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Abstract. It is shown that membership in rational subsets of wreath products

H ≀ V with H a finite group and V a virtually free group is decidable. On the

other hand, it is shown that there exists a fixed finitely generated submonoid in

the wreath product Z ≀ Z with an undecidable membership problem.

1 Introduction

The study of algorithmic problems in group theory has a long tradition. Dehn, in his

seminal paper from 1911, introduced the word problem (Does a given word over the

generators represent the identity?), the conjugacy problem (Are two given group el-

ements conjugate?) and the isomorphism problem (Are two given finitely presented

groups isomorphic?), see [25] for general references in combinatorial group theory.

Starting with the work of Novikov and Boone from the 1950’s, all three problems were

shown to be undecidable for finitely presented groups in general. A generalization of

the word problem is the subgroup membership problem (also known as the general-

ized word problem) for finitely generated groups: Given group elements g, g1, . . . , gn,

does g belong to the subgroup generated by g1, . . . , gn? Explicitly, this problem was

introduced by Mihailova in 1958, although Nielsen had already presented in 1921 an

algorithm for the subgroup membership problem for free groups.

Motivated partly by automata theory, the subgroup membership problem was fur-

ther generalized to the rational subset membership problem. Assume that the group G

is finitely generated by the set X (where a ∈ X if and only if a−1 ∈ X). A finite

automaton A with transitions labeled by elements of X defines a subset L(A) ⊆ G in

the natural way; such subsets are the rational subsets of G. The rational subset mem-

bership problem asks whether a given group element belongs to L(A) for a given finite

automaton (in fact, this problem makes sense for any finitely generated monoid). The

notion of a rational subset of a monoid can be traced back to the work of Eilenberg and

Schützenberger from 1969 [8]. Other early references are [1, 11]. Rational subsets of

groups also found applications for the solution of word equations (here, quite often the

term rational constraint is used) [6, 20]. In automata theory, rational subsets are tightly

related to valence automata (see [9, 16, 17] for details): For any group G, the empti-

ness problem for valence automata over G (which are also known as G-automata) is

decidable if and only if G has a decidable rational subset membership problem.
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For free groups, Benois [2] proved that the rational subset membership problem is

decidable using a classical automaton saturation procedure (which yields a polynomial

time algorithm). For commutative groups, the rational subset membership can be solved

using integer programming. Further (un)decidability results on the rational subset mem-

bership problem can be found in [21] for right-angled Artin groups, in [28] for nilpotent

groups, and in [23] for metabelian groups. In general, groups with a decidable rational

subset membership problem seem to be rare. In [22] it was shown that if the group G

has at least two ends, then the rational subset membership problem for G is decidable

if and only if the submonoid membership problem for G (Does a given element of G

belong to a given finitely generated submonoid of G?) is decidable.

In this paper, we investigate the rational subset membership problem for wreath

products. The wreath product is a fundamental operation in group theory. To define the

wreath product H ≀ G of two groups G and H , one first takes the direct sum K =
⊕

g∈G H of copies of H , one for each element of G. An element g ∈ G acts on K by

permuting the copies of H according to the left action of g on G. The corresponding

semidirect product K ⋊G is the wreath product H ≀G.

In contrast to the word problem, decidability of the rational subset membership

problem is not preserved under wreath products. For instance, in [23] it was shown that

for every non-trivial group H , the rational subset membership problem for H ≀ (Z×Z)
is undecidable. The proof uses an encoding of a tiling problem, which uses the grid

structure of the Cayley graph of Z× Z.

In this paper, we prove the following two new results concerning the rational subset

membership problem and the submonoid membership problem for wreath products:

(i) The submonoid membership problem is undecidable for Z ≀ Z. The wreath product

Z ≀Z is one of the simplest examples of a finitely generated group that is not finitely

presented, see [4, 5] for further results showing the importance of Z ≀ Z.

(ii) For every finite group H and every virtually free group4 V , the group H ≀ V has

a decidable rational subset membership problem; this includes for instance the fa-

mous lamplighter group Z2 ≀ Z.

