->o

for some positive integer n and some coherent JT. The fibres of/are of dimension <, i,

so R^(jr)=o ([EGA III, (4.2.2)]), i.e. HW=o. By hypothesis ?(^=0!
Hence ?(^=0, and therefore

r(^A^)=r(^)/r(^).
But clearly

mcr(^)^r(6x)=R
so that, indeed, r(^xA^)==R/m.

This completes the proof of Proposition (3.1) and of Theorem (2.1).

§ 4. Resolution of rational singularities; factorization of proper birational

maps into quadratic transformations.

For surfaces having only rational singularities the situation is described in the next
theorem.

Theorem (4. i). — Let Y be a normal surface having only finitely many singular points,

all of which are rational singularities. Then there exists a unique minimal desingulari^ation

f : X->Y (i.e. every desingularwtion of'Y'factors through f) (1). Moreover, any desingularwtion
of Y is a product of quadratic transformations.

Proof. — We shall assume the following result, to be proved later (Proposition (8.1)).

IfY is a normal surface having only rational singularities, and if h : Y'—Y is a quadratic
transformation, then Y' is a normal surface.

Now, blow up a singular point on Y (if there is one). Then blow up a singular

point on the resulting surface. Continue in this way. The preceding result, along

with i) of Proposition (1.2), implies that the surfaces which arise are normal and have

only rational singularities. Moreover, these surfaces have only finitely many singular points.

(For any such point dominates one of the singular points y on Y, and so we need only

see that any normal surface W which is proper and birational over Spec ((9 ) has only

finitely many singular points. But such a surface W is dominated by a regular surface Z

which is proper over Spec(^) (cf. B) in the proof of Proposition^! .2)), and the desired

conclusion follows from the fact that the local rings on W which are also on Z form an

open subset of W which includes all one-dimensional local rings on W. Alternatively,
use [EGA IV, (6.12.2)].)

As in Theorem (2.1), the preceding process leads eventually to a regular surface.

(1) Gf. also Corollary (27.3).
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(The situation here is much simpler, since all the local rings involved already have rational

singularities and since, also, normalization is superfluous.) So we have a desingularization

f : X
-^Y, and moreover, because of the way in which this desingularization is obtained,

(*) (§ 2) shows that for every desingularization / /
: X'->Y, X' dominates X.

It remains to be shown that we can get from X to X' by quadratic transformations

alone. This is a classical result [i, 24, 13]. Actually, since a non-singular surface

has only rational singularities we can reach the conclusion by arguing exactly as we

have just done, except that we must replace <c singular points 5? by c( points which do not
dominate X' 5?. Q.E.D.

Example. — For non-rational singularities the process of successive quadratic transformations and normaliza-

tions does not always lead to a minimal desingularization. As an example, take the origin on the surface

Z2 + X3 +Y7 = o (over any ground field). The corresponding local ring R is normal, and its maximal ideal m
has a basis of three elements x,y, z satisfying z2 + x3 -\-y7 == o.

In the ring S=R[^IX, zfx, xyfz] consider the ideal p generated by the elements x, v=zfx, w==xyl^ From
the relations

^(i+jOW) +v2=o

jy== wvep

z= xuep

y2|x=w2v2|x==—w2{I +J02W3)ep

we see that m c p, and that S/p ̂  R/m, so that p is a maximal ideal and Sp is a two-dimensional local

domain dominating R. Further we see that x == v2. (unit) in Sp, so that pSp is generated by the two elements v, w.
Thus Sp is regular. Now

mSp = (x,y, z)Sp = (v2, uw, y3)Sp

=y.pSp

Hence mSp is not principal, and so Sp does not dominate the quadratic transform ofR.

Actually this is only a local counterexample. To globalize, one can check that the normalization of the surface

obtained by blowing up the ideal (x,y2, z)R is a non-singular surface on which Sp is the only point which does not
dominate the quadratic transform of R.

II. — COMPLETE AND CONTRACTED IDEALS

§ 5. Complete ideals and projective normalization (
1
).

A number of results in the sequel have to do with complete ideals. This notion can

be conveniently described in terms of the integral closure of one graded ring in another.

(A valuation-theoretic treatment is also possible, cf. [25, Appendix 4] and [12].) In

this section and the next, we review the salient points and prepare the way for the theorems
in § 7.

Let R= (B R^ be a graded ring and let A= © A^ be a graded subrin^ of R.
n>0 n^_0 " o o

Let A' be the integral closure of A in R. A' is a graded subring ofR, i.e. A' = © A^ with
n^-nn>0

(1) In this section only, rings and schemes need not be noetherian (or even separated).
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A'^=A'nR» [5, p. 30]. For d>o set RW=©R^, A^OA,,,, (A'}W= © A',
One sees easily that: "^° "^° »^°

(i) (A')^' M the integral closure of Aw in RW.

If M is a multiplicatively closed subset of A consisting of homogeneous elements,

among them the element i, then we denote by A^ the set of all fractions ajm where aeA

and meM are of the same degree. (A(M) is a subring of the usual ring of fractions An.)

The rings A'^, R^) are defined similarly. We have A^CA'^CR^. It is straight-
forward to verify that:

(n) AW is the integral closure of A^ in R^.

Similar considerations apply when A and R are replaced by quasi-coherent graded

(Px-algebras ^=®<C^=e^ on a (pre-)scheme X. Let ^ ' be the integral
K'^_U Yl^>\j 0

closure of^ in ̂  (cf. [EGA II, §6.3]). Over any affine open subset ofX, this situation

reduces to the previous one. In particular, jT = © (^' n ̂ J. In the present context,
(ii) becomes: n^0

(iii) Let j^, <^, ^ ' be as above, let 9 : ̂ -^S^ be the inclusion map, and let

Proj(<p) : G(<p) -> Proj(J^) be the associated affine morphism, where G((p)CProj(^) [EGA II,

(2.8.3)]. Then the integral closure of Pro] {^) in €(9) is Proj(^').

Now let X be an integral scheme, with sheaf of rational functions ̂  and let ̂

be a quasi-coherent ^ubmodule of^x- Set j^== © ̂ n, (^°= ̂ ), and ^= © ̂ n,
yj' ̂ > 0 w ^> 0

(^=^x)- ^f and ^ are quasi-coherent graded ^x-^gebras. (^ is isomorphic

to SS^[T], T an indeterminate.) Let j^'= © j^ be the integral closure of j^ in ^.
n>0

Note that when X is normal, © <9^ is integrally closed, so that if Jf is an Q^-ided then
^r r -i W.>0 A 3

so is ^^jor each n. ~

Definition (5.1).— Under the preceding circumstances we say that J^ is the completion
of J5'. J is complete if J^=^.

Remarks. — a). J^ itself is complete. In fact,

^ == ® ̂ c @ ̂ c ̂ '

so that ^f is also the integral closure of ®J^.

b) By (i) above, we see that ̂  is the completion of ^d for all d>o.

Remark b) shows that if all the positive powers ofj^ are complete, then j^==j^'

except in degree zero; in other words Proj (^') = Proj (^). In applying (iii) to the

present situation we observe that Proj(^) is now the scheme obtained by blowing up ̂

and that Proj(^) is simply Spec(K) where K is the field of rational functions on x!
We conclude:

Lemma (5.2). — Let X be an integral scheme and let J^=j= o be a quasi-coherent

Q^-submodule of ̂ - If all the positive powers of ^ are complete, then the scheme obtained by
blowing up ^ is normal,
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c ) Once again let ^ be any quasi-coherent ^x-submodule of ^x- One checks

that the completion J^ can be described as follows: for any open UCX, F(U, ̂ )

consists of those sections seT[V,^) for which there exists an open covering {VJ

of U with the property that for each oc, if ^=j|v,, there is a relation

(^)"a+<U^)"a-l+...+^=o

with ^r(v^) (^^_^

</; Let ^ be as in c;. If / is the completion of ^, then for any local ring S of
a point on X, ^®S is the completion of ^®S on Spec(S).

e ) Let J^ be as in c ) , with completion J^, and let ^? be an invertible <Px-submodule
of ^x- Tb-en the completion of J^ is J^.Sf.

/^ Let /: X-^Y be a birational map. Let / be a quasi-coherent 6'y-submodule

of ^y=^x> with completion ^. Then ^i^x^ (completion of /O^). {Proof. -

We may assume X and Y to be affine, and apply c).) In particular, if / =f {Jf)
(^ as in c ) , with completion J'\) then since f.W.^CJ^, we have

</i ̂ x c (completion of f^). G^) C ̂

from which follows

A<=/,(^x)<=/.W
Hence:

Lemma (5.3). — £^ X be an integral scheme with sheaf of rational functions ̂  let ^
be a quasi-coherent 0^-submodule of^ and let /:X->Y be a quasi-compact quasi-separated

birational map {so thatf^) is a quasi-coherent Q^-submodule of ^y^^). If ^ is complete
then so is f (^).

§ 6. Contracted Ideals.

Connected with complete ideals are contracted ideals.

Definition (6.1). — Let f: X—Y be a morphism of schemes such that /J^-^Y.

Let ^ be an G^-ideal. We say that ^ is contracted for/ if ^ is of the formf { / ) for some
0^-ideal / .

Suppose j^==^(jf). The commutative diagram

fW) -> /

rw — ^
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shows that ^(-image ofv)C^. Hence f^^)cf^/)==j^. On the other hand,
we always have the commutative diagram

^ -> fJ'W -^ W^)

^ ———w———> fW

which shows that ^C/^gy. Thus ^ is contracted for f if and only if ^==/(J^x)-

Proposition (6.2). — Let Y be an irreducible normal noetherian scheme. A coherent

G^'ideal ^ is complete if and only if ̂  is contracted for every proper birational map f: X-^Y.

Proof. — We may assume J^+(o). Let / be the completion of J^; / is an

^Y-ideal. The finite-type ^y-^gebra d) /n, being integral over © J^, is actually a
n>^0 nj>0

finite-type module over © J^, whence, for large N, ^^N = /^ +1. Let X = Proj ( ® / n )

and let /: X-^Y be the structural morphism;/is proper and birational. Also,"^^
is invertible, and

(^x) {/^x)== ̂ ^^x = Wx) (^^x)

so that j^L-==^p_.
A <y A

Hence /W/^^f^^).

If ^ is contracted for/, then ^C^, i.e. j^ is complete.

Now let /: X->Y be an arbitrary proper birational map. Let

Y'=Spec(©^») X'=Spec(©(^"^)).
n ̂  0 n > o

Then X' is a closed subscheme of Y'XyX so that the canonical map X'->Y' is proper.

It is also birational. [EGA II, (7.3.11)] shows then that © f^^x) ^ integral

^er^D^; in particular, f^O^) ̂  contained in the completion ofj^. Ifj^is complete,

then consequently /(J^J=j^. Q.E.D.

Remark. — Let /: X->Y be as in the preceding proof. A similar argument shows

more generally that z/JT is a coherent Q^-ideal contained in the completion of ^(9^, then f'(Jf)
is contained in the completion of ^.

In § 8 we will need:

Lemma (6.3). — Let Y and ^ be as in Proposition (6.2). Suppose there exists a proper

birational map f: X-»Y with X normal such that J^x ls invertible. Let W be the normalisa-

tion of the scheme Z obtained by blowing up ^. Then W is of finite type over Y.

Proof. — Let / be the completion of J^. Then V=Proj( © /n) is finite and
n>_0

birational over Proj( (±) ̂ n), so that X dominates V, i.e. /O^ is invertible. As in
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Proposition (6.2), therefore, / =f^/(Q^=f^Q^. Similarly, for every n>i the

completion ofJ^ is ^n=f^n(0^. Thus by (iii) of§5 and the remark b) following it,

W= Proj (®^J = Proj (©^(^n^))

Now [EGA III, (3.3.1)] shows that W is finite over Proj ( 3) J^). Q.E.D. (1).
n~>_Q

Corollary (6.4). — Let Y be a normal surface/or which there exists a desingulari^ation

f: X->Y. Let g : W->Y be a birational map of finite type. Then the normalisation of W

is finite over W (2).

Proof. — The question is local on both Y and W, so we may assume that Y is affine

and integral and that g is projective. Then W is obtained by blowing up a coherent

ideal ^ on Y, and so, as in (6.3), it will be sufficient to find a desingularization Z o f Y

such that J^z is invertible. This can be done as in B) of Proposition (1.2) (with Y in
place of Spec(R)). Q.E.D.

As another application of (6.2), we generalize Proposition 5 of [25, p. 381].

Proposition (6.5). — Let /: X—^Y be a birational proper map of irreducible normal surfaces such that Ry»(^x)= °-

If^is a complete coherent ideal on Y, then ^0^ is a complete ideal on X.

Proof. — Let g : W->X be a birational proper map. Then .^x^^G^Av) so that there is an exact
sequence

o -> ̂ x -> g^w) -^ ^-> o.

It will be sufficient, by Proposition (6.2), to show that jT = o. On X, there is a finite set S of closed points

such that ̂ induces an isomorphism from ^(X—S) to X—S; hence the support of Jf is contained in S. Thus,
if /*W==o, then jT==o.

Applying/^ to the above sequence, we get an exact sequence

o-^G^x) -^/.^G^w) ->f.W -> Ry*G^x).
But f*§^(!}w)=f^(px)==t^ since ^ is complete (Proposition (6.2)), i.e. a is an isomorphism. Therefore, it

is enough to show that Ry^J^) = °- ^of this purpose we may assume Y to be affine, and then J^x ls a homo-
morphic image of ̂  for some n. Since R2/^ vanishes for all coherent sheaves on X, we conclude that Ry^J^x)
is a homomorphic image of Ry^x) = °- d.E.D.

§ 7. Products of complete and contracted ideals.

Our main purpose in this section is to prove:

Theorem (7.1). — Let Y be a normal irreducible surface having only rational singularities.

Then any product of complete coherent 0^-ideals is again complete.

Theorem (7.1) is a consequence of:

Theorem (7.2). — Let Y be an integral noetherian scheme, let X be a normal surface, and

let f: X->Y be a proper map with /.(^x)^^ ^(^x)^. Then any product of coherent
contracted (for f) G^-ideals is again contracted.

(1) (Added in proof.) It would be simpler to note that X dominates Z, say s : X—^Z, and then
W=Spec(^(^)) is finite over Z. ' v s

(2) Corollary (6.4) holds without the assumption that Y is a surface; the proof is indicated in the footnote
in § 2.
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To deduce Theorem (7.1) from Theorem (7.2)3 we first remark that it is enough

to treat the case Y=Spec(S), S being a two-dimensional normal local domain with a

rational singularity (cf. remark d) following Definition (5.1)). Let J^, JT be coherent

complete (Py-ide^s; it will be sufficient to show that J^JT is complete. Let / be the

completion of J^T and let W be obtained by blowing up / . There exists a desingula-

nzation /:X-^Y, and moreover, after applying suitable quadratic transformations,

we may assume that X dominates W (cf. B) in the proof of Proposition ( i . 2)), so that /O^

is invertible. Y being affine, the requirement ^f^S^^Q means simply H^X.^^o?

which is certainly satisfied in this case (Proposition (1.2)). So Theorem (7.2) applies:

since ^ and JT are complete, they are contracted for/ (Proposition (6.2)) and so then

is J^JT. Since /Q^ is invertible, the first part of the proof of Proposition (6.2) (with J

replaced by JW) shows that J^JT is complete. Q.E.D.

We begin the proof of Theorem (7.2) by collecting together the technical
details in:

Lemma (7.3). — Let X be any scheme (not necessarily noetherian) for which:

1) H\^==o,and

2) }¥'{£')= o for all quasi-coherent G^-modules oSf such that ^Cffi^ n finite (1).

Let ^ and / be two quasi-coherent Q^-modules such that

3) r(J^) and T{/} are finitely generated T{0^ -modules, and

4) ^ and / are generated by their global sections.

Then the canonical map

p:rw®^r(/)->r^®^)
is surjective.

We will use Lemma (7.3) via:

Corollary. — Suppose J and / are Oyideals and let ^ / be the image of the natural map

[A : J^® / -> Q^. If, in addition to the conditions of Lemma (7.3),^ have H1 (kernel of [L) ==o,

then

r(^).r(^)=r(^/).

Indeed, if the Lemma holds, then the composite map

r(^)®r(^) -^ rv®^) ̂  Y ^ / )

is surjective, and the Corollary results.

Proof of Lemma (7.3). — By 3) and 4) there are exact sequences

o->Jfi->^x-^^-^oi" ̂ x

T)to -> jfg -> 0^ -> / -^ o

(1) A simple argument [EGA II, top of p. 98] shows that 2) need only be assumed for n == i.
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(s, t finite) such that in the derived exact sequences

ITO -^ r(^) -> H^) -> H^x^o

W) ̂  r(^) ̂  H^JT,) -> ?(^=0
the maps y and 8 are surjective. Necessarily, then, H^Jf^H^jr^o.

Let J^ be the kernel of a® p. The exact sequence

JT= (Jf,® (?x) ® (Jf-a® (?x) -> (?x® (?x °^ ^® ̂  -̂  o

gives an exact sequencex o^^'^jr->^r-^o.

But ?(^=0, and, since .Sf'CjfC^®^, 2) gives H2^')^. Hence H^^^o
and so the map r(a®(B) is surjective. From the commutative diagram

r(^x)®rw -^ r(fl?x®^x)

r(a ® p)

r(j^)®rv) ^> r(^®^)

we see then that p is surjective. Q_.E.D.

Now let /: X-^Y be as in Theorem (7.2), let I, J be coherent (Py-ideals, and

let J^ I(Px, /=J<r)x• Theorem (7.2) is proved if we show that f^) .f^/} =f{^/).
To do so, we may assume that Y is affine and of dimension >*o, and* then we must

show that W.r{/)=rW). The conditions of Lemma (7.3) are now satisfied.

(H2 vanishes because/is dominant, so the fibres of/ are of dimension ^i). As for

the kernel of [x : ̂ ®^jy, we remark that unless IJ(?x=(o), both I(Px x and J<P^ ,

are invertible whenever xe-K is such that dim.^x.^i; thus in any'case, the"
kernel of (A has at most zero-dimensional support, and the Corollary applies. This
completes the proof of Theorem (7.2).

In part III we will refer to the following consequence of Lemma (7.3):

Corollary (7.4). — Let A be a ring, let X be a quasi-compact separated scheme satisfying i)

and 2) of Lemma (7.3) and let g : X->Spec(A) be a morphism. Let S he an invertible

Gy-module such that r(^) is a finitely generated A-module. If S' is ample and £' is generated

by its global sections, then ^ is very ample for g (and, of course, conversely).

Proof. — By [EGA II, (4.6.3) and (4.4.3)] it is enough to show that the graded

A-algebra©^r(^0") is generated by ?(.§?) over A, i.e. that

r(^)®^r(^)®^.. .®Ar(^?) -> r(^®»)
is surjective for each n. But this follows by induction from Lemma (7 q) (with J^-^
^=^(^=1,2,3,...)).
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§ 8. Normality of blowing-up and join.

Throughout this section Y will be a normal irreducible surface having only rational singularities.

Proposition (8.1). — Let Y be as above and let ^ be a complete coherent Q^-ideal. Then

X=Proj((B^n) is normal (whence X has only rational singularities). In particular^ any
n^_0

quadratic transform of Y is normal.

Proof. — The first assertion follows from Theorem (7.1) and Lemma (5.2).

Letj/ be a closed point ofY, and let ^ be the ideal whose stalk at xeY is (9^ if x^=jy,

and whose stalk atj/ is the maximal ideal of Oy. The surface obtained by blowing up y

is Proj(d) ^n). But it follows easily from the definitions that ^ is complete. Q^.E.D.
n>_0

Let K be the field of rational functions on Y. Given two surfaces X^ and Xg

dominating Y birationally, we say that the closed image X of the canonical map

Spec(K)->XiXYX2 is the join ofX^ and Xg over Y. A surface Z with function field K

dominates X if and only if it dominates both X^ and Xg.

If X^ and Xg are obtained by blowing up (Py-ide^ls ^, / respectively, then Z

dominates X^ (resp. Xg) if and only if ^0^ (resp. /Or^) is an invertible C^-ideal; on

the other hand, J^O^ and /Qr^ are both invertible if and only if (^/^Q^ is invertible;

it follows at once that X is obtained by blowing up the (P^-idesil ^ / . Now if X^ is

normal, then the considerations of Lemma (6.3) show that X^ is also obtained by blowing

up the completion of^$ in other words, we may assume ^ to be complete. Similarly,

ifXg is normal, then we may assume ^ to be complete. If both ^ and ^ are complete,

then Theorem (7.1) shows that ^/ is complete; thus (Proposition (8.1)), the join

of X^ and Xg is normal.

More generally, we have:

Proposition (8.2). — Let Y he as above and let X^, X^ be any normal surfaces which are

birational and of finite type over Y. Then the join of X^ and Xg over Y is also normal.

Proof. — The question is local on X^ and Xg, so we may assume X^ and Xg to be

dense open subschemes of X^, Xg respectively, where X^, Xg are projective over Y.

Because of (6.4) we may replace X^, Xg by their normaltiazions (this does not affect X^

or Xg). In other words, we may assume to begin with that X^ and Xg are projective

over Y. We may also assume that Y is affine. But then the situation is the one dealt

with in the preceding discussion. Q.E.D.

§ 9« Pseudo-rational singularities.

It is conceivable that one might wish to apply Theorem (7.1) and the results

in § 8 to a surface without knowing a priori that the points of the surface can be desingu-

larized. For this purpose, the definition of rational singularity can be weakened: say
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that a two-dimensional normal local domain R has a pseudo-rational singularity if the
following condition holds:

For any projective birational map g : W-^Spec(R) there exists a normal surface Z, proper

and birational over Spec(R), such that Z dominates W and H^Z, ^z)=o.

