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Abstract

Integrable models of resonant interaction of two or more waves in 1+1 dimensions
are known to be of applicative interest in several areas. Here we consider a system
of three coupled wave equations which includes as special cases the vector Nonlinear
Schrödinger equations and the equations describing the resonant interaction of three
waves. The Darboux-Dressing construction of soliton solutions is applied under the
condition that the solutions have rational, or mixed rational-exponential, dependence
on coordinates. Our algebraic construction relies on the use of nilpotent matrices and
their Jordan form. We systematically search for all bounded rational (mixed rational-
exponential) solutions and find, for the first time to our knowledge, a broad family of
such solutions of the three wave resonant interaction equations.

PACS: 02.30.Ik, 05.45.Yv, 42.65.Tg
Keywords: Integrable PDEs, Nonlinear waves, Darboux-Dressing Transformation,
Resonant Interaction, Rational solitons, Rouge waves.
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1 Introduction

Integrable partial differential equations which model nonlinear wave propagation in 1+1
dimension have been largely investigated because of their applicative relevance. In fact,
even if approximate, some of them capture important nonlinear effects. This is because
they can be derived, as amplitude modulation equations, by multiscale perturbation meth-
ods from various kind of (not necessarily integrable) wave equations with the assumption
of weak dispersion and nonlinearity (see for instance [1] and references therein). The
universality of these integrable models has been well recognized [2], [3]. The best known
and simplest example of such models is the Nonlinear Schrödinger (NLS) equation for the
evolution of the amplitude of a quasi-monochromatic wave with wave number k and fre-
quency ω, as given by the linear dispersion function ω = ω(k). Many physical applications
require however that integrable models be extended to wave coupling. One important
instance regards resonance phenomena. If the dispersion relation allows for resonances,
multiscale perturbation methods show that the amplitudes of two or more monochromatic
waves couple to each other leading to (possibly integrable) systems of nonlinear partial
differential equations. The simplest of such integrable systems is the Vector Nonlinear
Schrödinger (VNLS) system of equations, given by the following two coupled equations (a
subscript denotes partial differentiation)

u
(1)
t = i

[
u
(1)
xx − 2

(
s1
∣∣u(1)

∣∣2 + s2
∣∣u(2)

∣∣2
)
u(1)

]

u
(2)
t = i

[
u
(2)
xx − 2

(
s1
∣∣u(1)

∣∣2 + s2
∣∣u(2)

∣∣2
)
u(2)

] (1)

where, because of the integrability condition, s21 = s22 = 1. This system, also known as
Manakov system, follows from the weak resonant condition that two quasi-monochromatic
waves, with wave-numbers k1 and k2, have the same group velocity, i.e. ω′(k1) = ω′(k2)
(ω′(k) = dω/dk). In (1) u(1)(x, t) , u(2)(x, t) are the amplitudes of these two resonant
waves. A different type of phenomena occurs when the medium nonlinearity includes
quadratic terms and the dispersion relation ω(k) allows for the two wave numbers k1 and
k2 to satisfy the strong resonant condition ω(k1 + k2) = ω(k1) + ω(k2). In this case a
third wave is generated with amplitude w(x, t) and the three amplitudes u(1) , u(2) and w
couple to each other according to the system of equations

u
(1)
t =

[
−c1u(1)x − s1 w

∗u(2)
]

u
(2)
t =

[
−c2u(2)x + s2 wu

(1)
]

0 = wx + s1 s2 (c1 − c2)u
(1)∗ u(2) .

(2)

In this article we construct particular solutions of both the systems (1) and (2). In the
construction method, the physical meaning of the wave amplitudes and of the indepen-
dent variables x, t does not play any essential role. On the other hand, the results given
here are likely to be of applicative relevance in a rather broad range of different physical
contexts (f.i. fluid dynamics, nonlinear optics, plasma physics, Bose-Einstein condensate)
so it should be kept in mind that the actual meaning of all variables may vary according
to context. In particular, for the system (2), if x is the evolution (f.i. time) variable, then
this system is the the well known 3 wave resonant interaction (3WRI) equation [4] where

2



the three characteristic velocities are c1, c2, 0; otherwise, if the evolution variable is t, this
system models the nonlocal interaction of two waves (NL2W) [5, 6]. Here rescaling trans-
formations have been used to give the equations (1) and (2) a neat form in terms of their
coefficients. As for the solutions presented below, we observe that elementary symmetries
of equations (1) and (2) (such as gauge transformations and coordinate translations) and
linear transformations of the (x, t) plane can be used also to eliminate some of the free
parameters which may appear in analytic expressions. Indeed these parameters will be
considered in the following as unessential since they can be easily introduced through sim-
ple transformations.
The kind of solutions we construct here are usually referred to as rational solitons with
the following specifications: they are solitons since they are spectrally characterized by the
vanishing of the continuous spectrum component, however the discrete spectrum eigen-
values are so special that their corresponding solutions have a rational dependence on the
variables x, t, in contrast with the standard soliton whose expression is given in terms of
exponentials. Rational solutions of multicomponent wave equations such as (1) and (2)
generically have a dependence on coordinates which is richer than in the scalar case by
possibly having a mixed rational and exponential expression. Despite this feature, in the
following we term rational solitons all these kinds of solutions. Pole singularities in the
x, t variables cannot be avoided, these being the zeros of the denominator of the rational
expression. However, if these singularities occur only for complex (i.e. strictly non real)
values of x and t, these solutions are bounded and gain physical relevance.
Rational solutions of integrable partial differential equations attracted immediate math-
ematical interest in the 70’s, first for the Korteweg-de Vries equation, the motion of the
poles being associated with integrable many-body dynamics. Then quite a number of
papers have been devoted to rational solutions of various integrable equations for one de-
pendent variable, say Boussinesq equation [7], Hirota equation [8], Kadomtsev-Petviashvili
equation [9] and NLS equation (see f.i. [10]–[13]). Recently further investigations of ratio-
nal solutions were extended to integrable systems of two coupled differential equations. In
this direction a number of such solutions have been found for the VNLS (1) [14, 15] and
for two coupled Hirota equations [16]. Similar extension has been reported also for three
coupled NLS equations [17].
The starting motivation of such a surge of research work goes back to the observation
by Peregrine [18] that the simplest rational solution of the focusing NLS equation may
well model an ocean rogue wave (for a recent survey, see [19]). This solution describes a
localized lump over a background with a peak amplitude which is three times higher than
the surrounding background itself and with a finite life-time. On the physical side, these
new nonlinear objects were soon recognized as ubiquitous rather than just ocean events
and maritime disasters. Rogue waves have been observed not only in water tanks [20] but
also in fiber optics [21] and in plasma [22]. They are predicted in the atmosphere [23], in
superfluids [24], in Bose-Einstein condensates [25] and in capillary waves [26].
In this paper we systematically search for all bounded rational (mixed rational-exponential)
solutions of both the VNLS equation (1) and, for the first time to our knowledge, of the
3WRI equation (2). We adopt a formalism such that these two equations are simulta-
neously treated by using an appropriate Lax pair. Our method of construction is based
on the standard Darboux-Dressing transformation (DDT) as presented in [27, 28], and
briefly summarized in Section 2. Section 3 describes the algebraic algorithm we use to
obtain rational solutions. In Section 4 we finally display examples of such solutions. The
polynomials which appear in some of the expressions are given in Appendix A.
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2 Lax pair and Darboux-Dressing transformation