For the proof of (i) we encode the acceptance problem for a 2-counter machine (Minsky

machine [26]) into the submonoid membership problem for Z ≀ Z. One should remark

that Z ≀ Z is a finitely generated metabelian group and hence has a decidable subgroup

membership problem [29, 30]. For the proof of (ii), an automaton saturation procedure

is used. The termination of the process is guaranteed by a well-quasi-order (wqo) that

refines the classical subsequence wqo considered by Higman [14].

Wqo theory has also been applied successfully for the verification of infinite state

systems. This research led to the notion of well-structured transition systems [10]. Ap-

plications in formal language theory are the decidability of the membership problem

for leftist grammars [27] and Kunc’s proof of the regularity of the solutions of certain

language equations [18]. A disadvantage of using wqo theory is that the algorithms it

yields are not accompanied by complexity bounds. The membership problem for leftist

grammars [15] and, in the context of well-structured transition systems, several natural

reachability problems [3, 32] (e.g. for lossy channel systems) have even been shown

4 Recall that a group is virtually free if it has a free subgroup of finite index.
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not to be primitive recursive. The complexity status for the rational subset membership

problem for wreath products H ≀ V (H finite, V virtually free) thus remains open. Ac-

tually, we do not even know whether the rational subset membership problem for the

lamplighter group Z2 ≀ Z is primitive recursive.

2 Rational subsets of groups

Let G be a finitely generated group and X a finite symmetric generating set for G (sym-

metric means that x ∈ X ⇔ x−1 ∈ X). For a subset B ⊆ G we denote with B∗ (resp.

〈B〉) the submonoid (resp. subgroup) of G generated by B. The set of rational subsets of

G is the smallest set that contains all finite subsets of G and that is closed under union,

product, and ∗. Alternatively, rational subsets can be represented by finite automata. Let

A = (Q,G,E, q0, QF ) be a finite automaton, where transitions are labeled with ele-

ments of G: Q is the finite set of states, q0 ∈ Q is the initial state, QF ⊆ Q is the set of

final states, and E ⊆ Q×G×Q is a finite set of transitions. Every transition label g ∈ G

can be represented by a finite word over the generating set X . The subset L(A) ⊆ G

accepted by A consists of all group elements g1g2g3 · · · gn such that there exists a se-

quence of transitions (q0, g1, q1), (q1, g2, q2), (q2, g3, q3), . . . , (qn−1, gn, qn) ∈ E with

qn ∈ QF . The rational subset membership problem for G is the following decision

problem: Given a finite automaton A as above and an element g ∈ G, does g ∈ L(A)
hold? Since g ∈ L(A) if and only if 1G ∈ L(A)g−1, and L(A)g−1 is rational, too, the

rational subset membership problem for G is equivalent to the question whether a given

automaton accepts the group identity.

The submonoid membership problem for G is the following decision problem: Given

elements g, g1, . . . , gn ∈ G, does g ∈ {g1, . . . , gn}
∗ hold? Clearly, decidability of the

rational subset membership problem for G implies decidability of the submonoid mem-

bership problem for G. Moreover, the latter generalizes the classical subgroup mem-

bership problem for G (also known as the generalized word problem), where the input

is the same as for the submonoid membership problem for G but it is asked whether

g ∈ 〈g1, . . . , gn〉 holds.

In our undecidability results in Sec. 5, we will actually consider the non-uniform

variant of the submonoid membership problem, where the submonoid is fixed, i.e., not

part of the input.

3 Wreath products

Let G and H be groups. Consider the direct sum K =
⊕

g∈G Hg , where Hg is a copy of

H . We view K as the set H(G) = {f ∈ HG | f−1(H \{1H}) is finite} of all mappings

from G to H with finite support together with pointwise multiplication as the group

operation. The group G has a natural left action on H(G) given by gf(a) = f(g−1a),
where f ∈ H(G) and g, a ∈ G. The corresponding semidirect product H(G)

⋊G is the

wreath product H ≀G. In other words:

– Elements of H ≀G are pairs (f, g), where f ∈ H(G) and g ∈ G.
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– The multiplication in H ≀ G is defined as follows: Let (f1, g1), (f2, g2) ∈ H ≀ G.

Then (f1, g1)(f2, g2) = (f, g1g2), where f(a) = f1(a)f2(g
−1
1 a).