A) and B) in the proof of Proposition (1.2) show that ifR has a rational singularity

then R has a pseudo-rational singularity. Conversely, that proof shows that if R has

a pseudo-rational singularity and R can be desingularized then R has a rational singu-

larity (use Chow's Lemma). The analytically reducible normal local ring described

by Nagata in [17; Example 7, p. 209] has a pseudo-rational, but not a rational, singu-
larity. (To prove this, one can use Proposition (23.5).)

Using Chow's Lemma and the fact that projective birational maps into integral

affine schemes are obtained by blowing up suitable ideals, one can prove without difficulty

the analogue of Proposition (1.2) for pseudo-rational singularities. Theorem (7.1)

and the results in § 8 hold for surfaces having only pseudo-rational singularities. The
proofs are practically the same.

III. — NUMERICAL THEORY OF RATIONAL EXCEPTIONAL CURVES

The goal of part III is Theorem (12.1), whose statement will be essential later on.

In § 10 we review some well known facts about degrees of locally free sheaves on one-

dimensional schemes. (These facts are required in §§ 11-12, and also in part IV in

connection with intersection theory.) In Proposition (n . i) we see that the numerical

characters of an invertible sheaf on a " rational 5? one-dimensional scheme determine

whether the sheaf has enough global sections; this generalizes some of Theorem (1.7)

°f [3]- Theorem (12.1) is a relative version of Proposition (11.1); it is related in
part to Theorem 4 of [4].

§ lo. Degrees of locally free sheaves on curves.

To begin with, we fix some terminology and notations. By a curve we mean a one-

dimensional noetherian scheme. A component of a curve G is a one-dimensional closed

subscheme of C which is integral (i.e. reduced and irreducible) — the components of C

are in one-one correspondence with the (finitely many) non-closed points of G.

We will be dealing mainly with curves C which admit a proper map /: G->Spec(A)

where A is a noetherian ring and the image of/is zero-dimensional, i.e. is a finite set of

closed points. For such a G, the cohomology modules of any coherent ^-module y

are of finite length over A;, it makes sense therefore to talk about A0^) and h1^)

(the lengths ofH°(^-), H^) respectively), and about the Euler-Poincare characteristic

X^-^W-AW. (Of course A°, h\ and ^ depend on the choice of A and/.)

The degree of a locally free ^-module ^T of finite rank n is defined to be the integer

degc(^) = x(^) - )c(^)= X(^) - ̂ (^c) •
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Some basic properties of (c degree " will follow easily from the next lemma.

We say that two coherent C^-modules ^ and ^ are generically isomorphic if there is an

open subset U of G such that C—U is zero-dimensional and such that the restrictions

y | U and ^ | U are isomorphic. It is the same thing to say that for each non-closed

point x of C, the stalks ̂  and ^ are isomorphic ^-modules.

Lemma (10. i). — Let f: C^Spec(A) be as above, and let ^ and ^ he two coherent

(9 ̂ modules which are generically isomorphic. Then for any locally free 6^-module ̂  of finite

rank n, we have

^@^)-^®^)=n^)-^))

Proof. — By assumption there is an open subset U of G, with inclusion map, say,

i: U->G, such that G—U is zero-dimensional and such that i\^) and i\^) are
isomorphic. We have exact sequences

Q->^^->y->iji\y^ -.jf^o

o^jf3->^->z/(^)^jf^o

where, for 1=1,2,3,4, jf, is concentrated on C—U (so that x(^®^)=^(JT,)).

The conclusion is obtained by tensoring these exact sequences with ̂  and taking Euler-
Poincard characteristics. Q.E.D.

Proposition (10.2). — Let f\ G->Spec(A) be as above:

a) If Ji and jV are locally free 6^-modules of finite ranks m, n respectively, then

degc(^®^T) = TZ. degc(e^) + m. degc(^).

In particular, if ̂  and c/T are invertible Q ̂ modules, then

degc(^®^r) = degc(e^) + degc(^).

b) If A:G'^C is a proper map, with G' a curve, such that h^ffl^) is generically

isomorphic to (9^ for some integer t>_Q {which is always the case, for example, if G is integral)

then for any locally free O^-module jV {of rank n<oo)

deg^(^)=^.degc(^)

(Here (( degree " on G' is relative to the map foh: G'->Spec(A).)

Proof. — a) By Lemma (10.1) (with ^'==^, <^=(pr^)

x(^®^) - x(^oo^) = TzOc(^) - ̂ ))
Le

- degc(e^®^) + mn^O^ -m^{^) = n. degc(^)
ife9 degc(e^®^r)-w degcG/r)=7z.degc(JT).

b) The standard exact sequence

o^H^G, ̂ ^-^H^C', ̂ ^)->H°(C, R^(A*^r))^o
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along with the isomorphism

H°(G, h/^-)^H\C', h^)

S^5 l(h^) -fSh^} = h\R\{h^))

Le- %(W-) ®^ -X(^) = h\^h^,) ®^-)

(cf. [EGA Om, (12.2.3)]). Since C' is one-dimensional, at most finitely many of the

fibres of A are one-dimensional; consequently R^c.) has support of dimension ^o,
and so

%(A.(^)®^•)-x(At^•)=«.AO(RlA.(^))==".(%(^(^•))-x(^-))

(Take ^T= 6?g to get the last equality.) Thus

degc, (A'̂ T) = ̂ (A*^-) -n^-)

=X(^(^-)®^')-KX(A.((PC-))

=x(^®^r)-Kx(^) (Lemma (10.1) )

=f(%(^)-"%(^))

=?.degc(^r). Q,.E.D.

For a (Carder) divisor ̂  on G (cf. [16, Lecture 9] or [EGA IV, § 21]) we define
the degree, degc(^), to be the degree of the corresponding invertible sheaf O^Q).

Corollary (10.3). — If Qf is an effective (i.e. positive) divisor on C, then

degc(^)=A°(^).

Proof. — By definition, there is an exact sequence

o^c(-^) ̂ c-^^o

^ence degc(^)=degc((Pc(^))

=—degc(^c(—^)) (Proposition (10.2) a))

=x(<!'c)-x(^c(-^))

=X(^)

=^W Q..E.D.

Some more known facts about degrees of invertible sheaves are collected together
in the next proposition.

Proposition (10.4). — Let f: C^ Spec(A) be as above, let C^, Cg, ...,€„ be the

components of the curve C, and let s.: G.->G (;=i, 2, ..., n) be the corresponding "inclusion

maps. Let S' be an invertible sheaf on G, and for i=i, 2, ..., n let

8,=degc,(e:(^))

(i) If S'^Qc, then S.=o for all i.

(ii) If S' is generated by its sections over C, then S^o for all i.

(iii) ^ is ample if and only if 8;>o for all i.

Proof. — The hard part of the proposition is the implication " 8,>o for all i ^ S '

ample ", which can be proved as in [n, p. 318-319: proof that (iv) implies (i)].
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For the rest of the proof, we may assume that C is integral (cf. [EGA II, (4.6.13)

{ibis)]), (i) is then obvious. Under the condition of (ii), there must be5 an exact
sequence

o->^->jSf->jf-^o

where jf has support of dimension < o, and so

degc(JSf) = ̂ ) -^) == ̂ ) = h°W^o.

Note that if degc(JSf)=o in this case, then jf==o, i.e. ^^0^

Now suppose that JSf is ample. Because of the additivity of degree, we may

replace ^ by ^n for any n>o; we may therefore assume that S has non-zero

global sections, and then the preceding argument shows that degc(JSf)>o. (Here

there is strict inequality because, r(G, ^) being artinian, ^ is not ample [EGA II
(5.1.2)]). Q.E.D.

§ ii. Numerical theory of rational curves.

We will be especially interested in a situation in which Proposition (10.4) admits
a converse.

Proposition (n. i).— With the notation ofProposition (10.4), assume that H^C, 0c)==o:

(i) If S,==o for all i, then JSf^-

(n) ff ̂ o for all i, then JSf is generated by its global sections, and H^o^^o.

(iii) If 8^>o for all i, then JSf is very ample for f.

Proof. — If S is generated by its global sections, then JSf is a homomorphic image

of ^ for some integer j>o, so that H^JSf) is a homomorphic image of ?(^==0;

i.e. ?(^=0. (ii) implies (iii) in view of Proposition (10.4) and Corollary (7.4)!

Moreover (ii) implies (i) because of the following simple fact:

Let G he any locally noetherian (pre-)scheme such that H°(C, 0^) is artinian. Let ^ be

an invertible sheaf on G such that both ^ and JSf-1 are generated by their global sections Then

JSf^^c-

{Proof. — Since the connected components of C are open [EGA I, (6.1.9)], we

may assume that C is connected. Then the image of the canonical map G -> Spec (H°(^))

is connected, hence consists of one point, and it follows that H°(^) is a local ring. If x

is any point of C, the hypotheses imply that there exist global sections X, X' of JSf J§f-1

respectively such that (X®X'), is a unit in ^; thus X®X' is an element of H°(^)

which is not nilpotent. Since H°(^) is a local artinian ring, X0X' is a unit in H°(^),
and consequently X is a nowhere-zero global section of S. Q.E.D.)

It remains therefore to prove the first assertion of (ii), and this will be done in the

following roundabout way. Note first that, as in the preceding proof, we may assume C

to be connected, so that H°(^) is an artinian local ring. The effect on degrees of

sheaves of replacing A by H°(^) is simply division by a positive constant, namely the
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length — as an A-module — of the residue field ofH°(^); hence we may assume that A

is an artinian local ring, with maximal ideal, say, m. By [EGA Onj, (10.3.1)] there

exists a faithfully flat local A-algebra A' whose maximal ideal is mA', and which is such

that K==A7mA' is an algebraic closure of k==Alm. A' is artinian since some power

of mA'vanishes. Let G^Cx^A', and let TT : G'->G be the projection map. Note

that, n being flat, H^G', ^)=o [EGA III, (1.4.15)]. We will show first that in

proving (ii) we can replace A by A', C by G' and JSf by n^); in other words we may

assume A to have an algebraically closed residue field. Second we can remark that,

under the preceding assumption, (i) is proved, in effect, in [3] or in [18]. Finally we will

see, still assuming A to have an algebraically closed residue field, that (ii) follows from (i).

To begin, then, we show that: ifD' is a component of the curve G', with inclusion map
£:D'->C', then

(i) deg^(sY(^))>o.

(Here, of course, c< deg^y " is calculated over A'.) D' is a component of TC-^G,) for
some i, and we have a commutative diagram

Spec(K) <— D' ——^-> G'

Spec(A;) <— C, ——-^—> C

(A;=A/m and K=A'/mA'). In calculating degrees ofinvertible sheaves on C, (resp. D')
we may replace A by A (resp. A' by K). We may therefore assume, for proving (i),
that G==C,, A==k, A'=K.

Now [EGA IV, (4.8.13)] there is a field L with kCLcK, [L:A:]<oo, such

that D'=D®LK for some component D of C®^L. We have then a commutative
diagram

Since IP(D', ̂ )=IP(D, ^)®^K for any coherent ^-module ^ and any p>_o
([EGA III, (1.4.15)]) we have

deg^(eV(JSf)) = deg^T(JSf)) = deg^(J?))

where <( degp " is calculated over L; it is therefore sufficient to show that degD(^(JSf))^o.

But clearly for this purpose we may calculate (( deg^ " over k instead of over L. Then,

since dego(oSf)^o, Proposition (10.2) b) (with D in place of C') gives the desired
conclusion.
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To complete the first step, we show that: S is generated by its sections over C if and

only ifn (£') is generated by its sections over C'. Indeed, ifJSf is the subsheafofJ? generated

by the sections of £' over G, then, since A' is flat over A, H°(G', nS') == H°(G £') ® A'

and^so T^)=^(^A' is the subsheafof ^(^)=^®^A' generated by the sections

of 7t (^) over G'; and since A' is faithfully flat over A the inclusion map J^^S' is

surjective if and only if the corresponding map TC*(^) =-. •K\^) is.

We may now assume that the residue field A: of A is algebraically closed. Under

this assumption (i) is proved by the argument given in [3; Lemmas (1.4) and (i 6)]

with one small modification, namely in Lemma (1.4) the induction should be carried

out with respect to the chain of schemes

Cred^^tll^C^C. . .CC(,)=C

where, if jV is the sheaf of nilpotents of ^, then C^ is the subscheme of C defined

by ^-, and t is such that ^'-^o, ^-'=0. (A similar argument appears in

[18; Chapter (5.1)].)

To deduce (ii) from (i) we make use of the following description of divisors on

curves (cf. [EGA IV, § 21.9]).

Lemma (n.a). — Let x^ x^ ...,^ he closed points on a curve C, and for each

i = i, 2, ..., n let f, be a unit in the total quotient ring of Qy Then there is a unique divisor Q!

on C such thatf, is a local equation of 2 at x, {i=i, 2, . .., n) and i is a local equation at

all x+x^x^, ...,x^.

(Proof. — It is possible to choose, for each i, an affine neighborhood U,= Spec(R;)

of A-;, and a unit g, in the total quotient ring of R, such that: a) (g) ==f.-\} (g) is a

unit in ^ for all x in U.,̂ .; ,; for j+i, x^U,. If U^c-{x,, x,, ..'.%},

then the collection {(i, Uo), (^, U^), .... ( ,̂ UJ) clearly defines the desired Q.)

We need the following consequence: let G be a curve, let C*=C^ be the asso-

ciated reduced curve, and let h: G'^C be the canonical map; for any divisor Q on C,

h (^) is a well-defined divisor on G*, and from Lemma (i i. 2), it follows without difficulty

that every divisor ST on C such that h{x) is of depth i for all x in the support of 3T is of the
form h {Q>).

We prove finally that (i) implies (ii) when C is proper over an artinian local ring

with algebraically closed residue field k. Each component C. of G may be regarded

as a complete curve over k. Hence we may choose on G. distinct closed points P. Q..

which are regular points of C* and such that A(P.), A(Q...) are of depth i on C. * The

effective divisor ^*=S8,P. on G* is of the form h\Q\ where 2 is an effective divisor

on G, and the invertible sheaf Q^S!) induces the invertible sheaf 0^) which in turn

induces, for each i, an invertible sheaf of degree 8, on C, (Corollary (10.3)) By

additivity of degree, ^®ff{-Q) induces an invertible sheaf of degree o on each

component G.. whence, by (i), S®Q{-S!}^ei^ i.e, ^S(P(^). Similarly, if

^^^^•QL. we have ^=h'^} with S'^<Q{g'}.
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Since the supports of Q and S have no point in common, oSf is generated by some

two of its global sections, and this completes the proof of Proposition (11.1).

In some cases, Proposition (11.1) holds only if H^C, (Pc)==0-

Complement (11.3). — With the notation of Proposition (11.1), assume that each point

in the image of f has an algebraically closed residue field. If either (i) or (ii) of Proposition (i i . i)

is true {for all invertible sheaves J§f on C) then H^G, (Pc)=°'

Proof. — As before, we may assume that G is connected and that A is an artinian

local ring. Since (ii) implies (i) (cf. beginning of proof of Proposition (n . i)), it is suffi-

cient to show that (i) implies H^G, 0c)=o. This also is done in [3; Lemmas (1.4)

and (1.6)], Lemma (1.4) being modified as indicated during the proof of Pro-
position (i i . i). Q.E.D.

We will also make use in § 27 of the following simple lemma.

Lemma (11.4). — /: G -^ Spec (A) being as in § 10, assume further that C is integral

and that ?(0, 0^=°' V ^ is an invertible (9 ̂ -module, then ?(0, oSf)=o if and only if

degc(^-^W.
Proof. — If ?(^=0, then

degc(^) == A°(JSf) -h\0^ -A°(^).

In proving the converse, we may assume that H°(JSf)==o; for, if H°(JSf)+o,
then, C being integral, we have an exact sequence

o-^c-^-^-^o

where jT has support of dimension ^o, and so there is a surjection H^^) ->- H^J?),

i.e. ?(^=0. Now if degc(^)^-A°(^) and A°(Jgf)=o, then

o< degc(J^) + AW = degc(^) + x(^c)

-X(^)
=-h\^)

Thus h\^)==o. Q.E.D.

§ 12. Relativization.

For the applications which we have in mind, it is necessary to give Proposition (11. i)
a relativized form.

Let A be a noetherian ring, and let /: X -> Spec (A) be a map of finite type.

If y is a coherent ^-module, and C is a closed subscheme of X, defined by a coherent
^x-ideal, say, J^, we set

^c - y®^ (^x/^)= y\^

Let ^ : C->X be the inclusion map. There are canonical isomorphisms

([EGA III, (1.3.3)])

(2) IP(X, J^) ̂  H^(C, r^)), ^o,
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Suppose now that C is a curve on X (by which we mean that C is a closed

subscheme of dimension one). We say that C has exceptional support, or that C is an excep-

tional curve (relative to/) if the support of C is proper over A andf{C) is zero-dimensional.

Such a G is then of the type considered in §§ 10-11, and so for any invertible sheaf JSf
on X, we may set

(JSf.G)=degc(^(J§f)).

Theorem (12.1) . — Let A be a local ring with maximal ideal m, and let f : X -> Spec (A)

be a proper map whose fibres have dimension <i. Assume that H^X, 0^)==o. Let JSf be

an invertible Q^-module. Then:

(i) (JSf.E)==o for all integral exceptional curves E on X if and only if JSf^fl^-

(ii) (JSf.E)^o for all integral exceptional curves E on X if and only if JSf is generated

by its sections over X, and when this is so, H^oS^^o.

(iii) (JSf.E)>o for all integral exceptional curves E on X if and only ifJ§f is ample, and

when this is so, JSf is even very ample for f.

Proof. — The (< if " parts of (i), (ii), (iii) follow at once from Proposition (10.4).

Since the fibres of/ have dimension <^ i, H^e^) = o for all coherent 0x-modules ̂

[EGA III, (4.2.2)]. Hence if JSf is generated by its sections over X, then H^JSf)

is a homomorphic image ofH^x) for some positive integer s, and so H^^^o.

If (JSf.E)>o for all E as in (iii) then ^(oSf) is ample if D is the closed fibre of/

(Proposition (10.4)) and consequently [EGA III, (4.7.1)] oSf is ample. Then (ii)

and Corollary (7.4) show that JSf is very ample for/. (This last statement is the only

part of (iii) in which the hypothesis Hl(^x)=o 1s used.)

To complete the proof we need:

Lemma (12.2). — Let ^ be a coherent (9^-module. Then Hl{^:')=o if and only if

'Hl{^'Q)=o for all exceptional curves G on X.

Proof. — Since H2 vanishes for all coherent (P^-modules and ̂  ls a homomorphic
image of ^, H^e^) == o implies H^^c) = o.

Conversely, if H^e^^0 for au
 G, then, letting " denote completion with

respect to the maximal ideal m, we have

HW =lim H^® (^xMt^x))
k>0

= lim (o)
k>0

=0

(cf. [EGA III, (4.1.7)]). Thus H^)^. Q,.E.D.

We return to the proof of (ii). Let x be a closed point of X. We have to show

that some global section of JS? does not vanish at x. Lemma (12.2) implies that

H^G,^)^^ for any exceptional curve G, so Proposition (11.1) shows that ^(oS?)
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is generated by its sections over C, and the same is obviously true of ^(m^x)- Hence

^(^®m^x) is generated by its sections over C so that (cf. beginning of proof of
Proposition (11.1), and the isomorphisms (2) above)

o=H l(G,^(^®m^))=H l(X, (^®m^)c).

It follows from Lemma (12.2) that H^JSf^m^^o-

The exact cohomology sequence shows then that H°(JS?) -> H°(o§f®(^x/m^x)) ^

surjective. For the closed fibre D on X, defined by m(P^, we have, as above, that z^JSf)

is generated by its sections over D (this being obvious if D is zero-dimensional); hence

some section of ^)=^®(^xM^x) over X does not vanish at x, and since this'section
can be lifted to a global section of o§f, we are done.

The proof of (i) is almost identical, the only difference being that ^(^ — and

hence ^ — has a global section which does not vanish at any closed point x. Q.E.D.

Remarks. — i. Theorem (12.1) can easily be reformulated so as to apply to the
situation where Spec (A) is replaced by an arbitrary locally noetherian scheme.

2. For later use, we set down some simple properties of the <c intersection
product " (JSf.C) defined at the beginning of this section:

a) If C is integral then (oSf.G) is an integer multiple of /z°(C, ^)-

(This is because cohomology groups of coherent sheaves on G are vector spaces
over the field H°(C, ^))-

b) If^ and e/T are invertible sheaves on X, then

((^®^^).G)=(^.C)+(^.C)

(This follows at once from the additivity of <( degree 53 (Proposition (10.2) a)).}

c ) If 3) is an effective divisor on X whose support contains no associated point
of C, then

(^x(^).C)=A°((^),).

(Under our assumptions, i^Q) is an effective divisor on G, and the assertion
follows easily from (2) above and Corollary (10.3).)

IV. — AN EXACT SEQUENCE FOR THE DIVISOR

CLASS GROUP

In part IV we continue to lay a proper foundation for the results in parts V and VI.

To a large extent, IV is devoted to a systematic presentation of more or less familiar
facts in a setting suitable for the subsequent applications. Some of these applications
are given in § 17.

Throughout R will be a two-dimensional normal local ring, with maximal ideal m

221



222 J O S E P H L I P M A N

admitting a desingularization, say, /: X-^ Spec(R) (1). We study an exact sequence
of abelian groups

(3) o -> Pic°(R) -> Pic(U) -> H

where U=Spec(R)—{m}, so that Pic(U) is the divisor class group of R. The

group Pic°(R) is the numerically trivial part of Pic(X), while H is (approximately) the

finite abelian group defined by the intersection matrix of the exceptional curves on X.