Equations (1) and (2) are integrable models and as such admit a Lax representation (a
Lax pair). For convenience, we introduce a Lax pair which combines both models. In
subsequent sections we will describe these two dynamics separately. Let

ψx = Xψ , ψt = Tψ , (3)

where ψ, X and T are 3 × 3 square matrices, ψ = ψ(x, t, k) being a common solution
of the two linear ordinary differential matrix equations (3) while X = X(x, t, k) and
T = T (x, t, k) depend on the variables x, t and the complex spectral parameter k according
to the definitions

X(x, t, k) = ikσ +Q(x, t) , (4a)

T (x, t, k) = α Tnls(x, t, k) + β T3w(x, t, k) (4b)

where Q(x, t) contains the dynamical variables u(1)(x, t) and u(2)(x, t) and introduces two
signs s1, s2, s

2
1 = s22 = 1

Q =




0 s1u
(1)∗ s2u

(2)∗

u(1) 0 0

u(2) 0 0


 (5)

while σ is a constant diagonal matrix defined as

σ =




1 0 0
0 −1 0
0 0 −1


 . (6)

The matrices Tnls and T3w are defined by

Tnls = 2ik2σ + 2kQ+ iσ(Q2 −Qx) (7)

T3w = 2ikC − σW + σ[C,Q] , (8)

where W contains the field w(x, t)

W =




0 0 0
0 0 −s1w∗

0 s2w 0


 . (9)

C is a real diagonal matrix

C =




0 0 0
0 c1 0
0 0 c2


 (10)

while α and β are real parameters such that, for α = 1, β = 0, (3) is the Lax pair
corresponding to the VNLS (Manakov) equation (1), and for α = 0, β = 1 (3) is the Lax
pair corresponding to the 3WRI equation (2). Indeed the compatibility conditions yield
the evolution equations

u
(1)
t = iα

[
u
(1)
xx − 2

(
s1
∣∣u(1)

∣∣2 + s2
∣∣u(2)

∣∣2
)
u(1)

]
+ β

[
−c1u(1)x − s1w

∗u(2)
]

u
(2)
t = iα

[
u
(2)
xx − 2

(
s1
∣∣u(1)

∣∣2 + s2
∣∣u(2)

∣∣2
)
u(2)

]
+ β

[
−c2u(2)x + s2wu

(1)
]

0 = β (wx + s1 s2 (c1 − c2)u
(1)∗ u(2)) .

(11)
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In the search for novel rational solutions of (11) we use the Darboux-Dressing construction,
as developed in [27] (where the interested reader may find additional references). For
completeness, we briefly recall here the essential steps towards a new solution, starting from

a known (seed) solution: given a solution u
(1)
0 , u

(2)
0 , w0 of (11), let Ψ0 be a corresponding

fundamental matrix solution of (3). Then, if χ is strictly complex (χ 6= χ∗),

Ψ(x, t, k) =

[
1+

(
χ− χ∗

k − χ

)
P (x, t)

]
Ψ0(x, t, k) (12)

is a solution of (3) with

(
u(1)(x, t)

u(2)(x, t)

)
=

(
u
(1)
0 (x, t)

u
(2)
0 (x, t)

)
+

2i(χ− χ∗)ζ∗

|ζ|2 − s1|z1|2 − s2|z2|2
(
z1
z2

)
, (13a)

w(x, t) = w0(x, t)−
2is1s2(c1 − c2)(χ− χ∗)z∗1z2

|ζ|2 − s1|z1|2 − s2|z2|2
, (13b)

where the vector

Z(x, t) =




ζ(x, t)
z1(x, t)
z2(x, t)


 = Ψ0(x, t, χ

∗)Z0 (14)

is a solution of (3) with k = χ∗ (Imχ 6= 0) and Z0 is an arbitrary, constant and complex
vector. Moreover in (12) the projector matrix P (x, t) is

P (x, t) =
ZZ†

|ζ|2 − s1|z1|2 − s2|z2|2




1 0 0
0 −s1 0
0 0 −s2


 . (15)

Here the condition that the parameter χ is not real is crucial. Indeed, the Darboux-
Dressing transformation which adds one real pole to the solution Ψ0(x, t, k) in the k−plane
at k = χ = χ∗ is given by a different formula, as detailed in [27]. However this real-pole
transformation will not be used here as it yields rational (or semi-rational) solutions which

are singular (i.e. unbounded). The seed solution u
(1)
0 , u

(2)
0 , w0 of (11) is the plane wave




u
(1)
0 (x, t)

u
(2)
0 (x, t)


 =




a1e
i(qx−ν1t)

a2e
−i(qx+ν2t)


 , (16a)

w0(x, t) = is1s2(c2 − c1)
a1a2
2q

e−i[2qx+(ν2−ν1)t] , (16b)

with
ν1 = α[q2 + 2(s1a

2
1 + s2a

2
2)] + β[c1q + s2

a2
2

2q (c1 − c2)] ,

ν2 = α[q2 + 2(s1a
2
1 + s2a

2
2)] + β[−c2q + s1

a2
1

2q (c1 − c2)] .

(17)

Remark 1 With no loss of generality the amplitudes a1 and a2 can be taken to be real.
Moreover, because of Galilei invariance, one may choose the wave numbers q and −q of
these two plane-waves, see (16a), to have opposite sign.
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In order to construct the transformation (13) in the case where the seed solution u
(1)
0 , u

(2)
0 ,

w0 of (11) is given by (16), we have to construct first the solution Ψ0 of the Lax equations
(3). To this aim we observe that, once (16) is fixed, the corresponding Q0 and W0 take
the form

Q0 = G




0 s1a1 s2a2
a1 0 0
a2 0 0


G−1 , (18)

W0 = G




0 0 0
0 0 is2

a1a2
2q (c2 − c1)

0 is1
a1a2
2q (c2 − c1) 0


G−1 , (19)

with

G =




1 0 0

0 ei(qx−ν1t) 0

0 0 e−i(qx+ν2t)


 . (20)

It follows then that
Ψ0(x, t, k) = G(x, t)Φ(x, t, k) (21)

and the Lax pair reads
Φx = iΛ(k)Φ , Φt = −iΩ(k)Φ , (22)

where

Λ(k) =




k −is1a1 −is2a2
−ia1 −k − q 0
−ia2 0 −k + q


 (23)

and
Ω(k) = αΩnls(k) + βΩ3w(k) , (24a)

with

Ωnls(k)=




−2k2 − s1a
2
1 − s2a

2
2 is1a1(2k − q) is2a2(2k + q)

ia1(2k − q) 2k2 − q2 − s1a
2
1 − 2s2a

2
2 s2a1a2

ia2(2k + q) s1a1a2 2k2 − q2 − 2s1a
2
1 − s2a

2
2


 ,

(24b)

Ω3w(k)=




0 −is1c1a1 −is2c2a2
−ic1a1 −c1(2k + q)− s2

a2
2

2q (c1 − c2) s2
a1a2
2q (c1 − c2)

−ic2a2 s1
a1a2
2q (c1 − c2) −c2(2k − q)− s1

a2
1

2q (c1 − c2)


 .