The following intuition might be helpful: An element (f, g) ∈ H ≀ G can be thought

of as a finite multiset of elements of H \ {1H} that are sitting at certain elements of G

(the mapping f ) together with the distinguished element g ∈ G, which can be thought

of as a cursor moving in G. If we want to compute the product (f1, g1)(f2, g2), we do

this as follows: First, we shift the finite collection of H-elements that corresponds to

the mapping f2 by g1: If the element h ∈ H \{1H} is sitting at a ∈ G (i.e., f2(a) = h),

then we remove h from a and put it to the new location g1a ∈ H . This new collection

corresponds to the mapping f ′
2 : a 7→ f2(g

−1
1 a). After this shift, we multiply the two

collections of H-elements pointwise: If in a ∈ G the elements h1 and h2 are sitting

(i.e., f1(a) = h1 and f ′
2(a) = h2), then we put the product h1h2 into the location a.

Finally, the new distinguished G-element (the new cursor position) becomes g1g2.

If H (resp. G) is generated by the set A (resp. B) with A ∩ B = ∅, then H ≀ G is

generated by A ∪B.

Proposition 1. Let K be a subgroup of G of finite index m and let H be a group. Then

Hm ≀K is isomorphic to a subgroup of index m in H ≀G.

4 Decidability

We show that the rational subset membership problem is decidable for groups G =
H ≀ V , where H is finite and V is virtually free. First, we will show that the rational

subset membership problem for G = H ≀F2, where F2 is the free group generated by a

and b, is decidable. For this we make use of a particular well-quasi-order.

A well-quasi-order Recall that a well-quasi-order (wqo) on a set A is a reflexive and

transitive relation � such that for every infinite sequence a1, a2, a3, . . . with ai ∈ A

there exist i < j such that ai � aj . In this paper, � will always be antisymmetric as

well; so � will be a well partial order.

For a finite alphabet X and two words u, v ∈ X∗, we write u � v if there exist

v0, . . . , vn ∈ X∗, u1, . . . , un ∈ X such that v = v0u1v1 · · ·unvn and u = u1 · · ·un.

The following theorem was shown by Higman [14] (and independently Haines [13]).

Theorem 1 (Higman’s Lemma). The order � on X∗ is a wqo.

Let H be a group. For a monoid morphism α : X∗ → H and u, v ∈ X∗ let u �α v if

there is a factorization v = v0u1v1 · · ·unvn with v0, . . . , vn ∈ X∗, u1, . . . , un ∈ X ,

u = u1 · · ·un, and α(vi) = 1 for 0 ≤ i ≤ n. It is easy to see that �α is indeed a

partial order on X∗. Furthermore, let �H be the partial order on X∗ with u �H v if

v = v0u1v1 · · ·unvn for some v0, . . . , vn ∈ X∗, u1, . . . , un ∈ X , and u = u1 · · ·un

such that α(vi) = 1 for every morphism α : X∗ → H and 0 ≤ i ≤ n. Note that if

H is finite, there are only finitely many morphisms α : X∗ → H . The upward closure

U ⊆ X∗ of {ε} with respect to �H is the intersection of all preimages α−1(1) for

all morphisms α : X∗ → H , which is therefore regular if H is finite (and a finite

automaton for this upward closure can be constructed from X and H). Since for w =
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w1 · · ·wn, w1, . . . , wn ∈ X , the upward closure of {w} equals Uw1 · · ·UwnU , we can

also construct a finite automaton for the upward closure of any given singleton provided

that H is finite. In the latter case, we can also show that �H is a wqo:

Lemma 1. For every finite group H and finite alphabet X , (X∗,�H) is a wqo.5

Proof. There are only finitely many morphisms α : X∗ → H , say α1, . . . , αℓ. If β :
X∗ → Hℓ is the morphism with β(w) = (α1(w), . . . , αℓ(w)), then for all words

w ∈ X∗: β(x) = 1 if and only if α(x) = 1 for all morphisms α : X∗ → H . Thus, �H

coincides with �β , and it suffices to show that �β is a wqo.