(The requisite intersection theory is reviewed in § 13.) The homomorphisms in (3)

are defined in § 14. IfR is henselian, then Pic(U)-^H is surjective (Proposition (14.4)).

In § 15 it is shown that the sequence (3) is actually independent of the choice of the

desingularization X (so that the notation (< Pic°(R) 3? is justified). In § 16 we examine

the relation between (3) and the corresponding sequence for a formally smooth R-algebra.

When R is the local ring of a point on a two-dimensional complex space, Mumford

has obtained, by transcendental means, an exact sequence containing (3) ([15; Part II]).

An immediate consequence, in this case, is that R has a rational singularity if and only

ifR has a finite divisor class group (cf. [7; Satz (1.5)]). In Theorem (17.4) we reach

the same conclusion/or any henselian R with algebraically closed residue field. The treatment
given here is purely algebraic.

We also include a result on the factoriality of certain power series rings (Pro-
position (17.5)).

§ 13. Intersection theory for exceptional curves.

We now review those few facts of intersection theory which we will need in later

sections. The results here are all particular instances of the formalism developed by
Kleiman in [n; Chapter i],

As in § 12, we deal with an arbitrary map of finite type /: X-^ Spec (A), A being

a noetherian ring. The subsequent considerations will be applicable mainly when X

is two-dimensional because of the following restriction on our previous terminology:

from now on, by a curve on X we mean a one-dimensional closed subscheme of X whose defining

sheaf of ideals is invertible, or equivalently, an effective divisor with one-dimensional support.

Let D be a divisor on X, and let 6?(D)=^(D) be the corresponding invertible

sheaf. Let E be a curve on X, with exceptional support (cf. § 12). ^(—E) is the sheaf

of ideals defining E; let ^-^x/^-E). For any coherent ^x-module ̂ , we set

^(D)=J^(x)^(D)

and asin§ 12 ^=^-®^^.

If ^ is an (P^-module which is locally isomorphic to (9^, then the IP(X, ^) are
A-modules of finite length, and we set

degE(^) = x(^) -xW = deg^OT)

(1) Gf. Remark (16.2).
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where ^ : E->X is the inclusion map (so that ^(^) is an invertible sheaf on E). This

abuse of notation should cause no difficulty. The intersection number (D. E) is defined by

(D.E)=(^(D).E)=deg,(^(D))

(cf. beginning of § 12).

Some basic properties of the intersection number are set out below. They will
be used, sometimes tacitly, throughout the sequel.

It will be convenient to write < c ^(E) ", cc ^(E) 55 in place of" ̂ (^) 9?, c( X^) 5 ?*

Proposition (13. i). — Let D, D^, Dg be divisors on X, W let E, F ̂  wy^ on X ̂
exceptional support:

a) Tj^E z'j integral, ̂  (D.E) is an integer multiple of A°(E).

b) ((DI+D,).E)=(D,.E)+(D,.E)

(D.(E+F))=(D.E)+(D.F).

c) If D z'j- ^% effective fiKyzjor wAo^ support contains no associated point of E, ^/z

(D.E)>o, and (D.E) ==6 if and only if the supports of D and E have no point in common.

d) - (F-E)-x(E)+x(F)-x(E+F)=(E.F).

Proq/. — a ) , the first equality in b), and ^, all follow easily from a ) , b) and c )
of Remark 2 at the end of § 12.

Now tensor the exact sequence

o -> ^(—E) -> 0^ -> ̂  -> °

with the invertible sheaf ^(—F) to obtain an exact sequence

o -> ̂ (-E-F) -> ̂ (-F) -^ ^E(-F) -> o

so that the exact sequence

o -> 6?(-F)/^(-E-F) -> ̂ /^(-E-F) -^ ^x/^(-F) -^ o

can be written as

0->^(-F)-^E4-F-^F^O

Tensoring with an 0^-module o§? which is locally isomorphic to ^E+F? we g61 an exact sequence

o -> ̂ (-F) -> S -> JSfp -> o

from which, along with additivity of " degree ", we obtain

(F.E)=deg^(F))

=degE(^)-degE(^(-F))
= (degB(^) + X(E)) -X(^E(-F))

-^(^-(X^-X^F))
i.e.

(4) (F-E)=^(^)+^^)-^(^).
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In particular, for jSf==fl^p, we get

(5) ^•^-^(^^-^(^-/(E+F)

which is the first equality in d ) . The second follows by interchanging E and F.
Subtracting (5) from (4), we get

o = degE(^) + degp^p)-degE+F(JS^).

In particular, if^f is an invertible (P^-mod\ile, then

degE+pG^E+F) = degE(^E) + degp^p).

For ^=^(D), this is the second equality in b ) . Q.E.D.

§ 14. Definition of the sequence.

As before, let R be a two-dimensional normal local ring, with maximal ideal nx,

admitting a desingularization /: X-^Spec(R). Note that every closed point on X is

of codimension two (by Zariski's c( main theorem " [EGA III, (4.4.8)], for example).

Since X is regular, it follows that every one-dimensional closed subscheme G of X having

no closed associated points is defined by an invertible ^x^deal (i.e. C is a curve on X in the
sense of§ 13), and conversely. Thus all the results o f § i 3 are applicable.

Let EI, Eg, . . . ,E^ be the distinct components of the closed fibre, i.e. all the

integral curves on X with exceptional support, so that /"^{m})^ = E^ +E^ +.. . + E^.
The following lemma ofDu Val is important:

Lemma (14.1). — The intersection matrix ((E..E,.)) is negative-definite.

Proof. — It is sufficient (cf. [4; proof of Proposition 2]) to find a curve

C=2^E^>o) such that a) (C.E,)^o for all i and (B) (G.C)<o. In view of

Proposition (13.1) c ) , a) implies that if c,==o and ^.>o then E, and E, do not meet,

so that U^E, is both open and closed ^/-^{m}); since /-'({m}) is connected, it

follows that c,>o for all i, and so p) holds provided (G.E,)<o for at least one i.

Let r be any non-unit in R, let v, be the discrete valuation whose center on X is E,,

and let C be the curve S^(r)E,. Then r^(C)C^, i.e. r^(C)=^(—D) where D is

an effective divisor whose support contains no associated point of G. Moreover there is a

discrete valuation v whose center in R is a height one prime ideal containing r$ since/

is proper, the center of v on X is a one-dimensional integral closed subscheme meeting U E,,

and since v{r)>o, this center is part of the support of 0^r(B(C), i.e. the support of D.

Thus D is a curve such that (D.E,);>o for all i, with strict inequality for at least one i.
But

o==(r^.E,)=-(C+D.E,)=-(C.E,)-(D.E,)

i.e. (D.E,)=-(C.E,), so that C is as desired. Q.E.D.
Let E be the additive group of divisors on X with exceptional support, i.e. divisors

u

of the form ^J,E, with ^eZ, the group of rational integers. Since no non-zero
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principal divisor has exceptional support, the canonical map E->Pic(X) is injective

where Pic(X) ̂ H^X, 0^ is the group of divisor classes on X.
The cokernel of this map is easily determined. Let

U=X-/-l({nt})^Spec(R)-{m}.

Then Pic(U) is nothing but the divisor class group of R, i.e. the free group generated by

height one prime ideals in R, modulo principal divisors. The restriction map

p : Pic(X) -> Pic(U) is clearly surjective and its kernel consists of classes of divisors D

on X which become principal on U. But this condition on D means precisely that D

is linearly equivalent on X to a divisor with exceptional support. Thus we have an
exact sequence o

o^E-^Pic(X)^Pic(U)-^o

Next, for each i= 1,2, ...,n, let d,>o be the greatest common divisor of all the

degrees of invertible sheaves on E,. For each divisor class A in Pic(X) we can

define (A.E,) to be (D.E,) where D is any divisor whose class is A. We define a group
homomorphism „ _. ._-, _.

' 6 : Pic(X) -^E = Hom(E, Z)

by "̂S W) (E.) = L (A. E.) , = i, 2, . .. ,„
^

for A in Pic(X). The kernel of 6 is the group of divisor classes whose intersection number

with every exceptional curve on X is zero; we call this group Pic°(X). Because of the

negative-defmiteness of ((E,.E,)) (Lemma (14.1)), the restriction of 6 to E is injective,

i.e. EnPic°(X)=(o). The cokernel H of this restricted map is seen at once to be the
abelian group with generators ^, ^, ..., ̂  subject to the relations

n j

.S^.-^—0 (i=i,2,...,n).

H is a finite group of order

^I^det((El•EJ•))•

Finally, let G be the cokernel of 6 itself. We have then a commutative diagram
with exact rows and columns

o o

I I
EnPic°(X)=o —^ E —^ 6(E)

! I i
o -> Pic°(X) ^ Pic(X) ^ E* -> G -> o

j I P | ||
y 4' y I I

o -> p(Pic°(X)) ^ Pic(U) -> H -> G -> o

I I
o o
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The definitions of the maps in the last row are self-evident, and the verification of exactness

is immediate. Thus:

Proposition (14.2). — With the preceding notation, there is an exact sequence

o^Pic°(X) ->Pic(U) ̂ H->G->o.

We finish § 14 with a sufficient condition for G to vanish.

Lemma (14.3) (1). — Suppose that for every height one prime ideal p in R, the integral

closure of R/p in its field of fractions is a local ring, i.e. R/p is unibranch. {This condition

holds, for example, if R is henselian.) If E is any exceptional curve on X, then the restriction

map Pic(X) -> Pic(E) is surjective.

Before proving this lemma, we deduce:

Proposition (14.4). — ^R satisfies the condition of Lemma (14.3), then G==(o), so

that there is an exact sequence

o -> Pic°(X) -> Pic(U) -> H -> o.

Proof. — Let E==E^+E^+. . . +E^ and let s,: E,->E be the inclusion maps.

The exact sequence of abelian groups

(i)^-^n<.

has cokernel with at most zero-dimensional support; consequently there is a surjection

H^X, ^) -^ H^X, n^^nn^x, eg

from which we conclude easily that the map

PK^E^H^E, ^) ̂ i nH^E,, cg=n pic(E,)
is surjective.

From the definition of d^, it follows that there is an invertible sheaf of degree d^

on E,, and therefore there is an invertible sheaf JSf, on E such that ^(JS^-) has degree ^

and for j=^i, £j*(°Sfi) has degree zero. Since JSf^ is induced by an invertible sheaf

on X (Lemma (14.3)), we see that 6 is surjective, i.e. G==(o). Q.E.D.

Now we prove Lemma (14.3).

Since E has no embedded associated point, every invertible sheaf on E comes from

a divisor on E. Because of Lemma (n .2), it is sufficient to show that if Qis a closed

point on E, and w is a non-zero-divisor in C^,Q then there is a divisor D on X whose

support meets E only at Q, and whose local equation at Q, (on X) induces w. Let w

be an element of 6^,0 whose image in 6^,0 ls w9 We may assume that no E^ is a component

of the divisor (w) on X. (Let pi, pg, . . ., p^, py+i , ..., p< be the prime ideals in ^ ,Q

corresponding to those E^ passing through Q^ which are not components ofE, the labelling

being such that z^epi, pg, . . ., py, ^p^+i, . . ., p < $ if q is the kernel of the natural

(1) Gf. [EGA IV, (21.9.12)] .
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surjection 6x,Q-^E,Q. then we can choose aeqnp^n. . . n p < , ̂ U p,, and replace w

by w + <z.) Write (w) = D + D', where no component of D' passes through d, and

every component of D passes through Q. Then D is the desired divisor.

To see this, it is clearly enough to show that every prime divisor ^ on X other than

EI, Eg, . . ., E^ meets E in at most one point. Let R' be the local ring of such a point on X,

let p' be the height one prime ideal in R' corresponding to ,̂ and let p=p 'nR.

Then R'CR^=R^ and if g : R^ -> R^pRp=K is the canonical map, then

gW^g(Rf)<K. Since ^(R)^R/p is one-dimensional and unibranch, the theorem

of Krull-Akizuki [17; § 33.2] shows that the integral closure S of^(R) in K is a discrete

valuation ring, and S is contained in, hence equal to, the integral closure of^(R') in K.

Thus S dominates ^(R'). Now if A: is a non-unit in ̂ (S), then g{x) is a non-unit in S

(otherwise x is a unit in Rp (since g{x)^o) and g{i lx)==i lg{x)eS, i.e. i/^-^S));

it follows that the sum of two non-units in g-^S) is a non-unit. We see then that g~\S)

is a local ring which dominates R'. Since S depends only on ^, and since there can

be no more than one point on X whose local ring is dominated by ̂ (S), we are done.

§ 15. Intrinsic nature of the sequence.

In § 14 we have defined an exact sequence

o -> Pic°(X) -> Pic(U) -> H -> G -> o

of groups associated with a particular desingularization X of a normal two-dimensional

local ring R. In this section we will show that the sequence depends only on R and
not on X.

To this end, let g : X'-^X be a proper birational map with X' regular. For any

divisor D on X there is a unique divisor D'=^(D) on X' with the property that for

any x'eX\ a local equation for D at g { x ' ) is also a local equation for D' at x ' f ; moreover

we have a canonical isomorphism ^x(D)) ̂  ^x'(D'). D' can be represented uniquely
in the form

D'^D^+F'

where D^ is a formal linear combination of prime divisors whose supports are mapped

by g onto curves on X, while the support ofF' is mapped into a zero-dimensional subset

of X. D^ is the proper transform of D (by g). It is an easy consequence of Proposi-
tion (10.2) b) that:

a) if G is an exceptional curve on X then

(D' .Gff)=(D'.G')=(D.G);

(B) ifV is any curve on X' such that g(F) is ^ero-dimensional, then F has exceptional support,
and

(D'.F)=o.

Let E' be the group of divisors on X' with exceptional support and let F be the

subgroup consisting of divisors on X' whose support is mapped by g into a zero-dimensional
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subset of X. It is evident that every divisor on X' can be written uniquely in the form

D'+F where D is a divisor on X and FeF; D'+F is principal on X' if and only if F=o

and D is principal on X; and D'+FeE' if and only if DeE. From these facts, we

obtain the following commutative diagram of split exact sequences:

o -> Div(X) -̂ -> Div(X') ^=± F -> o

i i 1 1
o -^ Pic(X) -^ Pic(X') ̂  F -^ o

1 , J ' I I
o -> E ^ 9 > E' < ^ F -> o

p i

(where " Div 9? denotes <c Group of divisors on 59) and hence the split exact sequence

o <- E* < ga , E" < , F* -> o
pa ia

Hom(E,Z) Hom(E',Z) Hom(F,Z)

Lemma (15.1). — Let 6 : Pic(X)->E* be as in § 14, and let 6' : Pic(X')-^E'* be

similarly defined. Let ^ : F-^F* be defined by restricting 6', i.e. ^^oO'oz. If Pic(X')

and E'* are identified respectively with Pic(X)®F, E^F* according to the above splittings,
then 6' becomes identified with Q@^.

Proof. — The lemma is equivalent to the following four equations:

(i) ^oe'o^=e.
(ii) gaoQ'oi==o.

(iii) ^cO'o^^o.

(iv) iaoQfoi=^.

(iv) is the definition of ,̂ (iii) is nothing but the relation (D'.F)=o given in (3)

above, and (ii) says that (F.E')==o if FeF, EeE, which is true since (F.E')=(E'.F).

(i) says that for DeDiv(X), EeE, we have

(^(D^KE^^D^E).

It is enough to check this for integral E. Then E'^E^+S^F,, (F,eF), and since

(D'.F,)=o for all i we have l

(eWKE'^^D'.Eff)

=^(D.E) (cf. a) above)

-^(WKE)
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where d>o is the greatest common divisor of all degrees of invertible sheaves on E,

and d«>o is defined similarly for E». But since E» is birational over E, the canonical

map Div(E) -> Div(E») is surjective (as follows from Lemma (11.2) and the fact that

every locally principal fractionary ideal of a semi-local domain is principal; or
cf. [EGA IV, (21.8.5)]) and by Proposition (10.2) b), d=d*. Q.E.D.

We will also need:

Lemma (15.8). — The above map <\> : F-i-F* is an isomorphism.

Proof. — By the Factorization Theorem (cf. Theorem (4.1)) we have

g=gr.=h^_^ ... oAi where for i^k<m, ̂  : X, -> X,_i (X<,=X) is a quadratic

transformation. Let F^ be the group of divisors on X^ (i^k^m) whose support has

zero-dimensional image on X, and let ^ : F^^F^ be denned as above.

We proceed by induction on m. Just as in Lemma (15.1), we can write
FOT=F„_^eF', ^n,==^m-i®y where F' consists of the multiples of the (unique) integral
curve F on X^ whose image on X^_i is a closed point, and ^' : F'->F'* is denned by

OmW^F.F)
6

where 8 is the g.c.d. of degrees of invertible sheaves on F. By the inductive hypo-

thesis ^_^ is an isomorphism; so it is enough to show that ^ is an isomorphism,

i.e. that (F.F)=±S. Since A°(F) divides 8, this follows from the well-known fact that

(F.F)=-A°(F).

(This can be seen - for example — as follows : ifx is the point on X^ which is blown up to give X^, then F

can be identified with the projective line L over the residue field of A:, and then ifn is the maximal ideal of 0
we have an identification of ^-i.a;

^(—^^F^^n^,
with ^(i). Thus m

(F.F)=—deg^^(i))=—^(L)^__^(F)

as required. (Alternatively, use Corollary (23.2).) Q.E.D.

We can now prove the main result in this section by piecing together the preceding
information in the form of various commutative diagrams.

First:

o -> E -^ Pic(X) -^ Pic(U) -^ o

4 (7! ^ ^2 ^

o -> E' -> Pic(X') -^ Pic(U) -> o

The commutative square ^ is obtained by applying the functor <c
 Pic " to

' g-\V) <-^ X'

^ 9

u -—> x
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Second:

o -> Pic°(X) Pic(X) E*

I
G ^ o

o -> Pic°(X') -^ Pic(X')=Pic(X)®F e®! E"=E*©F* -> G' -> o

i I

The fact that the commutative square a^ induces isomorphisms of the kernels Pic°(X),

Pic°(X'), and the cokernels, G, G', follows from Lemmas (15.1) and (15.2).

Third:

Pic(X) o

/ < 1/
E ^-

Pic

./
c".

\ 1
——^.F*————^ " ————^

(X'),

\-
•» I

^5

R"* . >» T--r ^

The square with the E's is obtained by putting together cr^ and (74 as shown; the

map from H to H' is defined to be the unique map making cr^ commute. This cokernel

map H->H' is an isomorphism for the same reason that G->G' was.

Fourth:

Pic(X')————E7*

p(Pic°(X))——^Pic(U)

Of the six faces in the central cube, all but the bottom one ((77) are known to be

commutative; since Pic(X) -> Pic(U) is surjective (77 is also commutative. Similarly
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we find that Gg is commutative. The commutativity of erg follows at once from that
of a^ and 0-3.

All this " diagramatic nonsense " plus a few extra trivia is summarized in:

Theorem (15.3). — The diagram preceding Proposition (14.2) is a contravariant functor

of X as X varies in the category of desingularwtions of Spec(R). If g : X'->X is a map

in this category, the corresponding map of diagrams induces an isomorphism of exact sequences

0 0 0 0

I \ \ I
pic°(X) -^ Pic(U) — ^ H —> G —> o0

i l i t
pic°(X') —^ Pic(U) -^ H' -^ G' -^ o

I I I I
0 0 0 0

Thus the groups Pic°(R) = Pic°(X), Pic(U), H and G and the exact sequence

o -> Pic°(R) -> Pic(U) -> H -> G -> o

depend only on R ^flf 72^ o% X.

Proo/. — The only thing left to be said is that in verifying the last assertion, one

should recall that any two desingularizations of Spec (R) are both dominated by a third
(cf. B) in the proof of Proposition (1.2)).

§ 16. Formally smooth extensions.

Lemma (16. i). — Let A be a reduced local ring, with maximal ideal m, such that there

exists a desingularwtion g : Y-> Spec(A). Let B be a local ring, and let y : A-^B be a

local homomorphism such that, with A and B topologi^ed by the powers of their respective maximal

ideals, B is a formally smooth A-algebra (1). Let A' be the integral closure of A in its total ring
of fractions T^, and let B', Tg, be similarly defined. Then

(i) A' is a finitely generated A-module.

(ii) B is reduced and the projection

^:Z=Y(^B->Spec(B)
is a desingulari^ation.

(iii) With canonical identifications we have

B==A®^BCA'®^BCT^BCTB

and then A'®^B==B'.

(1) For our purposes this can be taken to mean that B is flat over A and that B/mB is geometrically regular
over A/m (cf. [EGA o^, (19.7.1) and (22.5.8)]). / 5 y s
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Proof. — (i) Since g is a desingularization it is easy to see that A'^F(Y, ^y)?
which is a finitely generated A-module.

(ii) To prove that Z is regular it is enough to show that ^,2 is regular for every
closed point ^:eZ. We have the cartesian diagram

Y.——°——— Z

9 ff(B)

Spec (A) <— Spec(B)

Let y=a{^). Since g, and therefore ̂ , is proper, ^(j)=T(^B)(^))==m, and so the

residue field k(j;) is a finitely generated extension of A/m; since B/mB is geome-
trically regular over A/m, the fibre

^OO-kO^A/mB/mB

is regular; and since 0^y is regular and (T is flat, it follows that (9^ ^ is regular.