(24c)
Since

[Λ(k) , Ω(k)] = 0 , (25)

the solution Ψ0 has the expression

Ψ0(x, t, k) = G(x, t)ei(Λ(k)x−Ω(k)t) . (26)

Finally, the vector Z(x, t), see (14), which appears in the Darboux-Dressing transformation
(13) reads

Z(x, t) = G(x, t)ei(Λ(χ
∗)x−Ω(χ∗)t)Z0 . (27)
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Remark 2 The Darboux-Dressing transformation (13) may lead to a singular solution of
(11) due to zeros of the denominator |ζ|2 − s1|z1|2 − s2|z2|2. The condition that the signs
s1 , s2 are both negative (s1 = s2 − 1) is sufficient for this solution to be bounded (i.e.
nonsingular). Nevertheless we will keep the signs s1 , s2 arbitrary.

Remark 3 The parameter q, other than the signs s1 , s2, is expected to be relevant to the
stability of the plane wave solution (16). Despite the importance of this point we do not
discuss it here.

3 Rational solutions

This section outlines the general scheme to construct all bounded solutions of (11) which
are obtained via the Darboux-Dressing method and whose dependence on coordinates is
either rational or a mixture of rational and exponential functions. Two subsections are
then devoted to systematically compute the explicit expressions of all these solutions. The
starting observation is that no rational dependence on x , t of the solution (13) exists if
the two matrices Λ(k) and Ω(k) (for k = χ∗) are similar to a diagonal matrix. Indeed, this
statement stems from the expressions (13), together with (16) and (27), which imply that,
in this generic case, the explicit expression (13) of the solution contains only exponential
functions of x and t. Therefore we find those particular, critical, values kc of k, such that
the two matrices Λ(kc) and Ω(kc) are instead similar to a Jordan form. Indeed this form
is generically the sum of a diagonal matrix and a nonvanishing nilpotent matrix, therefore
the starting elementary observation is that, if N is a nilpotent matrix, say Nm+1 = 0 and
Nm 6= 0 for an integer m, then exp(zN) is a matrix valued polynomial of z of degree m.
Moreover, in order to apply the Darboux-Dressing formula (13), the critical value kc is
required to be strictly complex, namely to lie off the real axis of the complex k−plane.
Therefore through our investigation we disregard all those values of k which are real even
if the corresponding matrices Λ(k) and Ω(k) are similar to a Jordan form. Though the
matrices Λ(k) and Ω(k) play a similar role, it is convenient to focus first on Λ(k) and its
characteristic polynomial

PΛ(λ) = det[λ− Λ(k)] = λ3 +A2(k)λ
2 +A1(k)λ+A0(k) (28)

whose coefficients take the expression (see (23))

A2(k) = k , A1(k) = −k2 − q2 + s1a
2
1 + s2a

2
2 ,

A0(k) = −k3 + k(q2 + s1a
2
1 + s2a

2
2) + q(s2a

2
2 − s1a

2
1) . (29)

The following proposition holds true:

Proposition 1 If λ1(k) , λ2(k) , λ3(k) are the three roots of the characteristic polynomial
(28) then a necessary condition for Λ(kc) to be similar to a Jordan form ΛJ ,

Λ(kc) = T ΛJ T
−1 , (30)

is that either one of them, say λ3, is simple and λ1 = λ2 is double, or λ1 = λ2 = λ3.
T denotes the similarity transformation matrix. In the first case, Λ(kc) is similar to a
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Jordan form ΛJ if and only if λ1 = λ2 is geometrically simple,

ΛJ =




λ1 µ 0
0 λ1 0
0 0 λ3


 , µ 6= 0 ; (31)

while in the second case, Λ(kc) is similar to a Jordan form ΛJ if λ1 = λ2 = λ3 is
geometrically simple,

ΛJ =




λ1 µ1 0
0 λ1 µ1
0 0 λ1


 , µ1 6= 0 . (32)

Remark 4 The case in which λ1 = λ2 = λ3 is geometrically double is the particular case
of (31) for λ1 = λ3.

Remark 5 We point out for future reference that, in our notation (31 and 32), for di-
mensional reason we prefer to leave the entry µ in (31) and µ1 in (32) as free nonvanishing
parameters rather than giving them the unit value, µ = µ1 = 1, as commonly in use.

As for the second matrix Ω(kc), since it commutes with Λ(kc), see (25), it is consequently
taken by the same similarity transformation

Ω(kc) = T Ω̂T−1 (33)

into a matrix Ω̂ which commutes with ΛJ but it is not necessarily a Jordan form. Indeed,
if ω1, ω2, ω3 are the three eigenvalues of Ω(kc), in the first case (i.e. λ1 = λ2) it necessarily
follows that ω1 = ω2, so that

Ω̂ =




ω1 ρ 0
0 ω1 0
0 0 ω3


 , (34)

which is still a Jordan form if ρ 6= 0, while in the second case (i.e. λ1 = λ2 = λ3)

Ω̂ =




ω1 ρ1 ρ2
0 ω1 ρ1
0 0 ω1


 . (35)

On the other hand the values of ρ in (34) and of ρ1 and ρ2 in (35) have no a priori
conditions.
Once a critical value kc has been found, setting in (27) χ = k∗c yields the expression

Z(x, t) = G(x, t)V (x, t) , V (x, t) =




v(x, t)
v1(x, t)
v2(x, t)


 = Tei(ΛJx−Ω̂t)




γ1
γ2
γ3


 , (36)

where γ1 , γ2 , γ3 are arbitrary complex constants. Due to the nilpotent part of ΛJ and Ω̂,
this last expression yields a dependence of V (x, t) on x and t which is partially rational.
Indeed, by inserting (31) and (34) into (36) yields the semi-rational dependence

V (x, t) = T




(γ1 + γ2ξ)e
i(λ1x−ω1t)

γ2e
i(λ1x−ω1t)

γ3e
i(λ3x−ω3t)


 , ξ = i(µx− ρt) (37)

8



in the case λ3 and ω3 are (algebraically) simple. In the alternative case in which λ1 and
ω1 are (algebraically) triple, the expression of V follows by using instead (32) and (35)
and it reads