The canonical map

(p:W==Spec(TJ®^B->Y®^B=Z

induces an isomorphism ^,<p(w) -> ^w,w for any z^eW, so that ^,w is regular. Hence
T^B is reduced, and since BCT^B (cf. proof of (iii) following) B is reduced.

Finally g^ is birational [EGA IV, (6.15.4.1)] and so g^ is a desingularization, as
asserted.

(iii) Since B is flat over A, we have a canonical map ^ : T^->Tp which gives

rise to an injective map T^^Afi-^Tg; we then obtain the indicated identifications

from the inclusion AcA'CT^ by tensoring with B. Moreover one checks that when

F(Y, fiy Bnd F(Z, fly are naturally identified, as in the proof of (i), with A' and B'
respectively, then ^ induces the map

r(o): F(Y, ̂ ) -> F(Z, ^)

corresponding to a. Finally, since B is flat over A, r{a) gives (upon extension ofscalars)
an isomorphism

F(Y, ^)®^B ̂  F(Z, ^) [EGA III, (i .4. i5)].

Thus A'®AB=B
/
. Q.E.D.

Remark (16.3). — A special case of (16.1) is: if A is a normal local ring admitting

a desingularization, then the completion A is normal. (Take B=A in (iii).) Conversely,

if A is a two-dimensional local ring such that A is normal, then the methods ofHironaka [10]

show that A admits a desingularization (since the two-dimensional excellent normal
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local ring A can be desingularized by " modification of the closed point ", and such
a desingularization " descends " to A).

Proposition €16.3). — Suppose that A and B satisfy the hypotheses of Lemma (16. i) and

that furthermore both are two-dimensional (so that mB is the maximal ideal o/B and B/mB is a

separable field extension o/A/m). If either one of A or B is normal then so is the other, and there

is a natural commutative diagram with exact rows and columns

o o

I I
o -^ Pic°(A) -^ Pic(U^) -^ H(A) -^ G(A) -^ o

"I ^ -i 1

o -^ Pic°(B) -^ Pic(Ui,) -^ H(B) -^ G(B) —^ o

Morcozw t^B/mB M a regular field extension of Aim then y is an isomorphism (1).

(The rows of the diagram are the sequences defined in Theorem (15.3), with A, B,
respectively, in place of R.)

Proof. — If A is normal then so is B, by (iii) of Lemma (16. i). Conversely if B

is normal then so is A, since, by flatness, A=Bn (field of fractions of A).

Let g : Y-^Spec(A), g^ : Z=Y(B)-^SPCC(B), <r : Z->Y, be as in Lemma (16.1),

and let Ey, E^ be the groups of exceptional divisors on Y and Z respectively. Since

^({mB}) =g-\{m})®^lmB

each integral curve E with exceptional support on Z dominates a unique such curve <r(E)
on Y. We define a homomorphism

(TI : Eg-^-Ey

by setting, for each integral curve EeE^,

^(E)=PBCT(E)

where pg is the integer (depending on E) defined in the following lemma (with F == ofE)
A=A/m and K=B/mB).

Lemma (16.4). — Let F be an integral curve proper over afield k. Let K be afield

containing k, and let E be a component of the curve F(K) with projection map n : E^F. Let L

be a finite algebraic extension of k which is afield of definition ofE, so that E=D(K), where D

is a component ofF^ (such L exist). Let n=[L: k] and let t be the degree of the function

field of-D over that of-F. Finally let dp be the g.c.d. of all the degrees (over k) ofinvertible sheaves

on F and let dp, be the g.c.d. of all the degrees {over K) ofinvertible sheaves on E. Then

_tdy_

^nd^

(1) Cf. correction at the end of this paper.
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is an integer, and for every invertible sheaf ̂  on F we have

-j- degg (T^) = p. — degp (.JT).
"E "F

Moreover if K is a regular extension of k then d^=dy and p= i (1).

Proof. — Let n^ : D-^F be the projection. It follows from Proposition (10.2) b)
that

n. degi)(7T^) = t. degp(e^)

where < ( deg^ 9? is relative to L. Since E=D(K) and degree is defined in terms

of cohomology groups, we have

degE (TT^) = degn (TT^) .

Thus — degE(7r*^) = — deg^^) = p. I degp(^)
^E ^E dy

as asserted. To see that p is an integer, just take ̂  to be an invertible sheaf of degree afp.

If K is a regular extension of k, then we can take L = k so that n = t = i. Since p

is an integer, we need only show now that dp divides d^. Let F be the normalization

ofF in the field of functions ofF, and let E = F^. Then E is birational over E [EGA IV,

(6.15.4.1)] so that dp=dp and d^==d^ (cf. end of proof of Lemma (15.1)). Let 8^

be the g.c.d. of all the field degrees [k{x): k] as A: runs through the closed points of F,

and let S^K be similarly defined. Since the group of divisors on a curve is generated

by effective divisors with one-point support (Lemma (11.2)) and since F is regular,

we see that S^==dp{==dp) and that Sg/K divides d^{=d^. But since K is a regular

field extension of A:, we have SF/A;==SE/K* Q.E.D.

Returning to the proof of Proposition (16.3)3 let a-^ be as above and let

a[: E^ == Hom(Ey, Z) -»Hom(Ez, Z) == E^

be the adjoint homomorphism. Let 6Y:Pic(Y)->E^, 6^ : Pic(Z)->Ez be defined
as in § 14. Then the diagram

pic(Y) -^ Pic(Z)

(6) Oy 6z

E'y ——^ E*,

is commutative. Indeed the commutativity means precisely that: if E is an integral curve

(1) Cf. correction at the and of this paper.
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on Z with exceptional support and F = o(E) is the corresponding curve on Y, then for
any invertible sheaf JSf on Y, we have

-(cT*(^).E)=p^-(^.F)
"E ^F

and this follows at once from Lemma (16.4).

In view of the definition of the rows (§ 14), it is now completely straightforward

to see that a commutative diagram exists as asserted in Proposition (16.3). To see

that (B (and hence a) is injective, we need only note that if I is an ideal in A such that IB

is a principal ideal of B, then I is principal in A (since B is faithfully flat over A). To

see that Y is an isomorphism when K is a regular extension of A:, it is enough (because

of (6)) to check that (T^ is an isomorphism, and this too follows from Lemma (16.4).
This completes the proof.

Remark. — It can be shown that if A is henselian and B==A, then a and [B are isomor-
phisms. (We will not need this result.)

Proposition (16. 5). — Let A, B be as in Proposition (16.3). If either one of A or B

is normal then so is the other, and then A has a rational singularity if and only if B has a rational
singularity.

Proof. — The assertion about normality is proved at the beginning of the proof

of Proposition (16.3). If A has a rational singularity then there is a desingularization

^:Y^Spec(A) with H^Y.Cy^o. Then g^: Z==Y®^B -> Spec(B) is a desingu-
larization ofB (Lemma (16.1)) and since B is flat over A,

H^Z.fiy-H^Y.fi^B^o.

Thus B has a rational singularity.

Suppose conversely that B has a rational singularity. Assume, for purposes of
induction on n, that there exists a cartesian diagram

Y» <-°'— Z»=Y^B

Qn\ \hn= ̂ (B)

Spec (A) '<— Spec(B)

where g^ is proper and h^ is a product of quadratic transformations. (For n = o, we

can take Yo=Spec(A), Zo==Spec(B).) Note that Z^ is normal (Proposition (8.1)).

H^Y,, ̂ ) ®AB - ?(2,, ̂ ) = o

(Proposition (1 .2)) and since B is faithfully flat over A, H^Y^, ^yj-o. Also if Z^ is

regular, then so is Y^ (because c^ is faithfully flat, cf. [EGA o^,"^^^) (i)]), and
then we are done.
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If Z^ is not regular, blow up a non-regular closed pointy on Y^ and let V^+i be

the resulting surface. Since <^ is flat, and since the fibres of a^ over the closed points

of Y^ are regular zero-dimensional schemes (cf. proof of Lemma (16.1)), we see that

Zn+l-Yn+lXY^Z^Y^^B

is obtained from Z^ by blowing up the finite set of closed points on Z^ which lie overj;.

None of these points is regular on Z^, otherwise, as above, y would be regular on Y^.

Continuing in this way, we construct Y^g, Z^, Y^, Z^g, . . . . But for sufficiently

large N, Z^ must be regular (cf. proof of Theorem (4.1)). This completes the proof.

§ ^ Applications: finite divisor class groups; factorial henselian rings.

We maintain the notation of § 14.

Proposition (17.i). — If R has a rational singularity then its divisor class group Pic(U)

is finite. If moreover R satisfies the condition of Lemma (14.3) (in particular, ifR is henselian}
then Pic(U)^H.

Proof. — Theorem (12.1) (i) (along with Proposition (1.2), 2)) shows that if R

has a rational singularity then Pic°(X)=(o). Since H is finite, the conclusion follows

at once from Propositions (14.2) and (14.4). Q.E.D.

Corollary (17.2). — The following are equivalent:

(i) R has a rational singularity and H(R)==(o).

(ii) The henseli^ation R* of R has a rational singularity, and R* is factorial.

(iii) The completion R. of R has a rational singularity, and R is factorial.

Proof. — Proposition (16.5) (with A==R, B==R* or R) shows that either every

one or no one of R, R*, R, has a rational singularity. Similarly, Proposition (16.3)

gives H(R)=H(R*)=H(R). Finally, by Proposition (17.1), R* (respectively R) is

factorial if and only if H(R*) (respectively H(R)) is trivial. Q.E.D.

(17.1) has a partial converse:

Proposition (17.3). — Let R be as in Lemma (14.3), and assume further that R has

an algebraically closed residue field. If Pic(U) is finite then R has a rational singularity.

Proof. — If Pic (U) is finite then so is Pic°(X) (Proposition (14.2)). Let G be any

curve on X such that C^ = E^ + Eg + . . . + E^. Let Pic°(G) be the subgroup of Pic(C)

consisting of the classes of those invertible sheaves oSf on C such that deg^(^(JSf))=o

for all i=i, 2, . . ., n (where s,: E,->C is the inclusion map). Lemma (14.3) shows

that Pic°(C) is the image of Pic°(X) under the canonical map Pic(X) -> Pic(G), and

so Pic°(C) is finite. The proof of Complement (11.3) works equally well if one assumes

only that Pic°(C) is finite (instead of Pic°(C)=o as in Complement (11.3)); the conclu-

sion is that H^C, Q^^Q.
For any integer r>o let X, be the subscheme of X defined by the ideal m'^.

0 *

H^X, ̂ )' - "m H^X, .̂) [EGA III, (4.1.7)]
r>0
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it will be sufficient to show that H\^)=o for all r. We cannot use the result of

the previous paragraph directly since X, may not be a (( curve on X " in the sense

of § 13. However, there is such a curve G, which is a closed subscheme of X, and

which is such that the inclusion C,-^X, is an isomorphism outside the (at "most

zero-dimensional) set of (c embedded " associated points of X,. It follows at once that
?(^^?(^=0. Q.E.D.

From Propositions (17.1) and (17.3) we obtain:

Theorem (17.4). — Let R be a two-dimensional normal henselian local ring with an

algebraically closed residue field, such that there exists a desingulari^ation f: X -> Spec(R) (1).

Then the divisor class group ofR. is finite if and only if R has a rational singularity. In particular,

R is factorial if and only ifR. has a rational singularity and the group H defined in § 14 is trivial.

As a further application we prove a special case of a conjecture of Samuel.

Proposition (17.5). — Let R be a two-dimensional normal local ring having a rational

singularity and such that the group H=H(R) is trivial. Let R be the completion of'R. Then

the power series ring R[[T^, Tg, . . . , TJ] is factorial for every n^o (2).

Proof. — We may assume that R=R and that R is factorial (Corollary (17.2)).

A theorem ofScheja [19; Satz 2] states that ifS is a complete factorial local ring of depth ;> 3,

then any power series ring over S is also factorial. Thus it will be enough for us to show

that R[[TJ] is factorial with T = T^. Let m be the maximal ideal of R. By a theorem

of Ramanujam-Samuel [EGA IV, (21.14.1)] it is even sufficient to show that the
ring R[[T]]p is factorial, where p is the prime ideal mR[[T]].

Now B=R[[T]]y is flat over A=R, mB is the maximal ideal of B, and the

residue field B/mB is the field of fractions of (A/m) [[TJ], which is a regular field extension

ofA/m. Consequently (Proposition (16.3)) H(B)=H(A)==(o). Moreover B has a
rational singularity (Proposition (16.5)). Hence, as in (17.1),

PIC(UB)CH(B)=O
i.e. B is factorial. Q.E.D.

(Actually it will emerge in § 25 that the rings R to which Proposition (17.5) applies

are all of the type treated by Scheja in [19]; hence — a posteriori — the statement of
Proposition (17.5) is not new.)

V. —UNIQUE FACTORIZATION OF COMPLETE IDEALS

It is easily seen that any complete ideal in a noetherian normal ring can be expressed

as a product of simple complete ideals, i.e. of complete ideals which are not themselves

the product of two other non-unit ideals. In this part V, we study questions concerning

the uniqueness of such factorizations in a two-dimensional normal local ring having a

(1) Cf. Remark (16.2).
(2) (Added in proof) Grothendieck has indicated in correspondence that the converse also holds .
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rational singularity. The main result (§ 20) is that such uniqueness holds if and only
if the completion of the ring is factorial.

In § 21, dropping the assumption of" rational singularity 5?, we study the condition

of unique factorization in the sense of the * product introduced by Krull, namely for

any two ideals I, J, I *J is the completion of IJ. The results obtained generalize a number
of those in [25; Appendix 5].

As in IV, R will be a two-dimensional normal local ring with maximal ideal m,

/: X -> Spec(R) will be a desingularization with X4:Spec(R), and E^, Eg, . . ., E,, will
be the components of the closed fibre /^({m}).

§ 18. Correspondence between complete ideals and exceptional curves.

n

As before we denote by E the group of divisors on X of the form S n^ with

rational integers ^. Let E^ be the set of divisors DeE, D+o, such that ^(—D)

is generated by its sections over X. Let E4- denote the set of divisors DeE, D+o,
such that

(^(-D).E,)^o (^=1,2, . . . , n )

i.e. (D.E,)^o for all i==i, 2, . . ., n. For these two sets we have:

(i) E^CE+.

(This follows from the trivial part of Theorem (12.1) (ii).)

(ii) If D=Z;7^,E,eE+, then TZ,>O for all z, i.e. D is a curve on X.
i

(This follows from the negative-defmiteness of the intersection matrix

(Lemma (14.1)): set D==A—B where A, B are curves without common components;

since ((A—B).B)^o and (A.B)>o, we must have (B.B)^o, whence B==o.)

(iii) Both E^ and E+ are closed under addition: if D^ and Dg are in E^ (respec-
tively E+) then so is D^+Dg.

Now for any D = S n^ in E^, let

i^=r(x,^(-D)).

Since D is a curve, ^(-D)C^ and hence

I^crCK^^=R

i.e. Ij) is an ideal in R. By definition of E^

Vx-^-D).

ID =t= R since D =t= o. An element r of R is in Ij^ if and only if u^r) >_n,, for i = i, 2, . . ., TZ,

where v, is the discrete valuation corresponding to E,; thus 1̂  contains a power of m.
Moreover if x is in the completion of Ij^, then we see at once (by remark c ) of § 5, for

example) that v,[x)>_n, for all z, so that xel^. In other words, I^ is an m-primary

complete ideal in R such that ID^X ls Avertible.
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Conversely, if I is any complete m-primary ideal in R such that I^x is invertible,
then

I^x=^(-Di)

where D^eE*, and, by completeness (cf. Proposition (6.2))

i=r(x,^(-Di)).

Thus the association of 1̂  ^ D and Dj ^ I sets up a one-to-one correspondence between members

of E^ and m-primary complete ideals in R which generate invertible Q^-ideals.

For any two ideals I and J in R, we set

I *J = completion of IJ

(cf. [12]). If I', ] ' are the respective completions of I and J, then

r*j'=i*j.

(To see this, we need only prove that IJ'Cl^J; this can easily be done directly, or by

using the methods of Proposition (6.2). Alternatively, one can use valuation theory
as in [25; Appendix 4, Proposition i e}].)

It follows immediately that if K is a third ideal then

(I *J) * K = I * (J * K) = completion of IJK.

If I and J are both m-primary and complete, and such that 10^ J^x are invertible,
then the same is true of I*J; in fact

i*j=r(x, ij^x)=r(x, ^(-D,-DJ))

because, being complete, F(X, IJ^x) contains I*J, while (Proposition (6.2))

i*j=r(x,(i*j)^)3r(x,ij^).
Thus addition in E^ corresponds to the * product for ideals.

Let K be an ideal of the form I *J where I and J are proper ideals in R. As above,

K^r^J', so we may assume that I and J are complete. If furthermore K=I*J is

m-primary, then so are both I and J (for otherwise IJ would be contained in a prime

ideal p =t= m, and since, clearly, p is complete, this would mean I*Jcp). Also, if

K^x—^JD^x ts invertible, then so is IJ^ (in fact in this case, as in the proof of

Proposition (6.2), IJ(P^== (I*J)^x) so that both I^x and ]0^ are invertible.

We say that a complete ideal K in R is ^-simple if K+ I*J for any two proper

ideals I, J in R. We say that an element D ofE^ is indecomposable if D cannot be expressed

as a sum of two elements of E^. It follows from the preceding paragraph that in the

above correspondence between members of E^ and m-primary complete ideals, the

indecomposable elements of E^ correspond precisely to the ^-simple m-primary complete

ideals which become invertible on X.

We say that unique decomposition holds in E^ if every element in E^ is in a unique
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way a sum of indecomposable elements of E^. The preceding discussion shows that

unique decomposition holds in Etf if and only if each m-primary complete ideal in R which generates

an invertible Qyideal, is in a unique way a * product of ^-simple complete ideals.

Finally, let us observe that every ideal I in R is such that \0^ is invertible for some

desingularization g : Z -> Spec(R). (Choose Z so that Z dominates the surface W

obtained by blowing up I, cf. B) of Proposition (1.2).)

We have established:

Proposition (i8.r). — Unique factorisation, in the sense of the * product, into ^-simple

complete ideals, holds for complete m-primary ideals in R if and only if unique decomposition holds

in E^EJI for all desingulari^ations f: X -> Spec(R). (At least one such X is assumed to

exist.)

We can define <( unique decomposition " in E"1' just as in E^. Then:

Corollary (18.2). — If R. has a rational singularity, then unique factorisation into simple

complete ideals, in the sense of the usual product of ideals, holds for m-primary complete ideals in R

if and only if unique decomposition holds in E^^E^ for all desingulari^ations f: X -> Spec(R).

Proof. — If R has a rational singularity then the * product for complete ideals is

just the usual product (Theorem (7.1)), and E^E4' (Theorem (12. i)). Also,

if K is complete and K=IJ, then K==I*J$ and conversely, if K=I*J, then

K^r^J^I'J' where I', J' are the respective completions of I and J. Thus K

is ^-simple if and only if it is simple in the usual sense. Q.E.D.

§ 19. Relation with the group H.

With notation as in § 18 we investigate further the meaning of unique decompo-

sition in E4'. The main technical result is:

Proposition (19. i). — Unique decomposition holds in E'^E^ for all desingulari^ations

f:~K-> Spec(R) if and only if the group H introduced in § 14 is trivial.

Proof. — We first consider a fixed desingularization /: X-> Spec(R). For

each z = i , 2 , . . . , % let 8^>o be the greatest common divisor of the integers
(E,.E,),(E,.E,), ...,(E,.E,).

Lemma (19.2). — For the preceding desingularization f:'K-> Spec(R), unique decompo-

sition holds in E~^ if and only if there exist curves D^, Dg, . . . , D^ with exceptional support on X

such that, for all i, j ,

(D,.E,)=-8^ {Kronecker 8 .̂)

If such curves exist, then they are all the indecomposable members ofE^.

Proof of Lemma (19.2). — Suppose that such curves D, exist; by definition D^eE"^.

For any D=SrjEj in E^, we have, for ?==i , 2, . .., n,

(D.E,)=-^ (^o).

Hence ((D- S^.D,.). E,) = (D. E,) -^(-S,.) = o
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so that, by definiteness of the intersection product (Lemma (14.1)),

D-S^.D^o, i.e. D=S^..

If also D = S nij D^, then

(D.E,)=^(D,.E,) ( z = i , 2 , . . . , 7 z )

i.e. _^=-^.

so m^n, for all z. Thus unique decomposition holds in E^ and D^, Dg, . . . , D^ are
all the indecomposable elements in E4'.

Suppose, conversely, that unique decomposition holds in E+. We first observe

that there cannot be more than n indecomposable elements in E^ Otherwise there
would be a relation

ToAo = 7-1 AI + r^\ + . . . + r^

(A, indecomposable, r, integers, ro>o) and so for r^max(| ̂  , | ^ [ , . . . , | rj) we

would have r^ + rA^ + . . . + rA^ == (^ + r)A^ +. . . + (^ + r)A^ contradicting unique

decomposition.

Now there exist elements B.eE"^ ( z==i , 2, . . ., n) such that (B,.E^.)==o if z+j;

in fact, if (b^ is the inverse matrix of ((E,.E^.)), and N is a negative integer such that N6y
n

is an integer for all z, j, then setting B,== S N^E/, we have (B,.E^=N8y<o. It

follows that there is an indecomposable element D, of E+ and a positive integer 8,' such

that m F ^ ^ /^
{^i'^j)^—8^

(any indecomposable summand of B^ will do). By the previous paragraph, every

element in E4' must be a linear combination ofD^, Dg, . . ., D^, with integer coefficients,

and therefore 8,' divides all the integers { (C.E,) |CeE+}. We will find a curve C.eE4'

such that (G,.E,)=—8,. Since 8, divides 8^, this will prove that 8,'=8,.

There exist integers .̂ such that —8,==S^(E^..E,). If M is any sufficiently
large positive integer, ^ 3

C.=^,E,+M^D,

is as required, and the lemma is proved.

Returning now to Proposition (19.1), and referring to the definition of H (§ 14)

we note that the triviality of H means that for any X as above, there exist elements D,'

of E (z==i , 2, . . ., n), such that, for all i, j,

(D,'.E,)——rf,8,

where, as in § 14, ^ is the greatest common divisor of all the degrees of invertible sheaves

on E^. Such D^ are, by definition, members of E4". Since obviously .̂ divides 8^,

we see by Lemma (19.2) that if H is trivial, then unique decomposition holds in E+

for all X.
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* *

To prove the converse, it will now be sufficient to show that there is at least one X

on which d^ == 8^ for all i == i, 2, . . . , % .

To begin with consider a commutative diagram

of proper birational maps, with X and Y regular, and an integral curve E on X with

exceptional support. Let a?(E), 8(E) be denned in the obvious way, i.e. rf(E) is the

greatest common divisor of all the degrees of invertible sheaves on E, and 8(E) is the

greatest common divisor of all the integers (D.E), where D is a divisor on X with excep-

tional support.

Suppose first that F==^(E) is a curve on Y; then E is the proper transform of F

on X. As we have seen (cf. proof of Lemma (15.1)) fl?(F)==rf(E). Furthermore 8(E)

divides 8(F), because there is a divisor D on Y with exceptional support such that

(D.F)=8(F), and then we have (D'.E)=8(F) where D'=^(D) (cf. § 15). It

follows for example that if 8(F)=^(F), then 8(E) divides rf(E) and so 8(E)=rf(E).

Suppose next that g(E) is a single point on Y. Then 8(E)==fif(E)==A°(E). In

fact, by the factorization theorem (Theorem (4.1)) g factors as

X-^Y^Y^Y

where g^ is such that ^i(E) is a curve on Y^, isomorphic to E, and g^{g^)) is a single point P

on Yg such that g^ is the map obtained by blowing up P (so that g^(E)=g^l{'P)). Now,

as in the proof of Lemma (15.2)5 we have

(&(E).^(E))=-A°(^(E))

and so 8(^(E)) divides A°(^(E)). But clearly A°(^(E)) divides ^i(E)). Hence

8(^(E))=^(E))=A°(^(E)).

By the preceding remarks (with F==^(E)), we conclude that:

8(E)==^(E)=^(E))=AO(^(E))=AO(E).

Now let h: Z -> Spec(R) be some desingularization, and let G be an integral

curve on Z with exceptional support.

Lemma (19.3). — Let A be a divisor on G. Then there exists a proper birational map

h: Y->Z, with Y regular^ such that^ if'F is the proper transform of G on Y and j : F->G is

the induced map., thenj*{^) is the restriction to F of a divisor D on Y with exceptional support.

Remark. — The existence ofX with d^=^ for i==i, 2, . . ., n can now be shown

as follows: let GI, Gg, . . ., G^ be all the integral curves on Z with exceptional support,

242



RATIONAL SINGULARITIES 243

let G=Gi, and choose A in Lemma (19.3) so that A has degree rf(Gi) on G^; if Y=Yi,

F=Fi are as in Lemma (19.3), then/(A) has degree d(G^=d{'F^) on F^, and

consequently 8(F^)=af(Fi); similarly we can find Y,, F, with 8(F,)==^(F,) for
^ = = 2 , 3 , . . . , m ; then if X is a desingularization of Spec(R) which dominates

Y^Yg, . . . ,Y^ , the discussion preceding Lemma (19.3) shows that X is as desired.

(Such a desingularization X exists, as can be seen by letting W be the join ofY^, Yg, . . ., Y^
(cf. § 8) and applying B) of Proposition (1.2)).

Proof of Lemma (19.3). — Let A', A" be divisors for which such Y', D', resp. Y", D",

can be found. Let Y be a desingularization dominating Y' and Y", let F be the proper

transform ofG on Y, and let D[ (resp. D^) be the inverse image ofD' (resp. D") on Y.

Then clearly D^+D^ induces on F the inverse image of A'+A".

Hence, in view of Lemma (11.2), we may assume that A is an effective divisor

with support at a single point P of G. Let ~x be a non-zero element in ̂  p defining A,

and let x be an element of ̂  p whose image in ^ p is ~x. The divisor {x) of x on Z
has the form

M=G+G'

where each component of C, and no component of C', passes through P. We will

choose h: Y->Z so that the proper transform [C] on Y of the divisor C does not meet F
at any point ofA'^P). Then we will have

A*(G)=[G]+D+D'

where D is such that the image under h of its support is the point P, while the image

under h of the support of D' does not meet P. Since G induces on G a divisor A + A',

with P^support of A', ^(C) induces /(A)+/(A'), the support off (A) being contained

in A'^P), while the support off (A') does not meet ̂ (P). It is therefore evident that D

is a divisor with exceptional support inducing f[ A) on F, as desired.

We obtain Y as follows. Let VQ be the discrete valuation corresponding to G,

and let ^, ^3 . . ., ^ be the discrete valuations corresponding to the components of G.
Note that

Vo(x)==o, v,{x)>o for i>o.

Choose teO^ such that

Vo{t)>o, v,{t)=o for i>o

By blowing up, we can find W dominating Z such that the sheaf {x, t)(P^ is invertible.

Then we can find a regular Y dominating W. What remains to be shown is that for i>o

the center of VQ on Y does not meet the center of ^ on Y, i.e. there is no point y on Y

such that VQ and v, are both non-negative at Cv^. But for anyj/ on Y, either xft or tjx
is in ^YTP ^d since

Vo{xlt)<o, v,{tlx)<o for t>o

we are done.
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§ 20. The main theorem.

Theorem (20. i). — Let R be a two-dimensional normal local ring, with maximal ideal m,

having a rational singularity. Let R be the completion ofR, and let R* be the henseli^ation ofR.

The following conditions are equivalent:

1) In ^factorisation of m-primary complete ideals into simple complete ideals is unique.

i') In R, factorisation of complete ideals into simple complete ideals is unique.

2) R is factorial.

2') R* is factorial.

Proof. — We have already seen (Corollary (17.2)) that 2) and 2') are each equi-

valent to the triviality ofH(R), and so is i) (Corollary (18.2) and Proposition (19.1)).

i') trivially implies i). Conversely, the triviality of H(R) implies that R is factorial

(since Pic(U) CH, cf. Proposition (17.1)) from which it is immediate that every complete

ideal is in a unique way of the form PI, where P is a principal ideal and I is an m-primary

complete ideal; it follows at once that i) implies i'). Q.E.D.

Remarks. — i. Let R be any two-dimensional normal local ring. If R has an

algebraically closed residue field, then the condition that R is factorial implies that R has

a rational singularity. (Theorem (17.4), and note that R, being excellent, can be

desingularized.) Hence also R has a rational singularity (Proposition (16.5)).

2. Any two-dimensional regular local ring R satisfies the conditions of

Theorem (20.1). In § 25 we describe quite explicitly the non-regular R which satisfy
these conditions.

§ 21. Some consequences of unique *-factorization.

With notation as in § 18, we investigate further the condition of unique *-factoriza-

tion of m-primary complete ideals into ^-simple complete ideals (cf. Proposition (18. i)).

Lemma (21.1).— For a fixed desingulari^ation f: X -> Spec(R), unique decomposition

holds in E^ if and only if (i): unique decomposition holds in E4", and (ii): E^=E^.

Proof. — We need only show that if unique decomposition holds in E^, then E'^CE^.

We first remark that by negative definiteness, there exists D in E such that (D. E,)<o for

all z, and then by Theorem (12.1) (iii), ^(—D) is ample. Consequently, given D'eE,

there exists an integer N such that both ND and D'+ND are in E^; in other words

E^ generates the group E. Since E is a free abelian group of rank n, there must therefore

be at least n indecomposable elements in E^ But, as in the proof of Lemma (19.2),

unique decomposition implies that Eft has at most n indecomposable elements. Thus

there are precisely n such elements, which we may name D^, Dg, . . ., D^, and these form
a free basis of E. ^

Now suppose that A= S ^.D, is such that —A is ample. If N is a suitably large
positive integer, then

NA-(D,+D,+...+DJeEft.
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Since every element in E» is of the form SH.D. with all n^o, we conclude that

^» ^2» • • •; ^n are all >o.

Finally, if BeE4-, B=2^.D., then
i

((S(^+l)D,).E,)=(B.E,)+(Di.E,)+...+(D,.E,)<0

because (B.E,)^o and (D,.E,)^o for all z, with (D,.E,)<o for some i (since

(D.E^.)<o (D as above) and D^, D^, . . ., Degenerate E). Hence (Theorem (12.1) (iii))

—S(^+i)D, is ample, and so, as we have just seen, J,+i>o for all i. Thus s>o

for all i, and therefore B is in E^. Q.E.D.

We will need the following elementary lemma.

Lemma (21.2).— Let A be a local ring, let f: X -> Spec(A) be a map of finite type, and

let G be a one-dimensional integral closed sub scheme ofX with exceptional support (cf. § 12). Let S

be an invertible sheaf on X, let S = © S^ be a graded ^-algebra, and let A : S -> © FfX JSf®^
n^0 n^O ?

be a homomorphism of graded K-algebras with associated map r : G(^) ->- Proj(S) (cf. [EGA II

§•3 -7 ] ) such that G(^) n C is not empty. Then (J§f.G)^o ^ (jgf.C)=o if and only
if CcG(^) ^flf r(C) ^ a single point.

Proof. — Let Q be a point in r(GnG(^)) . For some n>o there is an element

teS^ such that QeSpec(S^), so that C meets r-l(Spec(S^))=X^ where ^=^)

(cf. [EGA II, (3.7.3)]). If ^^(JS^), where i,: C->X is the inclusion map,
then u induces a section ^' of JSf' over C such that G^=GnX^0; consequently we
have an exact sequence

Q->Q^ ^' ->^ ->o

where Supp(Jr)==C—G^ is of dimension <o. Thus

^.C^dege^)^^')-^)

-XW

=A°(^)^o.

For (^.C)==o it is necessary and sufficient that Supp(jf) be empty, i.e. GCX .

This is certainly the case if CcG(^) and r(G) is a single point (necessarily QJ. Conver-

sely, if CCX^ then CcG(^), and r(C) is a closed subscheme of the affine scheme

Spec(S^), with r(C) proper over the closed point of Spec(A); this implies that r(C)

is a single point. (Alternatively, if Per(C), P+Q, then, assuming P to be closed, as
we may, we could choose t so that P^Spec(S^), i.e. C^X^.) Q.E.D.

Let R be as usual. For any ideal I in R, denote by Wi the normalization of the

scheme obtained by blowing up I, i.e. Wi=Proj(© IJ, where I, is the completion

of P. Note that W^ is of finite type over Spec(R) ^Corollary (6.4)).

Proposition (21.3). — (i) If unique ^-factorisation holds for m-primary complete ideals

in R, then for any ^simple m-primary complete ideal I, the fibre on Wj over the closed point of
Spec(R) is irreducible.
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(ii) When the hypothesis of (i) holds, if we denote by v^ the discrete valuation of the quotient

field K of R whose center on Wj is the reduced closed fibre, then the association of I to v^ sets up

a one-one correspondence between -^-simple m-primary complete ideals and valuations of K which

dominate and are residually transcendental over R.

Proof. — To say that the closed fibre on Wj is irreducible for all I as above is
to say:

(i)' Let f: X -> Spec(R) be a desingulari^ation, and let D be an indecomposable element

of E^ = E^ ; then (D. E) = o for all but one of the integral exceptional curves E on X.

(Proof. — As in § 18, for any such D we have ^(—D)=I(?x for some I as above,

and conversely for any such I, there is an X such that I6?x=^(—D), where D is an

indecomposable element of E^E^. Fix a corresponding pair I, D, and set JSf==Itf^-
As in Lemma (6.3), let

W^ProKOnX,^^)).
n>_0

In Lemma (21.2), take S== © F(X, JSf071), and take ^ to be the identity map, so that
n> 0

G(4>) = X, since JSf is generated by its sections over X. r is proper and birational, hence

surjective, and so the closed fibre on Wi is ^(/^{m}); also, since Wj is normal, any one-

dimensional integral closed subscheme of Wj is the image under r of a unique integral

curve on X. Thus by Lemma (21.2), the closed fibre on Wi is irreducible if and only

if (JSf.E)=o for allbut one E, i.e. (^(-D) .E)= -(D.E)=o for all but one E.)

By Proposition (18.1), Lemma (21.1), and Lemma (19.2), unique *-factorization
implies condition (i)\

{Remark. — Since E^ generates E, one finds, using Lemma (19.2), that (i)' implies

unique decomposition in E"^. Thus if E"^ always equals E^ — which is the case, for

example, when R has a rational singularity (Theorem (12.1)) — then (i)' is equivalent
to unique ^-factorization).

(ii) If I andj are distinct ^-simple m-primary complete ideals, and /: X -> Spec(R)

is a desingularization such that 10^, J0^ are both invertible, then 10^ ]G^ are distinct

indecomposable elements of E^==Ex; hence if Ej (resp. Ej) is the unique integral

curve with exceptional support on X such that (I^x-Ei)+o (resp. (J^x'Ej)=l=o)

then EI+EJ (cf. Lemma (19.2)). However, from the proof of (i) it is clear that E;

(resp. Ej) is the center of ^ (resp. Vj) on X. Thus v^+Vj.

Now if v is a valuation dominating R and residually transcendental over R, then

the center of v on some regular X is an integral curve E; for instance if r^, r^ in R are

such that v{r^r^^o and the residue field of ^/^ is transcendental over the residue field

ofR, then we can choose any X on which the ideal (r^, r^O^ is invertible. For such

an X, there is an indecomposable element of E^, say 10^ where I is a ^-simple

m-primary complete ideal of R, such that (I^x-E)=)=o. Then, as above, the center

of v on Wi is the reduced closed fibre; in other words v=v^. Q.E.D.

We continue to assume that ^-factorization in R is unique. The next proposition
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describes a " reciprocity " relation among ^-simple m-primary complete ideals. Let I, v^

be as in Proposition (21.3). If /: X -> Spec(R) is a desingularization such that I^x

is invertible, and E^ is the center of ^ on X, then 10^ is an indecomposable element

of E^==Ex, and § 19 shows that (I^x^i)^, where d^ is the greatest common

divisor of degrees of invertible sheaves on E^. Note that d^ does not depend on the
choice ofX (cf. proof of Lemma (15.1)).

Proposition (21.4). — Suppose that unique ^-factorisation holds for m-primary complete

ideals in R. Let I and J be two -^-simple m-primary complete ideals. Then, with the notation
of the previous paragraph, we have

^iCD-^WI)'

Proof. — Let /: X -> Spec(R) be a desingularization such that both I^x and Jffl^

are invertible. Let E^, E^, .. ., E^ be the components off-\{m}), and let v^ % , . . . , ̂

be the corresponding discrete valuations, the numbering being such that v^=v^ v^=Vj.
n n

Let D^S;^,(I).E,, D^S;^(J).E,, so that I^x=^(-Di), J^x^-HD. Now

(D,.D,)=^^(J).(D,.E,)

=^(J).(D,.E,)+S^,(J).o

——^iCJ).

Similarly, (Di.D^-rfj.^I). Q.E.D.

The final result in this section is to the effect that c< the transform of a simple

complete ideal is simple ". To be more precise, let /: X-> Spec(R) be a desingula-

rization, let I be an m-primary complete ideal in R, and let ^ be the completion of I^x-

(Note that J^==I(P^ ifR has a rational singularity, cf. Proposition (6.5).) The transform

of I on X is defined to be the ideal J^jy-1 (cf. remarks preceding Proposition (3.1)).

^ ' is complete since multiplication by invertible ^-modules does not affect completeness
(Remark e ) , § 5).

Given two ^x-ideals / , Jf we will say that / divides JT if there is an C^deal ̂
such that ^j^==jr.

Proposition (21.5).— Assume that unique -^-factorisation holds for m-primary ideals in R.

Let f: X-^Spec(R) be a desingularisation, let I be a ^-simple m-primary complete ideal in R

and let ^=. J^-1 be the transform of I on X (cf. preceding remarks). If / and JT

are complete coherent Q^-ideals such that ^f divides ĵT, then either ^' divides / or J>'

divides Jf\

Pr<.—Let /^^^f^. Let ^'=^/-1, jr'=jrjr-1, ̂ ^JfJ^-1. We see
easily, since X is regular, that / 1 ^ 1 = ^ ' ^ ' and consequently we may assume that

/ ^ / ' ^ ^^^'s J^^j^'. Then O^/ has zero-dimensional support, so that for

sufficiently large n, m"^^/. Similar remarks apply to Jf, J^, J>1. Since

{^-l)-l^J^^J,(p^ and I is m-primary, we see that also / . (J^'^Dm^x ^ large n.
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Now, as in the proof of Lemma (21.1), there is an m-primary ideal L such that

»S?==L^x ls an ample invertible (P^-ide^l. For any p>o we have

^JT^J^

where /^ = / . (J^-1) -1. ̂

jr^jrjS^

^^jrjS^.

Note that /^ Jfp, J ,̂ all contain m^x f011 sufficiently large TZ (depending on p ) . It

will be enough for us to find a p such that ^ divides either /^ or jf^,, since then by

splitting off invertible factors as in the beginning of this proof, we can conclude that ^ '

divides either / or jf\

We choose p large enough so that / ^ , jfy, J ,̂ are all generated by their global

sections. According to the above remarks, J==r(X,^,) is an m-primary ideal,

and moreover, since /^ is complete, so is J (Lemma (5.3)). Similar remarks apply

to K=r(X,jfp) and H=r(X,J^). Also since /^^ is a complete ideal

(Theorem (7.1)), G=r(X, ^,jfp)=r(X, ^Jfp) is a complete m-primary ideal in R

containing both JK and IH. Since ^J^=(JK)^ and J^fy is contained in the

completion of (IH)^x? lt HOW follows from the remark following Proposition (6.2) that

G==J*K=I*H.

By unique sK-factorization in R, we conclude that I divides either J or K in the

sense of the * product, say J == I * M. Then

^W^x-^M)^

is a complete ideal, which is contained in, and therefore equal to, the completion of^M)^

(Remark/^), § 5). Thus, i{J!f is the completion of M^x? we have

^,=^*^=J^T (Theorem (7.1)). Q.E.D.

VI. — PSEUDO-RATIONAL DOUBLE POINTS

AND FACTORIALITY

In part VI, the aim is to round out the results of § 17 and § 20 by describing in

detail those two-dimensional normal local rings R which have a rational singularity

and a trivial group H(R). In § 22 we find that any such R has multiplicity ^2.

In § 23 we characterize rational (< double points 9? as being those two-dimensional normal

local rings of embedding dimension three whose singularity can be resolved by quadratic

transformations only. Using this fact, we describe explicitly all rational double points

together with their associated group H (§ 24). It then appears that the only ones with

trivial H are essentially those considered by Scheja in [19].

Of particular interest is the case when R has an algebraically closed residue field k

(cf. Theorem (17.4)). In this case, ifk has characteristic +2, 3, 5, and R is not regular,
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then the completion R must be of the form S/^+^+w5) where S is a three-dimensional

regular local ring with regular parameters u, v, w (cf. Theorem (25. i); also Remark (25.2)

for the exceptional characteristics). This result was previously proved by Brieskorn
for local rings on two-dimensional complex spaces [7].

§ 22. Trivial H implies multiplicity ^2.

Let A be a noetherian ring and let /: X-^Spec(A) be a map of finite type.
As in § 13, a curve on X is understood to be an effective divisor with one-dimensional
support.

We begin with some lemmas about exceptional curves on X (relative to/; cf. § 12).

Lemma (22.1). — Let F^, ¥„ . . ., Fp be integral exceptional curves on X and let

^. î"*11'* with positive integers n,. Assume that H^F) .̂ Then for some j we have

((F-F,).F,)^°(F,).

Proof. — If F'=Sre.'F(, with O^B.'<K, (i=i, 2, ...,p), then Op is a homo-

morphic image of ^, whence, F being a curve, H^F') is a homomorphic image of

H^F)^. Thus %(F')=A°(F'). If the assertion of Lemma (22. i) were false, then it
would follow that for each ;',

((F-F.).F..)>2A°(F,)
Le- (F.F<)^(F,.F..)+2x(F,).

Now observe that the function

K(D)=(D.D)+2x(D)

is an additive function of curves D=2</.F. Indeed
i

K(D, + D,) = (DI . H) + 2 (D,. D^) + (D,. D,)

+2x(Di)+2%(D2)-2(Di.D2)=K(Di)+K(D2).

If then, as above (F.F,)>K(F.) for all i, then

(F.F)=2:»..(F.F^Sn.K(F,)

=K(F)

=(F.F)+2x(F)
i.e. o^2x(F)=2A°(F)

which is absurd. Q.E.D.

Lemma (22.2). — Let E, F be distinct integral exceptional curves on X such that E n F

is non-empty. Suppose that H l(E+F)=o. Then (E.F) =max{A°(E), A°(F)}.

Proof. — As in the proof of (22. i), we have H'(E) =11 )̂ =o. Hence

o < h°{E + F) = ̂ (E + F) = y,(E) + x(F) - (E. F)

==A°(E)+A°(F)-(E.F).
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Since (E.F) is positive and divisible by both A°(E) and A°(F), this inequality can hold

only if (E.F^max^E),^)}. Q.E.D.