V (x, t) = ei(λ1x−ω1t)T




γ1 + γ2ξ1 + γ3ζ
γ2 + γ3ξ1

γ3


 , ξ1 = i(µ1x−ρ1t) , ζ =

1

2
ξ21− iρ2t . (38)

Using (36) the expression (13) of the solution u(1), u(2), w of (11) can be written in the
more explicit form:

(
u(1)(x, t)

u(2)(x, t)

)
=

(
ei(qx−ν1t) 0

0 e−i(qx+ν2t)

)[(
a1
a2

)
+

2i(k∗c − kc)v
∗

|v|2 − s1|v1|2 − s2|v2|2
(
v1
v2

)]

(39a)

w(x, t) = is1s2(c2 − c1)e
−i[2qx+(ν2−ν1)t]

[
a1a2
2q

+
2(k∗c − kc)v

∗
1v2

|v|2 − s1|v1|2 − s2|v2|2
]
. (39b)

These last expressions (39) readily show that, if the three eigenvalues λj are all the same,
λ1 = λ2 = λ3, then the solution (39) is purely rational as its expression does not contain
any exponentials (see (38)). In the alternative case, λ1 = λ2 6= λ3, the expression (37)
shows that the solution (39) is generically expressed in terms of both exponential and
rational functions. Non generically, however, the dependence on coordinates is purely
rational if γ3 = 0 while it contains only exponentials if γ2 = 0. We summarize the step-by-
step construction of all such solutions of (11) as follows: once a critical value kc off the real
axis is computed, one computes the corresponding eigenvalues λj , ωj and the off-diagonal
entries ρ or ρ1, ρ2; the corresponding similarity matrix T is then computed and thus, using
the formula (39), the final expression of the solution.
The following two subsections describe the computation of the critical values kc and of
the corresponding similarity transformation matrix T .

3.1 The case λ1 = λ2 = λ3

We start by requiring that the three roots of the characteristic polynomial (28) coincide
with each other, namely PΛ(λ) = (λ− λ1(k))

3, so that

λ1(k) = λ2(k) = λ3(k) = tr(Λ(k))/3 = −k/3 . (40)

Moreover, by Cayley theorem, [Λ(k) + k/3]3 = 0 (we omit to write the identity matrix I
where no confusion can arise). Therefore the requirement that the matrix [Λ(k) + k/3] be
nilpotent yields the critical values kc. We disregard the case [Λ(k) + k/3]2 = 0 because
it leads to the strong reduction a1a2 = 0 and to real critical values of k. Moreover the
condition [Λ(k) + k/3]2 6= 0 excludes the limiting case in which (31) holds for λ1 = λ3
(see Remark 4). This way we compute all critical values kc. By disregarding those values
which are real, we are left with one case only, namely

q 6= 0 , kc = i

√
27

2
ǫq , s1 = s2 = −1 , a1 = a2 = 2q , ǫ2 = 1 . (41)

In this case the critical value kc is imaginary and the free parameters are q (real) and the
sign ǫ; hence the Darboux-Dressing transformation (13) applies and the resulting solution
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will be considered below.
It now remains to provide the similarity transformation matrix T , as well as the two
matrices ΛJ and Ω̂, namely ω1 and ρ1, ρ2 (see (35)). T is however already given by
(32) with λ1(kc) = −kc/3 (the non vanishing parameter µ may be fixed according to
convenience). Needless to say, the expression of the similarity matrix T is not unique and
the one we give below may be changed, for instance, by a multiplication factor. In the
present case in which λ1 = λ2 = λ3 and Λ−λ1 is nilpotent with (Λ−λ1)2 6= 0, (Λ−λ1)3 = 0,
the construction of the similarity transformation matrix T requires a tedious but straight

computation and we limit ourselves to give the final formula: λ1 = λ2 = λ3 = −i
√
3
2 ǫq so

that

Λ(kc) = λ1 + µ1N , N =




ǫ
√
3 1 1

−1 θ 0
−1 0 θ∗


 , µ1 = 2iq , θ =

1

2
(−ǫ

√
3 + i) , (42)

where the dimensionless matrix N is nilpotent and θ is a phase factor, namely |θ| = 1. In
this case the similarity transformation (30), with (32), is provided by the matrix

T =




θ 0 −i
1 θ∗ iǫ

√
3

iθ∗ i 0


 (43)

whose Jordanization action is specified by the formula

N = TNJT
−1 , NJ =




0 1 0
0 0 1
0 0 0


 . (44)

As for the matrix Ω, ω1 = ω2 = ω3 = tr(Ω)/3 = 11
2 αq

2 + βq[c1 − c2 − iǫ
√
3(c1 + c2)] and

Ω(kc) = ω1 + 2αq2




8 3ǫ
√
3 + i 3ǫ

√
3− i

−3ǫ
√
3− i −4 −2

−3ǫ
√
3 + i −2 −4


+

+βq




iǫ
√
3(c1 + c2) + c2 − c1 2ic1 2ic2

−2ic1 iǫ
√
3(c2 − 2c1)− c2 −2(c1 − c2)

−2ic2 −2(c1 − c2) iǫ
√
3(c1 − 2c2) + c1


 ,

while Ω̂ has the expression (35), namely Ω̂ = ω1 + ρ1NJ + ρ2N
2
J which implies

Ω(kc) = ω1 + ρ1N + ρ2N
2 , (45)

where the matrix N has the expression (42). Comparing (45) with (42) yields

ρ1 = 4αq2ǫ
√
3 + 2βq(θc1 − θ∗c2) , ρ2 = 4αq2 + 2βq(c1 − c2) . (46)

We now apply the Darboux-Dressing construction formula (39) with the naked solution
appropriate to this case (namely (16) with a1 = a2 = 2q), and the vector V (x, t) as given
by (38). Thus we arrive at the following expression of the solution:

(
u(1)(x, t)

u(2)(x, t)

)
=2q

(
ei(qx−ν1t) 0

0 e−i(qx+ν2t)

)[(
1
1

)
+

3ǫ
√
3A∗

|A|2 + |A1|2 + |A2|2
(
θ∗A1

θA2

)]
,

(47a)
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w(x, t) = 2iq(c2 − c1)e
−i[2qx+(ν2−ν1)t][1 +

3ǫ
√
3θ∗A∗

1A2

|A|2 + |A1|2 + |A2|2
] (47b)

with the notation

ν = −15αq2 − 3
2βq(c1 − c2) , ν1 = ν + 1

2βq(c1 + c2) , ν2 = ν − 1
2βq(c1 + c2) ,

A = γ1 + γ2ξ1 + γ3(ζ − iθ∗) ,

A1 = γ1 + γ2(ξ1 + θ∗) + γ3(ζ + θ∗ξ1 + iǫ
√
3) , A2 = γ1 + γ2(ξ1 + θ) + γ3(ζ + θξ1) ,

(48)
while ξ1 and ζ are defined by (38) with µ1 = 2iq (see (42)). We observe that not all the
three complex parameters γ1 , γ2 , γ3, as introduced via (36), are essential as one of them
can be arbitrarily fixed and two more real parameters can be absorbed as translations of
x and t. The analysis of this solution is detailed in section 4.