Lemma (22.3). — Let P be a closed point on X such that 6^ p ̂  a regular two-dimensional

local ring, and let j : X'—X be the map obtained by blowing up P. Let G be an exceptional

curve on X, and let G' ^ the curve J'^C) =j*(C). 77?^ the canonical maps

H^X^-^H^X',^)

<zr^ isomorphisms/or all p^o.

Proof. — Let ^=(P^—C),^f= JG^, == ̂ (—C')- One checks that the isomor-

phism ^x —^(^x') induces an isomorphism of^ ontoj (^'). Hence there is an exact

sequence o^^^(^R^').

But A) of Proposition (1 .2) shows that R^^x') ==° (by [EGA III, (1.4.15)]

the question depends only on the local rings of the points on X) and this implies that

R^^^o (the question is local on X, so we may assume that J^^x? whence

J^^^x')- Thus we have an isomorphism

^c^Wy).

This proves (22.3) for p==o. Also, since Oy is a homomorphic image of 0^,,

R1;'̂ ^) =0- The standard exact sequence

o -> H^XJ^)) -> H^X', ^') -> H°(X, R1;^^'))

leads therefore to the isomorphism

H^X.^^H^X',^).

This proves (22.3) for p==i. For p>i, there is nothing to prove. Q.E.D.

Lemma (22.4). — Let F be an integral exceptional curve on X, and let rf(F) be the greatest

common divisor of all the degrees of invertible sheaves on F. Suppose that X is regular at each

point through which F passes, and that H^F)^^. Then rf(F)<2A°(F).

Proof. — If F is a regular curve, then the canonical divisors on F have
degree -2A°(F).

Suppose then that there exists a point P of multiplicity [L> i on F. P is a closed

point ofX, and the local ring o f P o n X is two-dimensional and regular. Let j : X'-^X

be the map obtained by blowing up P; then F' ==f(F) == F^ + ̂  where F^ is an integral

exceptional curve on X' (namely F^ is the proper transform of F) and fl^=j~l(P)^.

Let /(P) ==Q^eSpec(A). The residue field k{P) is a finite algebraic extension of

the residue field k{Q^), of degree, say, 8, and we have

(F,.F,)=-A°(F,)=-8

(cf. proof of Lemma (15.2)). Moreover

((F,+^).F,)=o

(cf. (B) in § 15). Hence
/ft "n \ <^(F,.F,)=^8.
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By (22.3), H^+^F^H^F^o, whence H^F^H^F^H^F.+F^o. (22.2)
shows therefore that

so that
[LS = max{A°(FJ, A°(F,)} = max{A°(F,), 8}

h°{F,)==^

Now, by (22.3),

/z°(F) = A°(F, + ̂ F,) = x(F, + ̂ F,) = ̂ (F,) + ̂ F,) - (F,. ̂ F,).

But, by mdaction on (JL, we have

X(^2)=^(F2)-!1(^(F,.F,)

Thus o<AO(F)=AO(F,)+^o(F,)-['Ql^)(F,.F,)-^F,.F,)

^^^-^-^'^^'^(-S)-^.^

i.e. o<8f2^+'(I^I)-^1
L 2 J

so that o<g^_^2

i.e. ^<3.

Since (i>i, we must have pi =2, and

^(P)^.^2^^-^2']^.
L 2 J

Finally d(F)=d(F^) (cf. proof of Lemma (15.1)) and

d{~F,) divides (F^.F^^ [LS= 28 = 2/z°(F). Q..E.D.

We come now to the main result of this section.

Proposition (22.5). — Let R be a two-dimensional normal local ring having a rational
singularity. If the group H(R) is trivial, then R has multiplicity <2.

Proof. — Let /: X -> Spec(R) be the minimal desingularization of R (cf. Theo-

rem (4.1)). H^X)^^ and for every exceptional curve C (relative to/), x(C)=A°(C).

From the contractibility criterion (§ 27) (1) and negative-definiteness (Lemma (14.1))
we have that:

If E is any integral exceptional curve on X then

(E.E)<-2A°(E).

(1) § 27 is independent of § 22. Actually, starting with (19.2), (21.2), and (7.1), one can avoid using the
contractibility criterion.
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Let EI, Eg, . . ., E^ be all the integral exceptional curves on X. We will show

in a moment that/or each i, K(E,)=o (cf. proof of Lemma (22.1) for the definition

and properties ofK). Since K is additive, it follows that K(C)==o, i.e.

(G.G)=-2x(C)=-2A°(C)

for every exceptional curve G on X. We may as well assume that R is not regular;

then Proposition (3.1) and its proof show that i fm is the maximal ideal ofR, then m^x

is invertible, say m^x-^-C), and H^x/m^x) = R/m,

i-e. A°(G)=i.

Finally, the proof of Corollary (23.3) (which is completely independent of the conside-

rations of this section) shows that the multiplicity of R is —(C.C)=2, as asserted.

The fact that K(E,)=o is an immediate consequence of Lemma (22.4) and:

Lemma (22.6). — For each i=i, 2, . . ., n let <->o be the greatest common divisor

of degrees of invertible sheaves on E,. Then, for each i,

either (1) -(E,.E,)=fl?,>A°(E,)
or (n) -(E,.E,)=2^=2A°(E,).

Proof. — The triviality ofH(R) implies that for each i there exists an exceptional
curve D, such that

(D,E,)=-4S, ( J = i , 2 , . . . ,n)

By Lemma (22.1) we can chooser so that

((D,-E,).E,)<^(E,).

If j^i, this means that -(E^.E^/^.), contradicting the assumption that

/:X-^Spec(R) is the minimal desingularization. Hence j==i and

-^-(E,E,)^°(E,).

But d,=r.h°(E,) and —(E,.E,)==^ where r, s are positive integers, and the preceding
inequality gives

—r+sr^<i.

Since —(E,.E^2A°(E,) we cannot have r=j==i . So the only possibilities are

s==i, r>i, which gives (i), and s==2, r=i, which gives (ii). This completes the proof.

§ 23. Some special properties of pseudo-rational singularities.

In this section we give some facts about lengths of ideals which will be of further

use. We also characterize among " embedded 59 two-dimensional local rings of multi-

plicity two those which have pseudo-rational singularities (roughly — those which remain

normal under any succession of quadratic transformations) and those which have rational

singularities (roughly — those which can be desingularized by quadratic transformations
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alone) (cf. Proposition (23.5)). This characterization will enable us to give explicit
descriptions (§ 24).

Let R be a two-dimensional normal local ring with maximal ideal m, and let

/: X -> Spec(R) be a proper birational map. Since R is normal, H°((P^)==R; also,

the support ofH^fix) is contained in the closed point of Spec(R), i.e. the R-module H^x)
has finite length which we denote by ^(Cy-

For any m-primary ideal J in R we denote by X(J) the (finite) length of the

R-module R/J. If I is an m-primary ideal in R, and /: X -> Spec(R) is as above, we
have for any n>o

PCH^P^CH^^-R

so that H°(P^x) is also an m-primary ideal in R, and X(H°(P^x)) is a well-defined integer.

Suppose further that I^x is an invertible ^x-ideal, and let G be the curve on X defined

by I^x- Then C has exceptional support relative to/, and so )c(G), (C.C), are well-
defined integers.

Lemma (23. i). — Let f : X -> Spec(R), I, G, be as in the preceding remarks, and let n^o
be such that H^P^^o. Then

X(HO(P^x))=-(C.G)^)+^G)^+A l^x).

Proof. — From the cohomology sequence associated with the exact sequence

O^P(?x^x-^nC^O

we deduce that

H°(KG) ̂  H°(^x) /H°(P^x) = R/H°(I"^x)
and

H^G^H1^).

Thus xW^H^P^))-^).

An easy induction, based on the relation

X(C+D)=7(C)+5C(D)-(C.D)

(cf. Proposition (13.1)) shows that

^C)=-(C.G)^)+x(C).n

and the conclusion follows.

Corollary (23.2). — Let R and I be as above, and let f: X-> Spec(R) be the map

obtained by blowing up I (i.e. X = Proj( (B P)). Then with G as above we have, for all suffi-
ciently large n, ~

W=-{C.C)Q+^C).n+hW.

Proof. — Since P^-^) [EGA II, (8.1.7)] we have H^P^-o for all

sufficiently large n, and moreover P=H°(P^x) for all sufficiently large n [EGA III,

(2.3.4)]. Thus the conclusion follows from Lemma (23.1).

253



254 J O S E P H L I P M A N

Corollary (23.3). — Let R be a two-dimensional normal local ring, with maximal ideal m,

having a pseudo-rational singularity, and let I be a complete m-primary ideal in R, of multiplicity [L.
Then for all n>o

X(P)=^^+X(I)...

Proof. — Let W be the scheme obtained from Spec(R) by blowing up I. By

definition of cc pseudo-rational " there exists a proper birational map /: X-> Spec(R)

such that X dominates W (so that 1(0^ is invertible) and H l(X,^x)=o. For any

n^Q, P^x is a homomorphic image of^x fo1' some finite t, and since H2 vanishes for all
coherent sheaves (the fibres of/being of dimension ^i) we have therefore H^P^^o.

Moreover, since I is complete, so is P (Theorem (7.1)) , and cf. § 9) and therefore

P=H°(P(?x) (Proposition (6.2)). Lemma (23.1) now gives

W=-{C.C)Q+^C).n (^>o).

By definition of" multiplicity ", —(C.G)=pi . Also, setting n==i, we get 7(C)=X(I).
Thus

X(P)=^)+X(I).TZ. Q.E.D.

Corollary (23.3) shows that if R is a two-dimensional normal local ring, with

maximal ideal m, of multiplicity 2, having a pseudo-rational singularity, then for all n >o

U^)=n2.

Lemma (23.4). — For a local ring R with maximal ideal m the following conditions are

equivalent:

(i) ^(m^^Tz2 for all n>_o,

(ii) The completion R is of the form SfxS where S is a three dimensional regular local ring,
with maximal ideal, say, M, and xeM2, ^M3.

Proof. — Suppose (ii) holds. The graded ring © IVP/M^4-1 is isomorphic to a
n>_Q

polynomial ring in three variables over S/M=R/m and the initial form of x in

this graded ring is a homogeneous polynomial of degree two, which generates the
kernel of the natural surjection

©M^M^1^ (Bur/m^ (m=mR)
M ̂  0 VI *̂. (\ ' /n>0 n>0

It follows easily that the (R/m)-vector space m'Vnt^^m^m^1) is of dimension
/n+2\ ln\ , . .

' ]=2n+i tor n^o, and so
2 / \ 2 J

n-l

XOn^S (2i+i)=n2.
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Conversely, if (i) holds then m/m2 has dimension 3 over R/m, so that by Cohen's

structure theorem R is of the form S/I, where S is a three-dimensional regular local ring

and I is an ideal in S. Also m^m3 has dimension 5 over R/m, so that I contains an

element x such that ^eM2, ^M3, M being the maximal ideal of S. I must be generated

by x; for, as above, the S-module S^M^xS) has length n2 for all TZ^O, and by

hypothesis, S^JVP+I) has the same length; hence Mn+xS=Mn+I, and so

ic n (M^+^^S
~n^0' '

Thus R=SlxS. Q.E.D.

We can now proceed to a characterization of (( pseudo-rational double points ".

Let R be a two-dimensional normal local ring having a pseudo-rational singu-

larity. Proposition (8.1) and Proposition (1.2) (and cf. § 9) lead to the following
conclusion:

a) If

R=Ro<Ri<.. .<R, (^o)

is any sequence in which each R, {o<i<,n) is the local ring of a point on the scheme

obtained by blowing up the maximal ideal of R,_^, then R^ is normal.

If R has a rational singularity, Theorem (4.1) shows that:

b) R can be desingularized by quadratic transformations alone, i.e. there exists
a sequence

Spec(R)=X^X,<-X2<-. . .^-X,

of quadratic transformations with X^ regular.

Conversely:

Proposition (23.5). — Let R be a local ring with maximal ideal m such that for all n^o,

^mn)=n2. If the preceding condition a) {respectively b)) holds, then R is a two-dimensional

normal local ring of multiplicity 2 having a pseudo-rational {respectively rational) singularity.

Proof. — Lemma (23.4) shows that R, and hence R itself, is a two-dimensional

Macaulay local ring of multiplicity 2. Certainly R is normal if a) holds. If b) holds

then, since quadratic transformations do not affect non-closed points, we see that for

each prime ideal p in R other than m, Rp is regular; by Serre's criterion [EGA IV, (5.8.6)]

(or otherwise) we conclude again that R is normal.

Assume that a) holds. Let g : W -> Spec(R) be a projective birational map.

By the theorem on elimination of points of indeterminacy by quadratic transformations

and normalizations (cf. Appendix), and in view of a), there exists a sequence

Spec(R)=Zo41-Z,42 .Z,<-.. .4gZ,

of quadratic transformations such that Z^ is normal and dominates W. What we must

show is that H^^-o. Similarly, if b) holds, we must show that H^xJ-o.
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Corollary (23.2) (with I===m) shows that ?(^=0. It is equivalent to say

that R^i^zJ^o. We will show in a moment that every two-dimensional local

ring R' on Z^ either is regular or satisfies the same hypotheses as R. Thus if R" is the

local ring of the point which is blown up to give the map g^, then we can repeat the

argument to show that R^^zJ-o- (Remarks: (i) The sheaf R^fi^) is concen-

trated at the point which is blown up; hence to show that this sheaf vanishes, we may

first replace Z^ by Spec(R") [EGA III, (i .4.15)]. (ii) IfR" is regular, Lemma (23.2)

still applies since ^{mff))n=^\ for n>_o. Also, in this case, all the local rings which

appear on Zg but not on Z^ are regular.) Since Z^ is normal, ^(^zj^^z? and

so the exact sequence

o-^R^A) -^R^i^)^) ->^(R^A)

0 0

(arising from the Leray spectral sequence for g^g^) shows that R^o^) (^)=o.

Continuing in this way we conclude ultimately that R^^o^o . . . og ) (^ ) == o, i.e. that

H^z^^0 as required. In a similar way, we can see that Hl{ffl^)=o.

So let R' be any two-dimensional local ring belonging to a point on Z^. Then R'

dominates R, and as in the proof of [EGA IV, (7.9.3)], there is a unique local ring R*

belonging to the quadratic transform of Spec(R) such that R* and R' have the same

completion. Let S, M, x be as in Lemma (23.4). Then R* is of the form S*/^,

where S* is a three dimensional local ring on the quadratic transform of S, and x is the

transform of x in S*, i.e. x ==xt~2 where t is a generator of MS*. If R' (and hence R")

is not regular, then A:*e(M*)2, ^(M*)3 (M* being the maximal ideal of S*), and it

follows easily that all the hypotheses of Proposition (23.5) which hold for R also hold
for R'. This completes the proof.

Remark. — For the case of complex spaces, the preceding characterization of

rational double points is given in [6; Satz i].

§ 24. Explicit description of pseudo-rational double points.

Let R be a two-dimensional normal local ring of multiplicity two having a pseudo-

rational singularity. Since ^(m2)^ (Corollary (23.3)) every minimal basis of the

maximal ideal m of R consists of three elements. We shall classify R by studying its

behaviour under successive quadratic transformations, and by relating this behaviour

to certain conditions involving, more or less explicitly, a suitable basis {x,y, A of m.

We also prove converse statements of the type: cc IfR is any local ring, with maximal

ideal m generated by elements x, y, ^ satisfying... then R is a two-dimensional normal

local ring having a (pseudo-) rational singularity. " In other words the conditions to

be introduced characterise (pseudo-) rational (< double points ".
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RATIONAL SINGULARITIES 257

Basically, the idea is to take a two-dimensional local ring of multiplicity two whose

maximal ideal is generated by three elements, say x,y, z, to subject this ring to a succession

of quadratic transformations, and to see what conditions on x, jy, ^, guarantee that the

resulting rings are all normal (cf. Proposition (23.5)). This approach involves a detailed

and rather tedious examination of numerous cases. For orientation, the reader may

analyse a ring of the form

^[X.Y.Z^Z^X.Y))

(k a field) from this point of view.

*
* iff

Suppose now that R has a rational singularity, and let /: X -> Spec(R) be a desin-

gularization. We introduce a notation which conveniently conveys some useful infor-

mation about exceptional curves on X. A symbol of either of the following types

a
a-b

b

where a, b are positive integers will stand for a pair of integral exceptional curves E, F,

on X such that A°(E)==^, hQ{'F)==b, and E n F is non-empty. We can combine these

symbols into diagrams such as

g

a—b—c—e—f—h

d k

which stands for a configuration of nine integral exceptional curves E^, Eg, . . ., Eg such

that A°(Ei)==^3 h°{'E^)==b, . . ., h°(Eo)=h, and such that the non-empty intersections of

pairs of E's are those — and only those — indicated by the short straight lines.

We will speak of such diagrams as configuration diagrams. When we speak of the

configuration diagram on X, we mean the diagram which contains as many integers

as there are exceptional integral curves on X — in other words the largest configuration

diagram associated with exceptional curves on X.

* *

If R has a rational singularity, then, while classifying R as indicated above, we will

obtain the configuration diagram on the minimal desingularization X of R, as well as

the group H==H(R), which is in this case isomorphic to the divisor class group of R

(cf. (16.3), (17.1)).

We will say that< ( the exceptional curve on X is of type C ^ i f C i s the configuration
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diagram on X. It will be found that the following types (and no others) of exceptional
curves can occur on X:

A,

B.

Cn

D,

G;

F.

-2—2-

- I — I

- I — I -

2 '' 1-3

: I -

{n>2 components).

H=Zn+r

(n^i components, including the first one).

H of order 2 I d , d=i or 2 (cf. following discussion).

(^3 components, including the last one).
H=Z,.

(72^4 components, including the last two).

H=Z^xZ^ if n is even; H==Z^ if n is odd.

H trivial.

H trivial.

Eg : i — i - H=Z3.

E.

Eo

— i — i — i— i — i

i

H=Z,.

H trivial.

(These are just the <( Dynkin diagrams 5?, cf. for example [N. Jacobson, Lie

Algebras, Interscience, 1962, pp. 134-135].)

It is always possible to determine the group H once the configuration diagram

on the minimal desingularization X is known (except for diagram B^, cf. below).

If E^, Eg, . . ., E^ are the integral exceptional curves then, by definition of H, we need

to know the intersection matrix ((E,.E,)) and also, for each z=i , 2, .. ., n, the

integer rf(E,), which is the greatest common divisor of all the degrees of divisors on E,.

As in the proof of Proposition (22.5), let C be the curve on X such that

^(—^^m^x- ^ce C==S^E, (^>o for all i) and since R has multiplicity two, we
have, as in (22.5)5

o=-K(C)=S^K(E,).
i

Since X is the minimal desingularization (E^.E^-^A^E,.), i.e. K(E,)^o for all z.

Hence K(E,)==o for all z, i.e. (E,.E,)=-2A°(E,).

The configuration diagram now gives us the intersection matrix because, given

two integral curves E+F on X such that E n F is non-empty, we have

(E.F)=max(A°(E),A°(F)) (Lemma (22.2)) .
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RATIONAL SINGULARITIES 259

Furthermore it follows that if, say, A°(E)^^(F), then rf(F) divides — and hence

is equal to — A°(F). This remark gives us d(F) for all the integral curves represented

in the above configuration diagrams except for the one represented by the integer c < i "

in the diagram 1—3 or in the diagram 1 — 2 — 2 — . . . — 2 . In the first case, if E (resp. F)

is the curve represented by < c i " (resp. (< 3 5?) then as we have seen

(E.E)=-2 (E.F)=3

Thus af(E) divides both 2 and 3, and so d(E)=i. In the remaining case, i fE is the curve

represented by " i " in 1-2-2-... then (E.E)--2, so that d==d{E)=i or 2.

Since H l(E)==o, it is seen at once that any divisor on E of positive degree is linearly

equivalent to an effective divisor on E, and it follows easily that d==i if E has an
(R/m)-rational regular point and d==2 otherwise.

It can now be verified by simple computations with generators and relations that
in each case A^, . . ., Eg, H is as specified.

* *

We begin the detailed description of pseudo-rational double points R by considering

the associated graded ring of R with respect to m, i.e. the ring (Bm'W4'1. Let
n^O

k=Rlm, let X, Y, Z be indeterminates, and let cp : A;[X, Y, Z] -> ® mn|mn+l be a
n^O

surjective homogeneous homomorphism of degree zero. (Such a homomorphism can be

determined, for example, by choosing a basis {x,y, ̂ } of m and setting (p(X)

(respectively cp(Y), 9(Z)) equal to the image of x (respectively y, ^ in m/m2).

Since dim^mn|mn^l)==2n+l tor all n^o (Corollary (23.3)) we see easily that the
kernel of cp is generated by a single form Q,(X, Y, Z) of degree two.

For the (unique) quadratic transformation Ti->Spec(R), the closed fibre is

C = Proj( © rn^m^1). C may be identified with the projective plane curve (not neces-

sarily reduced) whose homogeneous equation is Q(X,Y,Z)=o. One finds that the

singular locus of C is a linear variety of dimension 2—r, where T is the least number of linear

combinations of X, Y, Z in terms of which Q can be expressed, i.e. T is the smallest

possible dimension of a subspace V of kX+kY+kZ such that Q lies in the

subalgebra k[V] ofA;[X, Y, Z]. (If k has characteristic =(= 2, this results easily from the

fact that Q^ can be written as a linear combination of T squares of linear forms. If k has

characteristic 2 one may, for example, make use of Zariski's mixed Jacobian criterion

for simple points (cf. [23]). Details are left to the reader).

If R' is the local ring of a closed point on T^, then R'/mR' is the local ring of a

closed point P' on C. If P' is a regular point of C, i.e. if R'/mR' is a discrete valuation

ring, then since mR' is principal, the maximal ideal of R' is generated by two elements

and so R' itself is regular. Thus, when r=3, we have:

CASE I: C=Proj((Bmn /mw + l) is a regular curve.
n>_0
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260 J O S E P H L I P M A N

Here R is completely desingularized by one quadratic transformation, and the

exceptional curve C either is a non-degenerate conic, smooth over k, or is defined by

an equation of the form dX2^ bY^ Z^o with k of characteristic 2 and [k\a, b) : k2] =4.

According to the remarks at the beginning of this section, H is cyclic of order 2/rf, where

d==i or 2 according as G does or does not have a ^-rational point.

Suppose conversely that R is any local ring with maximal ideal m such that

^mn/mn+l^[X, Y, ZJ/Q (A-R/m)

where Q, is a form of degree 2 such that the projective plane curve Q(X, Y, Z)=o

is regular. Then as above R is desingularized by one quadratic transformation, and so

by Proposition (23.5) R is in fact a two-dimensional normal local ring having a rational
singularity.

*
* *

We consider next the case T== 2. Then, as we have seen, C has a unique singular

point, and the corresponding point P on the quadratic transform T^ of Spec(R) is the
only possible singular point of T^.

Over the algebraic closure of A:, (^becomes a product of two linear factors. Let K

be the splitting field of G, i.e. the least field containing k over which Q, splits into two

linear factors. Since clearly Q(X, Y, Z) is determined by R up to a A;-linear change of

variables, K depends only on R. If Q is a product of linear factors over k then K =k.

Otherwise Q, is irreducible and assuming, as we may, that

Q(X, Y, Z)=aX2+bXy+cY2 ^ 6, cek)

we have a+o, and K is obtained from k by adjoining a root of the equation
^X 2+&X+^==o; thus [K:A:]==2.

Now we examine the behaviour of Q and K when R undergoes a quadratic

transformation. Assuming always that Q= aX2 + bXY + cY2 as above we have, with

suitable generators x,y, ^ of m, and elements a, [B ,yofR whose residues mod. m are a, b, c
respectively, ,

a^+pr^+yyem3.

Let R' be the local ring of the point on T^ corresponding to the unique singular point of C.

We know that R' also has a pseudo-rational singularity. When G is identified as before

with the plane curve, defined by Q(X, Y, Z)=o, the singular point has co-ordinates

(o, o, i ) ; hence R' has the same residue field k as R, mR' = -s:R', and the maximal ideal m'

of R' is generated by x ' ^ x ^ y ' ^ y ^ ^=^ Since Tn'R'^R'^^R', division of
the above relation by ^ gives

a(^)2+(B(^y)+y(y)2e^R'. .

IfR' is regular, there is nothing more to be done: IfR' is not regular, then R' is again

a pseudo-rational double point (cf. proof of (23.5), for example), and

a(^+(B(</)+Y(y)^'nx'
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(otherwise z'e«/)R' and so m'==(A;',y)R'). If we replace R, x,y,^ by R', A:',y,^' in

the above discussion about graded rings, we see then that the corresponding Q; is of the form

Q'(X, Y, Z)=aX2+b•Xy+cY2+dXZ+eyZ+fZ2 [a, b, c as before, d, e.fek).

Setting Z=o we see that r'^2. If T'=3 we have achieved a reduction to Case I.
Suppose that r'=2. We can then write

Q:(X, Y, Z)-(^X+^Y+r,Z)(^X+^Y+r,Z) Q&,, ̂  r, algebraic over k)

If Q splits over a field L^k, then setting Z=o, we see thatj&i, q^p^ ^ may be assumed

to lie in L, and then comparison of the coefficients of XZ, YZ in the two expressions

for Q' shows that ^, ^ also are in L; in other words Q,' splits over L. Conversely if Q'

splits over L, then we may assume that p,, q,, r,eL, and again setting Z=o, we see

that Q, splits over L. So Q^and Q; have the same (least) splitting field, namely K.

The next step, if R' is not already regular, is to blow up R' so that we have a
sequence of quadratic transformations

/:T,->T,-^Spec(R).

We are interested in the closed fibre /-^{m}) on T,. The irreducible components

of this fibre are of two kinds, namely those belonging to the inverse image C' of {m'}

and those belonging to the proper transform G* of C. C* can be identified with the curve
obtained by blowing up the singular point on C.

Lemma (24. i). — Assume that R' is not regular, and let C', C", K be as above.

(i) If T'=3, then, as in Case I, C' is regular and Tg is regular. In this case, if K=k
then C' has a k-rational point, so that G'^P^.

If T'=2, then C' has a unique singular point, and Tg is regular outside this point. In

this case, if K==k then C' is a pair of projective lines over k meeting at the singular point ofC'-,
if K=t=A: then C' has no k-rational regular point.

(ii) If K+k, then C* is k-isomorphic to the projective line P^. If K==k, then C* is a
pair of disjoint projective lines over k.

(iii) Each point of C n C' has residue field K and is regular on both C* and C' {hence
also on Tg). The intersections of G* and C' on Tg are all transversal.

(iv) If K=k and T'==2, then each irreducible component of G* meets precisely one
irreducible component of C' (just once, transversally) and vice-versa.
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Granting Lemma (24.1) for the moment, suppose further that R has a rational

singularity. Then R can be desingularized by successive quadratic transformations,

so we can deduce, by repeated application of Lemma (24.1), a complete description of the

case T=2, as follows.

CASE II a: C = Proj( (B rrfVm^1) is a reduced curve with two distinct components.
n> 0

In this case K==A; and the exceptional curve on a minimal desingularization

of R will be of type i — i — i — i — . . . — i , each component being isomorphic to P^.

CASE lib: C=Proj((B mn|mn+l) is reduced and irreducible, and has precisely one
1 L. ' ± n>o

singular point. ~

Here K + A and the exceptional curve on a minimal desingularization will be of

type i — 2 — 2 — 2 — . . . —2. The components for which h°= 2 are A;-isomorphic to P^,

and the component — call it G" — for which h° == i is just like C' in (i) of Lemma (24. i).

H has order 2 I d , where d==i if G" has a ^-rational regular point (in which case C"

is A:-isomorphic to P^) and d==2 otherwise.

We return now to the proof of Lemma (24. i).

We begin with (iii). Let S be the local ring on Tg of a point through which both C'

and G^pass, and let m'S^S, so that t=o is the " local equation 5? ofG'. Then S I t S

is the local ring of a point on the plane curve Q,'(X, Y, Z)=o, and since ^ \t vanishes

along G*, S/(^, ^ /^)S is the local ring of a point on the scheme

Proj(/:[X, Y, Z]/(Q:(X, Y, Z), Z)) ^Proj(^[X, Y]/Q(X, Y))

which is a reduced zero-dimensional scheme, all of whose points have residue field K.

Thus t, ^ ft are regular parameters in S (and in particular ^ jt==-o must be the local

equation of G*). This proves (iii).

It is now clear that G* is a regular curve. When K =t=A:, C and C* are irreducible;

in this case, to see that G* ̂  P^, we need only note that the field of functions k{C*) ==k{C)

is a purely transcendental extension of K. Indeed, if {u, y, w) is a generic point of the plane

curve C, then ufv satisfies the irreducible equation

a{ulvY+b{ulv)+c=o

so that K=A;(z//y). Hence

k{C)=k{ulv,wlv)=K{wlv)

and since A;(G) cannot be algebraic over k, wfv is transcendental over K, as required.

The (straightforward) proofs of the remaining assertions of Lemma (24.1) are left

to the reader.

Finally we examine the converse situation, namely let R be any local ring with

maximal ideal m such that

©m'/m^^EX.Y.Zj/Q, (^=R/m)
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where Q, is a form of degree 2 such that the projective plane curve Q,(X, Y, Z) = o

has just one singular point. As above we find that this condition is " stable " under

quadratic transformations, namely ifR' is the local ring of a closed point on the quadratic

transform ofR, and ifm' is the maximal ideal ofR', then R' is " at least as good as R "
in the sense that either R' is regular or

© (m'^Tny^s^pC, Y, Z]/Q;

where Q' is a form of degree 2 such that the curve Q'=o has at most one singular

point. (We have tacitly made use here of the fact that the condition " X(m")=»2 for
n^o " is stable, cf. proof of (23.5).)

Moreover, if R is normal, then so is R'. For R' is a Macaulay ring, so we need

only check that Rp is a discrete valuation ring for every height one prime ideal p in R'.

Now R p = R p n R unless p n R = m ; so we need only check those p which contain m.
For such p, since R'/mR' is the local ring of a point on the curve Q(X, Y, Z) =o, which

is a reduced curve, we see immediately that pRp=mRp. Thus pRp is principal and
so Rp is a discrete valuation ring.

It follows now by (23.5) and (i 6.2) that i fR is normal, then R has a pseudo-

rational singularity, and if the completion 6. is normal, then R has a rational singularity.

Actually in specific examples it may be possible to check, without first assuming R to

be normal, that R can be desingularized by quadratic transformations. Then again

(Proposition (23.5)) we can conclude that R has a rational singularity.

Examples. — Let k be a field, and let a be an element of k which is not a square
in k. Let b^o be an element of A:, and let n be a positive integer:

(j) R=^[[X,Y,Z]]/(X2-ffY2+&Z2»+l).

We find easily that R is desingularized by n quadratic transformations and that H
is trivial.

(n) R=^[[X,Y,Z]]/(X2-aY2+^Z2»+2)

(with [^(a, b} : A2] =4 ifk has characteristic 2).

After n quadratic transformations, the " local equation " X2—aY2+^Z2"+2=o

becomes ^—dY^+bZ^o, and then one further quadratic transformation gives a

desingularization (cf. Case I). In the total exceptional curve on the desingularization

the component G" (cf. description of Case II b) is the regular projective plane curve
whose equation is

^-d^+bV=o.

The group H is trivial if this curve has no ^-rational point. Otherwise H is of
order two.

(iii) A more complicated — in appearance — example along these lines is the
ring discussed by Scheja in [19; Satz 6].
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* *

We turn now to the case T=I . We may assume that Q(X,Y, Z)=Z2, so that

with a suitable choice of generators x,y, ^ of m we have ^em3. If R' is the local ring

of a closed point on the quadratic transform ofR, then mR' is principal, say mR'=^R'.

From the fact that R'/mR' is the local ring of a point on the two-fold line Z^o, we

find that the image of ^\t in R'/mR' is a non-^ero element whose square vanishes. In

particular, a\t is a non-unit in R', so that either mR'==A:R' or mR'==^R'. We may

therefore assume, for definiteness, that t==x. Then R'/(^ <:/A:)R' is the local ring of a

point on the line Z=o, and it follows that the maximal ideal m' ofR' is generated by

^=x,^=^lx, and y:=F(j^) where F(T)eR[T] (T an indeterminate) is a monic

polynomial of lowest possible degree such that F(j;/A:)em'. Clearly the degree of F
is also the degree [R'/m' : R/m].

The relation ^em
3
 can be written in the form

^—G^ye^m2

where G(U, V)eR[U, V] (U, V indeterminates) is a homogeneous form of degree 3.
R' being as above, with mR'=xR', we obtain upon dividing by x2,

(i) (^-^(i.j^e^/^R'

Now R' is regular if and only if G(i,^/A:) is a unit in R'. For if G(i,j^) is a unit,

then (i) shows that xe^lx)R\ so that m' is generated by the two elements ^ / x andy,

and R' is regular. Conversely, if R' is regular, then m' is generated by two of the three

elements x, ̂ x,y\ But x cannot be one of these generators, since R'/A:R' contains a

non-zero nilpotent element, as we have seen. Hence A;e(m')2, and ^ x , y ' are regular

parameters for R'. It follows therefore from (i) that G(i,^/A:) is a unit (otherwise
W^WY

Let G(U, V) e^[U, V] (k= R/m) be the form obtained from G(U, V) by reducing

the coefficients modulo m. G(U, V) is not identically ^ero. For, if all the coefficients

of G(U,V) were in mR'=^R', we could divide (i) by x2 to obtain an equation of

integral dependence for ^x2 over R'; but R' is normal (since R is assumed to have a

pseudo-rational singularity) and so we would have ^/^eR', i.e.

^e^R'^mR'

which is not true, as we have remarked. It follows from the preceding paragraph

that there is a one-one correspondence between the set of non-regular R', and the

set of irreducible factors of G(U, V) over k. In particular, there are at most three
such R'.

We assume now that R' is not regular, i.e. that G(i,j//^)Gm'. IfF(T) is as above,

then there is a polynomial P(T)eR[T] such that

G(i,T)-F(T)P(T)emR[T]
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(because, " modulo m ", F(T) is the minimum polynomial forylx over the field R/m).
It follows from (i) that

{zlx^-xF^^f^^ex^^R'+xmR'
i.e.

(2) {z')2-x'yP^|x)ex'z''R.'+(x')2R',

The situation is very simple if P(j>^) is a unit in R', because then the graded ring of R'
with respect to m' is isomorphic to

k'[X, Y, Zj^-aXY-AXZ-cX2)

( k ' = R ' l m ' ; a, b, c e k ' ; a+o) and this is seen at once to be the homogeneous coordinate

ring of a smooth plane conic having a^'-rational point. Thus (Case I above) R' will
be completely desingularized by one quadratic transformation.

P(j»^) is certainly a unit if G(U, V) has no multiple factors over k. From the

foregoing considerations, we now obtain quite simply the following cases. (Details are
left to the reader.)

CASE m a. — G(U, V) is irreducible over k. R has a rational singularity, and the

total exceptional curve on a minimal desingularization of R is of type i —3. One

component is isomorphic to the projective line over k, while the other is (A.) isomorphic
to the projective line over the splitting field of G.

CASE m b. — G(U, V) is the product of a linear and an irreducible quadratic/actor over k.
R has a rational singularity, and the total exceptional curve on a minimal desingulariza-
tion of R is of type 1-1-2. Two of the components are isomorphic to projective

lines over k, while the third is isomorphic to a projective line over the splitting field ofG.

CASE M e . — G(U, V) is a product of distinct linear factors over k. R has a rational

singularity, and the total exceptional curve on a minimal desingularization ofR is of type

x!

all components being isomorphic to projective lines over k.

Conversely the preceding arguments show that if R is any local ring with maximal
ideal m such that

l^m'Vm^s^X, Y, Z]/Z2 (A=R/m).

and such that m is generated by three elements x,y, z satisfying a relation of the type

^-G(x,^)ezm2

where G(U, V)eR[U, V] is a form of degree three such that G(U, V) is non-zero and
has no multiple factors over k, then R can be desingularized by quadratic transformations,

and consequently (Proposition (23.5)) R has a rational singularity.
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*
* *

There remains to be considered the possibility that G(U, V) has multiple factors.

With a suitable choice of x,y, we may assume that either G(U,V)=UV2
 or

G(U,V)=aV3 (o+aeA).

We first examine the case G(U, V)=UV2. According to our previous considera-

tions there are precisely two non-regular points on the quadratic transform of R, namely

those in whose local ringj^, xfjy, ^\y (respectively x , y l x , ^fx) generate the maximal ideal.

The first of these will be desingularized by one quadratic transformation. The second —

call it R' — is more interesting. For this R', equation (2) becomes

(3) (^-(^re^R'+^R'

^'=x,y'==-ylx^ ^==^,lx). This shows first of all that R' either is of a previously considered

type (Case II a, II b, III b or III c) or is again of the type under discussion at this

moment. In other words we have a situation which is (< stable " under quadratic

transformations.

To complete the description we must examine the behaviour of exceptional curves

when R' is blown up. Let G, G*, G' have the same meaning as in the discussion of

Case II (but relative to the rings R, R' which we are now considering). Let R" be

the local ring of a closed point on the surface obtained by blowing up R', through which C*

passes. In R" there is then a prime ideal p such that p n R' contains x ' , but p n R43 m'.

Ky (3) P0^ also contains z'. Hence rn'R"^^' and x"=x'\y\ ^ ' = ^ \ y ' are

non-units in R". These conditions determine R" uniquely; the maximal ideal of R"

is generated by A:",y==j/, and ^//.

From (3) we obtain, in R",

(4) (^')2-A;"y'eA;'/^/R"+(A:")2R".

As a consequence, we find that R" is not regular. To see this, note that the associated

graded ring of R' with respect to m' is of the form

^[X,Y,Z]/Q'(X,Z) O^R'/m')

Q" being a form of degree 2 (cf. (3)); it follows that R^/rn'R" is not regular, since it

is the local ring of the singular point (o, i, o) on the curve Q,'(X, Z)=o. Hence ifR"

is regular, then y^m")2 and x'\ ^ff are regular parameters. But (4) shows that, with

suitable a, (BeR",
(^')2+a^/^/+P(^")2=^y'e(m")3

which cannot be if A:", ^" are regular parameters. So R" is not regular. However (4)

also shows that R" is completely desingularized by one quadratic transformation, the

inverse image G" of {in"} being isomorphic to P^ (cf. Case I).

By definition C* passes through R". Also every component ofC' passes through R"

(since every component of the curve Q^X, Z)==o passes through (o, i, o)). Hence G"
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is met by the proper transforms of G* and of the components of G'. It is simple to check

that through any point of G" there passes at most one integral exceptional curve other
than G".

If R has a rational singularity, it will be desingularized by quadratic transfor-

mations. By repeated application of the foregoing considerations, it is now straight-
forward to deduce the following:

CASE IV. — G(U, V) is the product over k of a linear factor and the square of another

(distinct) linear factor. The total exceptional curve on a minimal desingularization of R
is of one of two types:

A
a ) i — i — i — . . . — i — i /

r components
(^3)

b ) I — I — I — . . . — I — I — 2

r components

The components are all isomorphic to P^ except for the component for which A°==2,

and this component is A-isomorphic to the projective line over a quadratic extension of k.

We leave to the reader the formulation and proof of a suitable converse. [Note:

if p is the prime ideal {x^ ^)R', then p is the only prime ideal in R' containing mR',
and (3) shows that pR^ is principal, namely pRp=(^')Rp).

* *

We deal finally with the case G(U, V) = aV3 {a + o). For suitable ̂ , ̂  genera-
ting m, we have then

(5) ^2 + a^3 + ̂ x2 + y^e {x3^ x^\ ̂ ,j^)R

with T], a, p, yeR, 7 ] = i , a = a (where < c — " denotes (c residue mod. m "). The beha-
viour of R will depend on the nature of the form

P(X, Z^Z^pZX+yX^X, Z] (^=R/m).

If P(X, Z) is not a square in A[X, Z] we leave (5) as it is. When P(X, Z) is a square,
there is an element 8 in R such that

V2 + ̂ x2 + y^4 = (^ + §x2)2 mod (^, ^fm.

Setting w==^+Sx2 (so that (^, ^)R= (w, ^)R) we obtain a relation

T]W + oy3 + (3W + y'^G (̂ j;, A:y, xyw,fw)R

where T]' =E i (mod. m) and (B', y' are non-units. Hence we obtain

73"w2 + aj3 + p^ + a^G (r̂ , A;2/, xyw, fw) R
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with T]"= i (mod.m). We may as well assume that T)"=I; also we may as well

write ^ for w; in other words if P(X, Z) is a square, then there are generators x,y, ^
of m with

(5') ^ + ay + p^ + o^e (r̂ , ̂ y, xy^f^R

By performing quadratic transformations, and with arguments of the type we have

already used, we now obtain the following classification. Details are left to the reader.

CASE V. — G(U, V) is a constant multiple of the cube of a linear form over k. R has

a rational singularity; the total exceptional curve on a minimal desingularization is as

indicated below under the appropriate conditions on (B, y, p, o. Conversely, if R is any
local ring with maximal ideal m such that

©m^m^^ApC.Y.ZJ/Z2

and such that m has a basis x, y, ^ satisfying a relation of the form (5) or (5'), with

7] = i (mod. m), a a unit, and (B, y, p, CT subject to one of the following conditions, then R
has a rational singularity.

CASE \ a. — The form P(X, Z) is irreducible in k[X, ZJ:

I — - I — 2 — 2

CASE V b. — P(X, Z)==(Z+^X)(Z+?X) with p, q in k, p ^ q :

i

i — i — i — i — i

CASE V c. — P(X, Z) is a square in k[X, Z] and p is a unit in R:

i

i — i — i — i — i — i

CASE V d. — P(X, Z) is a square in k[X, Z], p is a non-unit in R and a is a unit in R:

i — i — i — i - — i — i — i

This completes the classification of rational and pseudo-rational double points.

§ 25* Rational factorial rings.

In this final section we give necessary and sufficient conditions for R to have a

rational singularity and a trivial group H. The conditions are expressed in the form

of relations satisfied by suitable generators x, y, ^ of the maximal ideal m. Because of
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Proposition (22.5) and the classification in § 24, we already have such relations; the idea

now is to choose x,y, ^ so that the relations become as simple as possible. In particular

we characterize all complete two-dimensional factorial local rings with algebraically closed
residue field (Theorem (25.1), Remark (25.2)).

Theorem (25. i). — Let R be a two-dimensional local ring with maximal ideal m such

that R/m is an algebraically closed field of characteristic =[=2,3,5. Assume that R is not regular.

The following conditions are equivalent:

(i) The completion R is factorial.

(i)' R is normal^ and the henseli^ation R* of R is factorial.

(ii) There exists a basis [x,y, ̂ } of m and units a, (B in R such that

• ^ + oy/3 + (3^ = o.

(iii) There exists a basis {x*, y , ̂ } of the maximal ideal m* of R* such that

^r+{yr+(xr=o.
(iv) There exists a three-dimensional regular local ring S with regular parameters u, v, w

such that

R^SI^+u^+w6).