3.2 The case λ1 = λ2 6= λ3

Here we consider the case in which, for a critical value k = kc, one eigenvalue (say λ1)
of Λ(k) is algebraically double but geometrically simple, so that Λ(kc) is similar to a
Jordan form, see (30) and (31). Since finding kc generically requires computing the roots
of a fourth order polynomial (see below), we postpone this computation and we construct
first the similarity transformation matrix T with the assumption that k = kc is known.
If λ1 = λ1(kc) and λ3 = λ3(kc) are the corresponding eigenvalues of Λ we obtain the
following general expression of T

T =




φ1 φ2 φ3

− iφ1a1
(λ1+k+q) − iφ2a1

(λ1+k+q) +
iµφ1a1

(λ1+k+q)2 − iφ3a1
(λ3+k+q)

− iφ1a2
(λ1+k−q) − iφ2a2

(λ1+k−q) +
iµφ1a2

(λ1+k−q)2
− iφ3a2

(λ3+k−q)


 , k = kc , (49)

which turns out to depend on the three complex parameters φ1 , φ2 , φ3, arbitrary except
for the condition that the matrix T be non singular. Since the determinant

detT = 2φ21φ3qµa1a2
(λ1 − λ3)

2

[(λ3 + k)2 − q2][(λ1 + k)2 − q2]2
(50)

does not dependent on φ2, we may take φ2 = 0 and conveniently set φ1 = (λ1 + k)2 − q2

and φ3 = (λ3 + k)2 − q2. With this choice of the parameters the matrix T takes the
expression

T =




(λ1 + k)2 − q2 0 (λ3 + k)2 − q2

−ia1(λ1 + k − q) iµa1(λ1 + k − q)/(λ1 + k + q) −ia1(λ3 + k − q)
−ia2(λ1 + k + q) iµa2(λ1 + k + q)/(λ1 + k − q) −ia2(λ3 + k + q)


 , k = kc ,

(51)
where the condition of being invertible reads qµa1a2(λ1 − λ3) 6= 0. We note that the
derivation of this expression requires not only that PΛ(λ1) = PΛ(λ3) = 0 but also that
P ′
Λ(λ1) = 0 where P ′

Λ(λ) = dPΛ(λ)/dλ. Since this matrix T becomes singular (i.e. non
invertible) if q = 0, see (50), before proceeding further we prefer to first consider this
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separate case here below.
The assumption q = 0 leads to consider two separate cases, namely either s1a

2
1+s2a

2
2 6= 0 or

s1a
2
1+s2a

2
2 = 0. We disregard this second case as our analysis shows that its corresponding

solution becomes singular because of the vanishing of the denominator in the expression
(39). Thus we treat here only the case in which q = 0 and s1a

2
1 + s2a

2
2 is strictly non

vanishing. With these assumptions the explicit expression of the roots of PΛ(λ) are

λ1 =
√
k2 − s1a

2
1 − s2a

2
2 , λ2 = −

√
k2 − s1a

2
1 − s2a

2
2 , λ3 = −k , q = 0 . (52)

The conditions that λ1 = λ2 and that the value of kc be not real leads to the condition
s1a

2
1+s2a

2
2 < 0. This therefore excludes the choice s1 = s2 = 1 and leads to the two values

k = kc = ip , p = ±
√

−s1a21 − s2a22 , λ1 = λ2 = 0 , λ3 = −kc = −ip. We find however that
the condition s1s2 = 1 is necessary and sufficient for the solution (13a) to be non singular
(in general singularities come from the zeros of the denominator which appears in this
expression). We conclude therefore that only the (focusing) case s1 = s2 = −1 is worth
considering. Thus in this particular (and interesting, see below) case the eigenvalues are

λ1 = λ2 = 0 , λ3 = −ip , p = ǫ
√
a21 + a22 , ǫ2 = 1 . (53)

Thus the matrix Λ reads

Λ(kc) =




ip ia1 ia2
−ia1 −ip 0
−ia2 0 −ip


 (54)

and is taken into the Jordan form (here we set µ = −ip, see (31))

ΛJ = −ip




0 1 0
0 0 0
0 0 1


 , (55)

by the similarity transformation (30) with

T =




−p p 0
a1 0 a2
a2 0 −a1


 . (56)

Moreover, since this case does not apply to the 3WRI equations (see (16b)), we set α = 1
and β = 0 so that the matrix Ω(kc) has the expression

Ω(kc) =




3p2 2pa1 2pa2
−2pa1 −p2 + a22 −a1a2
−2pa2 −a1a2 −p2 + a21


 , (57)

which is similar to the Jordan form Ω̂ (see (33) and (34)) with

ω1 = ω2 = ω = p2 , ω3 = 0 , ρ = −2p2 . (58)

These findings, together with the explicit expression (37) and the Darboux-Dressing for-
mula (13), yield the semi-rational solution of the VNLS equations

(
u(1)(x, t)

u(2)(x, t)

)
= e2iωt

[
L

B

(
a1
a2

)
+
M

B

(
a2

−a1

)]
, (59)
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where L = 3
2 − 8ω2t2 − 2p2x2 + 8iωt + |f |2e2px, M = 4f(px − 2iωt − 1

2)e
(px+iωt), B =

1
2 + 8ω2t2 + 2p2x2 + |f |2e2px, and where f is a complex arbitrary constant. It should be
remarked that the dressing construction has introduced γ1, γ2, γ3 as arbitrary parameters,
see (37). However only the complex parameter γ3 is left essential since the other parameters
can be absorbed by translations of the coordinates x, t. In fact, the expression (59) is
derived by setting γ1 = 1/2, γ2 = 1 and γ3 = −f . We note also that the dependence
of L,M and B (see (59)) on x, t is both polynomial and exponential only through the
dimensionless variables ax and ωt. Moreover the vector solution (59) turns out to be a
combination of the two constant orthogonal vectors (a1 , a2)

T and (a2 , −a1)T .
Let us proceed further to the case in which q 6= 0, and let us maintain the assumption
that kc is known. We first aim to computing the Jordan matrices ΛJ (31) and Ω̂ (34),
which amounts to computing λ1 , λ3 , ω1 , ω3 and ρ. We start from the observation that
the eigenvalue λ1 is a zero of both the polynomial PΛ(λ) and of its derivative (see (28))
P ′
Λ(λ) = 3λ2 + 2A2(kc)λ+A1(kc) = 3(λ− λ+)(λ− λ−) where

λ± = −1

3
A2 ±

√(
A2

3

)2

− A1

3
. (60)

Therefore this readily implies the following proposition:

Proposition 2 Assume k = kc, then if PΛ(λ+) = 0, the three roots of PΛ(λ) are

λ1 = λ2 = λ+ , λ3 =
1

2
(3λ− − λ+) , (61)

while if PΛ(λ−) = 0, the three roots of PΛ(λ) are

λ1 = λ2 = λ− , λ3 =
1

2
(3λ+ − λ−) . (62)

The proof of these formulae is elementary and consistent with the fact that the dis-
criminant of a generic third degree polynomial, see (28), is proportional to the product
[PΛ(λ+)][PΛ(λ−)]. The explicit expression of λ1 and λ3 finally obtains by inserting in (60)
the coefficients A2 , A1 in terms of k via (29).
As for the eigenvalues ω1 , ω3 and of the parameter ρ, see (34), we use the similarity prop-
erty (33), the matrix transformation T being given by (51), and we obtain the expressions
(with k = kc)

ω1 = ω2 = −α
{
2kλ1 + s1a

2
1 + s2a

2
2 + q

[
s1a21

(λ1+k+q) −
s2a22

(λ1+k−q)

]}
+

−β
2

{
(c1 + c2)(k − λ1) + (c1 − c2)

[
s1a21

(λ1+k+q) −
s2a22

(λ1+k−q)

]}
,

ω3 = −α
{
2kλ3 + s1a

2
1 + s2a

2
2 + q

[
s1a21

(λ3+k+q) −
s2a22

(λ3+k−q)

]}
+

−β
2

{
(c1 + c2)(k − λ3) + (c1 − c2)

[
s1a21

(λ3+k+q) −
s2a22

(λ3+k−q)

]} ,

ρ = −αµ
{
2k − q

[
s1a21

(λ1+k+q)2
− s2a22

(λ1+k−q)2

]}
+

+β
2

{
c1 + c2 + (c1 − c2)

[
s1a21

(λ1+k+q)2
− s2a22

(λ1+k−q)2

]}
.

(63)

The main task now is finding the critical values kc which are in the complex k−plane
strictly off the real axis (Imkc 6= 0). These values are zeros of the discriminant of the
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polynomial PΛ(λ) (28). By taking into account the expression of the coefficients (29), this
discriminant turns out to be proportional to the fourth order monodic polynomial

∆(k) = k4 +D3k
3 +D2k

2 +D1k +D0 , (64)

where the coefficients are

D3 = (s2a
2
2 − s1a

2
1)/(2q) ,

D2 = −[8q4 − (s1a
2
1 + s2a

2
2)

2 + 20q2(s1a
2
1 + s2a

2
2)]/(2

4q2) ,

D1 = −9(s2a
2
2 − s1a

2
1)(2q

2 + s1a
2
1 + s2a

2
2)/(2

4q) ,

D0 = (q2 − s1a
2
1 − s2a

2
2)

3/(24q2)− (34)
3(s2a

2
2 − s1a

2
1)

2 .

(65)

Though the generic fourth degree algebraic equation is solvable, the explicit expression
of its solutions is so complicate that its use does not make their computation any easier
than just computing them numerically. One exception to this wisdom is the case in which
this algebraic equation reduces to a second degree equation. This is the case if we assume
the condition s1a

2
1 = s2a

2
2 which implies that D1 = D3 = 0 with the consequence that the

vanishing of the polynomial (64) reads as the second degree equation

∆(k) = R(h) = h2 +D2h+D0 = 0 (66)

for the new variable h = k2. Here the coefficients are

D2 = −(2q4 − a41 + 10sq2a21)/(2
2q2) ,

D0 = (q2 − 2sa21)
3/(24q2) .

(67)

In this special case the reality of a1 , a2 implies the condition s1 = s2 = s and a21 = a22,
which has been used to pass from (65) to (67). The search for the critical values kc in the
parameter space, the parameters being q , a1 and the sign s, is now simple since the four
zeros of the discriminant (64) have the explicit expression

k = k(η1, η2) = η2

(
−1

2
D2 + η1

√
1

4
D2

2 −D0

)1/2

, η21 = η22 = 1 , (68)

which is the starting point of our short discussion of the corresponding family of solutions
we present in the subsection 4.2.2. We note here that these expressions of kc are explicit
because of the assumption s1a

2
1 = s2a

2
2 . In the generic case in which q 6= 0 and s1a

2
1 −

s2a
2
2 6= 0, we prefer to compute kc numerically as roots of the discriminant (64).

4 Analysis of the solutions and conclusions

In the previous section we have shown the way of deriving a rich family of solutions of
the system (11). In fact we have constructed all the bounded (rational or semi-rational)
solutions which can be obtained via the DDT method. The aim of this section is to
select and detail some of such solutions. We separately treat those which are solutions
of the VNLS system (1) (by setting α = 1, β = 0) and those which are solutions of the
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3WRI equations (2) (by setting α = 0 , β = 1). As for the parameters which appear in
the expressions of our solutions, some of them are structural coefficients which enter the
partial differential equations (11), say the signs s1, s2 and the characteristic velocities
c1 , c2; other parameters, i.e. q, a1, a2, originate from the background (see (16)) while
others, γ1, γ2, γ3, come from the DDT transformation. In this transformation there
appears also the critical value kc of the spectral variable k, which depends only on s1, s2,
q, a1, a2. Although some of the parameters are not essential as they could be eliminated
by using simple symmetries, in some cases we prefer to keep them because of their physical
significance. We point out also that the background parameter q plays a distinctive role
in our solutions as it has no counterpart in the scalar NLS equation.

4.1 λ1 = λ2 = λ3

In this case the solutions are rather peculiar as they are all purely rational. Only two
critical values of k are possible, namely kc = ±iq

√
27/2 as specified by (41). These

solutions exist only if s1 = s2 = −1, which is the focusing case of the VNLS equations,
together with the condition a1 = a2 = 2q for the background amplitudes. The general
expression of the corresponding solutions is (47). As for the three complex parameters
γ1, γ2, γ3, we omit considering γ2 = γ3 = 0 since in this case the expression (47) is
trivially that of a plane wave. Thus we find it convenient to illustrate the dependence
of the solution on these parameters by considering separately the two cases: i) γ3 = 0
and ii) γ2 = 0. With no loss of generality because of translation invariance, one can set
γ2 = 1 , γ1 = 0 in the first case and γ3 = 1 , γ2 = 0, while γ1 remains arbitrary and
complex, in the second case. Moreover the expression of the solution is the ratio of two
polynomials of second degree in the first case i), and of two polynomials of fourth degree
in the second case ii). Figures 1 to 4 illustrate these two cases separately for the VNLS
and for the 3WRI equations.

4.1.1 Solutions of the VNLS

Let X = qx and T = q2t be rescaled variables; let u(j)(x, t) = qU (j)(X,T ), j = 1, 2.