Proof (i)o(i)'. — R can be desingularized if its completion R is normal

(Remark (16.2)); hence the equivalence of (i) and (i)' is given by (17.3) and (17.2).

(i)=^(ii). — By (17.3) and (17.2), (i) implies that R has a rational singularity

and that H(R) is trivial. Proposition (22.5) shows then that R has multiplicity two.

Since R/m is algebraically closed, c( i " is the only integer which can appear in the

configuration diagram on a minimal desingularization of R. The only possible diagram,

then, is Eg (cf. earlier part of§ 24) and we must therefore be in Case V r f o f § 24, so that

for a suitable basis {x,jy, ̂ } of m there is a relation

(6) ^+^+tx^+^+px^+q^f+rxy^+sf^=o

where a and (B are units in R, and p, q, r, s, t are in R (this is derived from equation (5')

in § 24, where p is a non-unit i.e. pe(^,jy, ^)R; also we have put (B in place of cr).

Setting

^ == ̂  + (pl2)x3 + {rf2)xy + {sf2)f

we have

(^')2 + a>3 + t'x^y + p'^5 + q'x^f == o

for suitable a', t1\ (B', q\ with a' == a, (B' = (B (mod. m). In other words, for suitable x,y, ^
we may assume in (6) that p=r==s=o.

Next, setting

y=J/+(^73a)•y2---(^/3a)A'3 {u arbitrary)

we find similarly that in (6) we may assume further that q=ux.
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Finally, setting

x''=x-}-vy

and choosing suitable values for u, v we find that in (6) we can take p=q=r==s=t=o,
proving (ii).

(ii)=>(iii). — Since R^/w^R/m is algebraically closed of characteristic +3,5

and R* is henselian, a is a cube in R* and (B is a fifth power. Since m* = mR* it is now
clear that (ii)=>(iii).

(i i i)=>(iv)=>(i). — Since R is also the completion of R*, it follows at once

from (iii), in view of the Cohen structure theorem, that R is a homomorphic image of

R^S/^+^+w5). But in Case V d of § 24 we have seen that R is factorial; since

dim.R=dim.R=2, we must therefore have R=R. Q.E.D.

Remark (25.2). — If R/m has characteristic 2, 3, or 5, we must change

Theorem (25.1) somewhat, (i) and (i)' remain the same, but for the relation in (ii)

we have two or more possibilities, as indicated below, with a and (3 units in R. (iii) will

now state that a and (B can both be assumed to b e i i f R is henselian. The corresponding
change in (iv) is obvious.

Characteristic 5:

a^+py+^Y^4

where y is one of:

a) o;

b) y.

Characteristic 3:

a^+y+^^yy
where y is one of:

a) o;

b) x3;

c ) x\

Characteristic 2:

^ay^-P^T^
where y is one of:

a) o;

b) ^3;

c ) ^y\

d) x2^

e) xy.

Proofs are omitted. As in (ii) of Theorem (25. i), they are computational (though

somewhat more involved, especially for characteristic two).
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Remark (25.3). — Let R be a two-dimensional normal local ring with maximal

ideal m. Without any further assumption on R/m, we have actually shown that R

has a rational singularity, a trivial group H, and the configuration diagram Eg if and
only ifR satisfies (ii) of Theorem (25.1) (cf. also Remark (25.2)).

The other types of rational singular points with trivial group H can be

discussed similarly. The results are given below. For simplicity, we assume

that R/m has characteristic +2. Once again proofs are computational and are
omitted.

Configuration

Diagram Relation on suitable generators x,y, ^ of m.

^+^3+p^+Y^2+8y=oG, : 1-3

(a, (B, Y, 8eR, and if a, (B, y, 8, are the respective residues
mod. m, the form

aX3 + ̂ X2Y+ yXY2 +8Y3

is irreducible over R/m).

^+f+^=oF. I — I — 2 — 2

( — a p not a square in R/m; R/m of characteristic +3)
If R/m has characteristic 3

a^+y+P^Y^y

with a, (B as above, ^==0 or i.

^+i+ay+p^==oB. : 1 — 2 — 2 — . . .—2

(n components) (—oc(B not a square in R/m).
Or:

^+ay+(B^=o

where a, (B are such that the curve

Z^aY^pX^o

has no rational point over R/m.

Example (25.4). — Let R be henselian and suppose that R/m is the field of real

numbers (or, more generally, any real closed field). From the preceding, we see that R
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has a rational singularity and trivial H if and only if m is generated by x,y, ^ satisfying
one of the following relations (1):

^+f+^=o (£3)

^+f+x^=o (FJ

^+y+^=o (BJ
e^+f+^^o (BJ (^1)

APPENDIX: TWO FUNDAMENTAL THEOREMS ON SURFACES

§ 26. Elimination of indeterminacies by quadratic transformations and

normalization.

Throughout this section S will be an arbitrary scheme (not necessarily separated),

and 9 : X-^Y will be an S-rational transformation (== (c S-application rationnelle 9?

[EGA I, § 7. i ]) of S-schemes X, Y, where X is a surface and Y is separated and of finite
type over S. Associated with 9 is the diagram

X Y

where G is the graph of 9 [EGA IV, (20.4.2), (20.2.7)]. A point of indeterminacy of 9
is a point ofj&(G) at which 9 is not defined.

Suppose now that X is integral, with field of rational functions K, and let /: X'-^X
be a separated birational map (X' integral). We have a commutative diagram

Spec(K)

(birational) / \^

/ ^ '<
X'———-——^X'XgY

/ "«

X——————^Y
<p

where ^ is a rational section whose domain of definition is the same as that of c^of.

The graph G' of ^of is the (reduced) closure of the image of Spec(K) in X'XgY;

G' is birational and of finite type over X'. Identifying X'XgY with X'Xx(XXgY),

(1) We assume that R is not regular.
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we see at once that Spec(K) ->X'XgY factors through X'XxGcX'XgY; thus G' is

a closed subscheme of X'XxG. (In fact G' is just the join of X' and G over X.) We

may regard ^ as a rational section of G' over X'; then if F is the graph of ^ we have a

commutative diagram

r ̂  G'\ /
X'

from which we conclude that ^ and 9 of have the same points of indeterminacy.

We may — and, for simplicity of language, we shall — regard X and X' as models,

i.e. as collections of local domains with quotient field K; then/becomes the map which

associates to each local ring R'eX' the unique local ring ReX such that R'dominates R.

When we consider G' in this way, the domain of definition of <po/ (i.e. that of^p) consists

of those R'eX' which dominate an element of G'(equivalently R'eG') (cf. [EGA I,

§ 6.5]); thus the points of indeterminacy of (po/ are those R'eX' which are dominated by, but

not equal to, some element of G'.

* *

We say that a valuation v of K has center R' on X' if v dominates R'. We say

that v is exceptional (for <p) if it has a center on G which is not a closed point of G, while

its center on X is two-dimensional. G, being birational and of finite type over X, is

of dimension <^ 2; thus the center on G of an exceptional v must be one-dimensional,

so that v is discrete, of rank one. There are at most finitely many exceptional v. For X and G

have identical dense open subsets U^, U^, and so the closure of the center on G of an

exceptional v must be an irreducible component of G—U^; thus there are at most

finitely many possible centers, and each such center, being one-dimensional, is the center

of at most finitely many v,

The proof of the main theorem in this section will depend on the following property

of points of indeterminacy:

With the preceding notation (X being integral), assume that X' is normal. If R'eX'

is a point of indeterminacy for (po/ then R' is the center on X' of a valuation which is exceptional
for 9 (i).

Proof. — Suppose that R'eX' is dominated by, but not equal to, some Q'eG'.

By Zariski's < c Main Theorem 39 [EGA III, (4.4.8)] there is such a Q; which is residually

transcendental over R'. Let Q (resp. R) be the unique local ring on G (resp. X) domi-

nated by CY (resp. R'). Since G' is a subscheme of X'XxG, the residue field of Q' is

generated over that of R' by the canonical image of the residue field of Q; hence Q, is

residually transcendental over R. It follows at once that any valuation of K domi-

nating Q' (and hence also R') is exceptional for <p.

(1) The converse is also true provided that R
/ is two-dimensional.
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* *

Theorem (26. i) (Zariski). — Let 9 : X->Y be an ^-rational transformation, where X, Y

and S are as in the beginning of this section. Then there exists a birational closed map f: X'-^X

which is obtained as a succession of normalisations and quadratic transformations such that the

^-rational transformation cpo/ has no points of indeterminacy.

Proof. — Since the normalization of X is a disjoint union of normal surfaces, we

may as well assume that X is integral and normal. The preceding discussion shows

then that there are at most finitely many points of indeterminacy of 9, all of codimension

two on X. Let ^ : Z^X be ootained by blowing up a point of indeterminacy of 9,

and let h^: X^-^Z^ be the normalization ofZ^. If 90^0^ has no points of indeter-

minacy, we are done. Otherwise, repeat the process with (X^, 90^0^) in place

of (X, 9). Continue in this manner. If the process ever stops, the theorem is proved.

If not, there is obtained an infinite sequence X^-X^^-X^^-. . . of normal surfaces.

(In order to be canonical, we could have defined g^ to be the map obtained by blowing

up simultaneously all the points of indeterminacy of 9. ^, ^3, . . . would be defined

similarly). In any case, we are led to the following statement, which is somewhat
stronger than Theorem (26.1):

Theorem (26.2). — Let S, 9 : X->Y, be as above, X being normal and integral, with
field of functions K. Let

(S): X=Xo^X,^-X,<- . . .

be a sequence of normal surfaces and birational maps with the following property:

(P) For each i>^o there is a point x,eX, such that x, is a point of indeterminacy of

P0/!0^0 • • • % an^ ^ch that for all y(=f^.\(x^ the maximal ideal of 0^. is contained in a
proper principal ideal of 0^.

Then the sequence (S) is finite,

Proof. —Assume that (S) is infinite. For each i=o, 1,2, . . . choose a point A^eX,

such that x, satisfies condition (P). Each such ,̂ being the center of an exceptional v,

of which v there are only finitely many, some exceptional v must dominate infinitely many x,.

There results an infinite sequence of two-dimensional local rings

R^<R2<R3<.. .

with field of fractions K such that (i): the maximal ideal of each R, is contained in a

proper principal ideal of R^, and such that (ii): all the R, are dominated by a single

discrete rank one valuation v which is residually transcendental over them. This is impos-

sible, because (i) implies that the valuation ring R ,̂ must be equal to U R, (cf. argument

in middle of p. 392 of [25]). Q^.E.D.
i^O

§ 27. Rational contraction of one-dimensional effective divisors.

Let A be a noetherian ring and let /: X -> Spec (A) be a map of finite type. As

in § 13, a curve on X will be an effective divisor with one-dimensional support. Let
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EI, Eg, . . ., E^ be distinct integral curves on X with exceptional support (cf. § 12) such

that X is normal at every point xe[j E,. We say that U E, contracts to a point (over the

ground ring A) if there is a (separated) scheme Y of finite type over A and a proper

Spec(A)-morphism h: X-^Y such that A(UE,) is a single normal point P and such

that h induces an isomorphism of X — U E, onto Y—P.

{Remarks. — Such an h is easily seen to be birational (even if X and Y are not

reduced). Moreover, the local ring S of P on Y is necessarily two-dimensional, and the

condition that P be normal is equivalent to the condition that h^O^) = 0^ for the proof,

replace h by the projection h' : X'=XxYSpec(S) -> Spec(S), note that h' is proper and

birational, and that X' is a normal integral surface. Observe further that for xe[j E

^x'^x^^x and that, by normality, S^ D ^ x\ it follows that Y and h are unique
/ . i • \ \ a; 6 U r̂ ' .L
(up to isomorphism).) i

We say that U E, is rationally contractible if there exists h as above with R^ (<?x) = o.

Suppose now that h contracts UE, to P. Then UE.^-^P) is connected

([EGA III, (4.3.3)]). Furthermore, the intersection matrix ((E,.E^.)) is negative-

definite. (The proof of (14. i), with S in place of R, applies to the present situation.)

As in ([4, p. 131-132]) there exists among the curves C=Z;c..E. such that (C.E,)^o

for all i a unique smallest one, which is called the fundamental curve for UE...

We are now prepared for the generalization of M. Artin's contractibility criterion.

We reiterate that " curve on X " is to be construed as in the beginning of this section.

Theorem (27. i). — Let A be a metherian ring and let f : X -> Spec (A) be a projective

map. Let E^, Eg, . . .. E,, be distinct integral curves on X with exceptional support (relative to f)

such that X is normal at every point of U E,; assume further that U E. is connected and that the

intersection matrix ((E,.E^)) is negative-definite. Let C be the fundamental curve for U E,.

Then there exists h: X-^Y contracting U E, rationally over A to a point P if and only if x(C)>o.

When this condition holds, Y is projective over A, the multiplicity of P on Y is —(C^/A^G),

and Y is regular at P if and only if (G^—A^C).

Proof. — We first prove necessity. Let h: X->Y contract U E. rationally to the

point P, let S be the local ring of P on Y and let X'=XXySpec(S). X' is a normal

surface and the inverse image D' on X' of any curve D = 2:<f.E. is a curve on X' which

is isomorphic to D. The cohomology groups of D' can be considered as finite-length

modules over S, and the residue field of S is a finite algebraic extension of that of the

point Q.=/(UE.)eSpec(A) (since P is a closed point of the fibre on Y over QJ; thus

if we replace X by X' and A by S, the effect is merely to divide all the integers involved

in the theorem by the residual degree of P over Q. We may therefore assume to begin

with that A=S is a two-dimensional normal local domain (with maximal ideal, say, m),

that X is a normal surface with H^X, G^=o, that f=h is a proper birational map
and that UE, is the support of the closed fibre /-^{m}).
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By Proposition (3.1), the ideal Ttt^x ls divisorial. But the irreducible compo-

nents E^ of the subscheme defined by TTt(5x are defined by invertible G^-idesik; hence nt^x

is invertible and so defines a curve C'. By (ii) of Theorem (12.1), C' is the fundamental

curve C of UE^. Since H^fly vanishes (^ being a homomorphic image of fi^x); an(!

since H°(^c)==S/m (cf. proof of (3. i)), we have ^(G)=A°(C)=i>o.

Moreover, the powers ofm are contracted forf (Theorem (7.2)) , i.e. H^m^x)== mk

for all k^o; also H^m^x)^0 ^ce m^x ls a homomorphic image of ^x ^or some

finite ^; hence by (23.1)3

X(mfc)=-(G.G)Q+/;.

This shows that S has multiplicity — {C2) = — [C2) I h° {G), and that S is regular

(i.e. ^m2)=^ if and only if (C2)=--I=-AO(C).

For the remaining assertions, the proof of Theorem (2.3) of [3] can be imitated;

we indicate a bare outline, leaving the details to the interested reader. First of all,

the proof of Theorem 3 of [4], suitably modified, shows that if ')i{C)'>o for the funda-

mental curve of UE^ then ^(D)>o for every curve D==S^E^. (In making the indicated
i i

modification, all statements about the arithmetic genus J^(D) of a curve D are to be

replaced by statements about '^^D)'y in particular interpret j^(D)^o to mean ^(D)>o.)

Lemmas (11.4) and (22.1) then enable the argument c ) =>a) of Theorem (1.7) of [3]

to be carried out, the conclusion being that H^D):^^ for all D=S^E^.

Now our Proposition (11.1) is applicable. As in Theorem (2.3) of [3] we can

therefore find a very ample invertible sheaf J^ on X and a curve D=S^E^ such that,

with J§f==J^(D), we have:

a) (JSf.E,.)—o for all z.

b) The canonical map A o f X into Y==Proj( (B F(X, JSf0^)) is everywhere defined,

and is an isomorphism outside U E^. —

(In proving this last statement, note that the injection jf—^JSf is an isomor-

phism outside U E^ and observe the proof of the last assertion of [EGA II, (4.5.2)].)

Lemma (21.2) shows, since (JSf.E^)==o, that A(E^) is a single point of Y for each z,

and since U E^ is connected, h(\J E^) is a single point. From [EGA II, (3.7.3)] and

[EGA I, (9.3.2)] it follows that h {^)==0y; in particular h is dominant, and since X

is projective over A, h is surjective and projective. To see that Y is projective it is enough

to show that © F(X, JSf®^ is a finitely generated A-algebra. The construction ofJSf
n^O

is such that JSf is generated by its sections over X; consequently if ^^^(^(.JSf)) is

the symmetric algebra on the coherent Spec (A)-module j^(oSf), then © j§f®^ ig ^ homo-

morphic image of/*(^), and so ©/(JSf071) is a finitely generated e^-module [EGA III,
n^_0 *

(3 -3 - 1 ) ] - The conclusion follows.

It remains to be shown that R1^ (^x)^^- ^or tnls purpose, we can replace Y
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by Spec(S), and X by the normal surface XXySpec(S), where S is the local ring of P

on Y. Let m be the maximal ideal of S. As in Lemma (12.2) it is sufficient to show

that H^x/m^x) vanishes for k>^o. Since, as we have seen, H^D^o for all

D == 2^,E, it is enough to show that m^x contains a power of the ideal ^={(mff^)~l)~\

because ̂  defines a curve like D. Since X is quasi-compact, this is a purely local

question, and the affirmative answer results from the fact that for any xeX, (m^xL

contains ^n(some power of the maximal ideal of ^). This completes the proof!

Corollary (27.2). — Let Y be a normal surface having only finitely many singular points,

all of which are rational singularities. If Y is proper over a noetherian ring A, then Y is projective
over A.

Proof. — Let 9 : Y -> Spec (A) be a proper map; we wish to show that 9 is

projective. Arguing as in Corollary (2.5) of [3], we may assume that Y is regular

(cf. Theorem (4.1)). Note that if h: X-^Y is a quadratic transformation then 9 is

projective if and only if <po/z is, because of Theorem (27. i) (and the uniqueness of contrac-

tions, cf. remarks precedings (27. i)). The same holds true, by induction, if A is ^product

of quadratic transformations; it will therefore be sufficient to find such an h with 90 h
projective.

Chow's Lemma [EGA II, (5.6.2)] gives the existence of a proper birational map

^:W->Y such that ^og is projective. By Theorem (26.1,), there is a commutative
diagram

with h a product of quadratic transformations. / is projective, since h is, and so
^oh=(^ogof is projective. Q.E.D.

Corollary (27.3). — (Cf. [6]; Lemma (1.6).) Let Y be a surface which admits a

desingularwtion g : Z -^Y. Then Y has a unique minimal desingulari^ation f : X-^Y (i.e. every

desingulari^ation of Y factors through f). Z == X if and only if

(M): (E^—s^E) for every exceptional integral curve E on Z.

{Remark. — The terminology of (M) needs a word of explanation: E is
 (< excep-

tional " if^(E) is a single point QofY, and then (E2) and )c(E) are calculated over some
affine neighbourhood Spec (A) of Q.)

Proof. — After normalizing, we may assume that Y is integral and normal. If

g : Z->Y is a desingularization, then Z carries only finitely many exceptional curves

(relative to g) and therefore it is clear that Z dominates a relatively minimal desingula-

rization /:X->Y. Because of the Factorization Theorem (cf. (4.1)), Z=X if (M)

holds. Conversely if Z=X, then (27. i) and (27.2) show that no integral exceptional

curve E on Zsatisfies simultaneously ^c(E)>o (i.e. hl(E)=o) and (E^^—A^E)-
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thus either )c(E)^o, in which case (M) holds because (E2)^, or ^(E)==h°(E)>o
and (E2)^-2AO(E)=-2x(E).

Let ^ : Z^-^Y be a desingularization. We wish to show that Z^ dominates X.

Starting from (26. i), for example, we can find a relatively minimal desingularization W

of the join of X and Z^. Z^ dominates X if and only if W=Z^. Suppose W=(=Z^.

By the Factorization Theorem, we have a diagram

where h is a quadratic transformation with center, say, P. The image of F^^'^P)

on X is a curve E (otherwise W^ dominates X, contradicting the minimality ofW). Note

that E is an exceptional curve (relative to Y) and that F is the proper transform of E
on W. Also

(F.F)+y,(F)=o.

We leave as an exercise the following fact (Lemma (22.3) is useful in the proof):

Let E be an integral curve on Z with exceptional support, let j : Z'->Z be obtained

by blowing up a closed point x whose multiplicity on E is v^o. Let E* be the proper

transform of E on Z', let F'=j-1^), and let E'^-^E^E^+vF'. Then

(E. E) +^(E) = (E'. E') + ^c(E') = (E*. E*) + ̂ (E*) + ̂ (vP)

^(E\E*)+^(E*).

Since there is a sequence of quadratic transformations

Z = ZW <- Z^ ^- . . . <- Z^ =W (T^o)

repeated application of the preceding fact shows that

(E2)+x(E)^o

contradicting (M). Q.E.D.

Purdue University and Columbia University.
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Correction (added in proof). The last statement in Proposition (16.3), concerning

regular extensions, is not true in general, and similarly for the last statement in

Lemma (16-4). The trouble lies in the (incorrect) equality Sp^=8^ at the very

end of the proof of (16.4). This equality does hold, however, for the two cases in

which (16.3) is applied later on, namely K== A (obviously) and K == k ((T)) (= fraction

field of the power series ring A;[[T]]). In the latter case, since F has divisors which are

of degree > o, and which are therefore ample, we can fix a projective embedding ofF/A:,

and the corresponding embedding for E/K; it is enough to show, for a closed point xeE

and its reduction ~xef (with respect to the unique discrete valuation ring R of K{x)
extending k[[T]]) that n=[K(x) : K] is divisible by n=[k{~x) : k]', but this is clear

because if e is the ramification and/is the residue field degree of R over A;[[T]], then

ef= n and ~n divides /.
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