Case γ3 = 0 , γ2 = 1 , γ1 = 0

U (1)=2iθei(X+15T )

[
12X2 + 144T 2 + (4ǫ

√
3 + 6i)X − 36iT − 1 + iǫ

√
3

12X2 + 144T 2 + 4ǫ
√
3X + 2

]
. (69)

Since this solution satisfies the relation u(2)(x, t) = u(1)∗(x,−t) we report only the compo-
nent u(1)(x, t) = qU (1)(qt, q2t); figure 1 displays the amplitudes |u(1)(x, t)| and |u(2)(x, t)|
for a choice of parameters (see caption).

Case γ3 = 1 , γ2 = 0 , γ1 6= 0

U (1)=2iθei(X+15T )P
(1)
4

P4
, U (2)=−2iθ∗e−i(X−15T )P

(2)
4

P4
(70)
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where the fourth degree polynomials P
(1)
4 , P

(2)
4 , P4 are given in Appendix A. Figure 2

displays the amplitudes |u(1)(x, t)| and |u(2)(x, t)| (see caption).

Figure 1: VNLS: kc = i
√
27
2 , λ1 = λ2 = λ3 , s1 = s2 = −1, a1 = a2 = 2, q = 1, ǫ = 1;

γ2 = 1, γ1 = γ3 = 0.

Figure 2: VNLS: kc = i
√
27
2 , λ1 = λ2 = λ3 , s1 = s2 = −1, a1 = a2 = 2, q = 1, ǫ = 1;

γ1 = i, γ2 = 0, γ3 = 1.

4.1.2 Solutions of the 3WRI

Let X = qx and T = qt be rescaled variables; let u(j)(x, t) = qU (j)(X,T ), j = 1, 2,
w(x, t) = qW (X,T ).

Case γ3 = 0 , γ2 = 1 , γ1 = 0

U (1) = 2iθei[X+T (c1−2c2)]Q
(1)
2

M2
, W = 2θ(c1 − c2)e

−i[2X−T (c1+c2)] Q2

M2
, (71)
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where the second degree polynomials Q
(1)
2 , Q2, M2 are given in Appendix A. Since this

solution satisfies the relation u(2)(x, t, c1, c2) = u(1)∗(x, t, c2, c1) we report the expression
of the components u(1)(x, t) = qU (1)(qx, qt), w(x, t) = qW (qx, qt) only. Figure 3 displays
the amplitudes |u(1)(x, t)|, |u(2)(x, t)| and |w(x, t)| (see caption).

Case γ3 = 1 , γ2 = 0 , γ1 6= 0

U (1) = 2iθei[X+T (c1−2c2)]Q
(1)
4

M4
, U (2) = −2iθ∗e−i[X+T (c2−2c1)]Q

(2)
4

M4
,

W = 2θ(c1 − c2)e
−i[2X−T (c1+c2)] Q4

M4
, (72)

where the fourth degree polynomials Q
(1)
4 , Q

(2)
4 , Q4, M4 are given in Appendix A. Figure

4 displays the amplitudes |u(1)(x, t)|, |u(2)(x, t)| and |w(x, t)| (see caption).

Figure 3: 3WRI: kc = i
√
27
2 , λ1 = λ2 = λ3 , s1 = s2 = −1, a1 = a2 = 2, q = 1, ǫ = 1;

γ2 = 1, γ1 = γ3 = 0.

Figure 4: 3WRI: kc = i
√
27
2 , λ1 = λ2 = λ3 , s1 = s2 = −1, a1 = a2 = 2, q = 1, ǫ = 1;

γ1 = i, γ2 = 0, γ3 = 1.

4.2 The case λ1 = λ2 6= λ3

The expression (39), together with (37), shows that generically these solutions feature a
dependence on coordinates which is both rational and exponential. In particular, however,
if γ3 = 0 the dependence is purely rational while if γ2 = 0 the solution has only exponential
functions. In the following we disregard this last case and consider only solutions with
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γ2 6= 0. Here we separately consider solutions corresponding to q = 0 and different
background amplitudes, a1 6= a2, with q 6= 0 but a1 = a2 and, finally, with q 6= 0 and
a1 6= a2. These distinctions are merely due to computational reasons. However, and
interestingly enough, we numerically show below that in the last two cases (i.e. with
q 6= 0) bounded rational solutions exist not only in the focusing case s1 = s2 = −1,
as for the Peregrine soliton of the scalar NLS equation, but also in the defocusing case
s1 = s2 = 1 and in the mixed case s1s2 = −1.

4.2.1 q=0 and vector Peregrine solutions

In this case the solution, which is well described by its expression (59), applies only to
the VNLS equation. In this respect we first notice that this expression (59), with f = 0 ,
and a2 = 0, coincides with the Peregrine soliton of the scalar NLS equation. We further
note that, since the two components u(1)(x, t, a1, a2) , u

(2)(x, t, a1, a2) are related to each
other by the relation u(2)(x, t, a1, a2) = u(1)(x, t, a2,−a1), we limit our attention only to
u(1)(x, t). In the rescaled variables u(1)(x, t) = U (1)(X,T ), X = x

√
a21 + a22, T = t(a21+a

2
2),

this solution (see (59)) may be written as

U (1) = e2iT
{
a1

[
(2+8iT )+(4X2+16T 2−8iT−1) tanh(X−Z)

4X2+16T 2+1

]
+ a2

√
2f

4|f |

(
8X−16iT−1√
4X2+16T 2+1

)
1

cosh(X−Z)

}

(73)
where the curve X = Z(T ) is the trajectory of the soliton as implicitly defined by the
formula

2|f |2e2Z = 4Z2 + 16T 2 + 1 . (74)

As a consequence of these expressions, the large T asymptotic behavior along the curve
X = Z(T ) is found to be

U (1)(X,T ) → e2iT

[
a1 tanh(X − Z)− ia2

√
2f

|f | signT
1

cosh(X − Z)

]
, T → ±∞ , (75a)

Z(T ) → log |T |+ 1

2
log

(
8

|f |2
)
+O

(
log |T |
|T |

)
, T → ±∞ . (75b)

We observe that, as suggested by (73) and explicitly indicated by the asymptotic expression
(75a), the amplitude a1 multiplies a kink-type profile while the amplitude a2 multiplies a
bright-type pulse. Moreover the asymptotic motion (75b) is that of a particle which comes
from x = +∞ and goes back to x = +∞ where it “stops” since its velocity asymptotically
vanishes, namely dZ(T )/dT → 1/T + O(log |T |/T 2). Figure 5 shows an instance (see
caption) of the amplitudes |u(1)(x, t)| and |u(2)(x, t)|. Further instances of this solution
(73) are reported in [14, 15].
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Figure 5: VNLS: kc = i
√
5
2 , λ1 = λ2 6= λ3, s1 = s2 = −1, q = 0, a1 = 1, a2 = 0.5, f = 0.1i.

4.2.2 q 6= 0 and a1 = a2

This family of solutions possesses two novel features with respect to those discussed in the
previous subsections. First, the choice s1 = s2 = 1 is compatible with the boundedness
of solutions (see below). Second, the conditions on the parameter set for the existence of
a critical value kc lead to threshold phenomena for the dimensionless positive parameter
m = a21/q

2. As implied by the explicit expression (68) of the zeros of the discriminant
(64), alias (66), we state the following

Proposition 3 Assume s1 = s2 = 1:

1. if q2 ≥ 2a21 then the four zeros k(η1, η2), see (68), are real and no (complex) critical
value kc exists.

2. if q2 < 2a21 then the two zeros k(1, η2) are real and the other two k(−1, η2) are
imaginary. Therefore in this subset of the parameter plane (a1 , q) there are two
critical values with opposite sign, i.e. kc = k(−1, η2) or, explicitly,

kc = k(−1, η2) = iη2

(
1

2
D2 +

√
1

4
D2

2 −D0

)1/2

, η22 = 1 , (76)

where D0 and D2 are given by (67) with s = 1.

Proposition 4 Assume s1 = s2 = −1:

1. if q2 > 1
4a

2
1 then the four zeros k(η1, η2), see (68), are strictly complex (namely

Im[k] 6= 0) and therefore there are four critical values kc = k(η1, η2).

2. if q2 ≤ 1
4a

2
1 then the four zeros are imaginary and the critical values are again

kc = k(η1, η2).
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Once kc is computed, its corresponding solution of the equations (11) is obtained through
the following chain of steps: i) use Proposition 2 to compute the eigenvalues λ1 and λ3, ii)
compute ω1, ω3, ρ according to (63), iii) insert the expression (51) of the similarity matrix
T in (37) to compute the vector V , iv) finally apply the Darboux-Dressing formula (39).
Instances of solutions of the VNLS equation are shown in Figure 6 (rational, defocusing),
Figure 7 (rational, focusing), Figure 8 (rational-exponential, focusing). Instances of so-
lutions of the 3WRI equation are shown in Figure 9 (rational, s1 = s2 = 1), Figure 10
(rational-exponential, s1 = s2 = −1).

Figure 6: VNLS: kc = i
2

√
−13 + 16

√
2, λ1 = λ2 6= λ3, s1 = s2 = 1, q = 1, a1 = a2 = 2;

γ2 = 1, γ1 = γ3 = 0.

Figure 7: VNLS: kc =
√

3
8

√
−3 + i

√
3, λ1 = λ2 6= λ3, s1 = s2 = −1, q = 1, a1 = a2 = 1;

γ2 = 1, γ1 = γ3 = 0.
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Figure 8: VNLS: kc =
√

3
8

√
−3 + i

√
3, λ1 = λ2 6= λ3, s1 = s2 = −1, q = 1, a1 = a2 = 1;

γ1 = γ2 = γ3 = 1.

Figure 9: 3WRI: kc = i
2

√
−13 + 16

√
2, λ1 = λ2 6= λ3, s1 = s2 = 1 , q = 1, a1 = a2 = 2,

c1 = 1, c2 = 2; γ2 = 1, γ1 = γ3 = 0.

Figure 10: 3WRI: kc =
√

3
8

√
−3 + i

√
3, λ1 = λ2 6= λ3, s1 = s2 = −1, q = 1, a1 = a2 = 1,

c1 = 1, c2 = 2; γ1 = γ2 = γ3 = 1.

4.2.3 q 6= 0 and a1 6= a2

We explore this case by first computing kc numerically. Then the step-by-step method of
construction of the solution, as indicated in the previous subsection, produces the plots of
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solutions of the VNLS as displayed in Figure 11 (rational, defocusing), Figure 12 (rational,
focusing), Figure 13 (rational, s1 = −1, s2 = 1), Figure 14 (rational, s1 = 1, s2 = −1). An
instance of solution of the 3WRI equation is shown in Figure 15 (rational, s1 = s2 = 1).

Figure 11: VNLS: kc = −5.600 +4.655i, λ1 = λ2 6= λ3, s1 = s2 = 1, q = 1, a1 = 2, a2 = 5;
γ2 = 1, γ1 = γ3 = 0.

Figure 12: VNLS: kc = 4.876 + 5.343i, λ1 = λ2 6= λ3, s1 = s2 = −1, q = 1, a1 = 2, a2 = 5;
γ2 = 1, γ1 = γ3 = 0.
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Figure 13: VNLS: kc = −1.242 + 0.636i, λ1 = λ2 6= λ3, s1 = −1, s2 = 1, q = 1, a1 = 1,
a2 = 2; γ2 = 1, γ1 = γ3 = 0.

Figure 14: VNLS: kc = 0.625 + 1.879i, λ1 = λ2 6= λ3, s1 = 1, s2 = −1, q = 1, a1 = 1,
a2 = 2; γ2 = 1, γ1 = γ3 = 0.

Figure 15: 3WRI: kc = 1.319 + 0.256i, λ1 = λ2 6= λ3, s1 = s2 = 1, q = 1, a1 = 2, a2 = 0.5,
c1 = 1, c2 = 2; γ2 = 1, γ1 = γ3 = 0.

23



4.3 Conclusions

In this article we have devised a method of construction of solutions of two integrable
systems of partial differential equations of interest in a variety of applications. These sys-
tems, the VNLS equations and the 3WRI equations, model the coupling of two waves and,
respectively, of three waves. Our construction is specially tailored to yield solutions which
feature a rational, or mixed rational-exponential, dependence on the independent variables.
While rational solutions of integrable partial differential equations attracted mathematical
interest since the 70’s and consequently this type of solutions were derived for a number of
integrable wave equations, it was only recently that further investigations of rational so-
lutions were extended to integrable systems of two or three coupled differential equations.
The main motivation of such a renewed interest goes back to the observation by Peregrine
that the simplest rational solution of the focusing NLS equation may well model an ocean
rogue wave. In a variety of physical contexts it was however soon recognized that, several
waves, rather than a single one, should be considered in order to account for important
resonant interaction processes. For integrable partial differential equations, according to
personal taste, various, yet equivalent, approaches have been adopted: spectral transform
and dressing techniques, Wronskian and Hirota methods, and Darboux transformations
as considered here. These solutions are all soliton solutions since their corresponding
spectral data on the continuos spectrum vanish. Moreover the strategy of computation
may depend on whether the soliton is superimposed to the vacuum (i.e. the vanishing
solution) or to a plane wave background. Here we deal with this second type of solitons.
In most of the constructions discussed in the literature, the way to obtain polynomials
out of (a linear combination of) exponentials goes through an appropriate limit process by
making a number of eigenvalues of the Lax equations coalesce to get all the same value.
Our approach is instead based on the exponentiation of non diagonalizable matrices. This
construction naturally leads to consider those critical values kc of the spectral variable k
such that the matrices which appear as exponent are similar to a Jordan form. There is
therefore no need to take the limit in which different eigenvalues coalesce. We believe that
our investigation is able to capture all possible solutions in this class. We are confident
that the broad family of solutions presented here add a contribution to the understanding
of rogue wave phenomena in novel physical situations where wave resonant interactions
are relevant.
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