Let w1, w2, . . . ∈ X∗ be an infinite sequence of words. Since Hℓ is finite, we can

assume that all the wi have the same image under β; otherwise, choose an infinite

subsequence on which β is constant. Consider the alphabet Y = X × Hℓ. For every

w ∈ X∗, w = a1 · · · ar, let w̄ ∈ Y ∗ be the word

w̄ = (a1, β(a1))(a2, β(a1a2)) · · · (ar, β(a1 · · · ar)). (1)

Applying Thm. 1 to the sequence w̄1, w̄2, . . . yields i < j with w̄i � w̄j . This means

w̄i = u′
1 · · ·u

′
r, w̄j = v′0u

′
1v

′
1 · · ·u

′
rv

′
r for some u′

1, . . . , u
′
r ∈ Y , v′0, . . . , v

′
r ∈ Y ∗.

By definition of w̄i we have u′
s = (us, hs) for 1 ≤ s ≤ r, where hs = β(u1 · · ·us)

and wi = u1 · · ·ur. Let π1 : Y
∗ → X∗ be the morphism extending the projection

onto the first component, and let vs = π1(v
′
s) for 0 ≤ s ≤ r. Then clearly wj =

v0u1v1 · · ·urvr. We claim that β(vs) = 1 for 0 ≤ s ≤ r, from which wi �β wj

and hence the lemma follows. Since w̄j is also obtained according to (1), we have

β(u1 · · ·us+1) = hs+1 = β(v0u1v1 · · ·usvsus+1) for 0 ≤ s ≤ r − 1. By induction

on s, this implies β(vs) = 1 for 0 ≤ s ≤ r − 1. Finally, β(vr) = 1 follows from

β(u1 · · ·ur) = β(wi) = β(wj) = β(v0u1v1 · · ·urvr) = β(u1 · · ·urvr). ⊓⊔

Loops Let G = H ≀ F2 and fix free generators a, b ∈ F2. Recall that every element

of F2 can be represented by a unique word over {a, a−1, b, b−1} that does not contain

a factor of the form aa−1, a−1a, bb−1, or b−1b; such words are called reduced. For

f ∈ F2, let |f | be the length of the reduced word representing f . Also recall that

elements of G are pairs (k, f), where k ∈ K =
⊕

g∈F2
H and f ∈ F2. In the following,

we simply write kf for the pair (k, f). Fix an automaton A = (Q,G,E, q0, QF ) with

labels from G for the rest of Sec. 4. We want to check whether 1 ∈ L(A). Since G is

generated as a monoid by H ∪ {a, a−1, b, b−1}, we can assume that E ⊆ Q × (H ∪
{a, a−1, b, b−1})×Q.

A configuration is an element of Q × G. For configurations (p, g1), (q, g2), we

write (p, g1) →A (q, g2) if there is a (p, g, q) ∈ E such that g2 = g1g. For elements

f, g ∈ F2, we write f ≤ g (f < g) if the reduced word representing f is a (proper)

prefix of the reduced word representing g. We say that an element f ∈ F2 \ {1} is of

type x ∈ {a, a−1, b, b−1} if the reduced word representing f ends with x. Furthermore,

1 ∈ F2 is of type 1. Hence, the set of types is T = {1, a, a−1, b, b−1}. When regarding

the Cayley graph of F2 as a tree with root 1, the children of a node of type t are of

5 One can actually show for any group H: (X∗,�H) is a wqo if and only if for every n ∈ N,

there is k ∈ N with |〈g1, . . . , gn〉| ≤ k for all g1, . . . , gn ∈ H . See the full version [24].
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the types C(t) = {a, a−1, b, b−1} \ {t−1}. Clearly, two nodes have the same type if

and only if their induced subtrees of the Cayley graph are isomorphic. The elements of

D = {a, a−1, b, b−1} will also be called directions.

Let p, q ∈ Q and t ∈ T . A sequence of configurations

(q1, k1f1) →A (q2, k2f2) →A · · · →A (qn, knfn) (2)

(recall that kifi denotes the pair (ki, fi) ∈ G) is called a well-nested (p, q)-computation

for t if (i) q1 = p and qn = q, (ii) f1 = fn is of type t, and (iii) fi ≥ f1 for 1 < i < n

(this last condition is satisfied automatically if f1 = fn = 1). We define the effect

of the computation to be f−1
1 k−1

1 knfn ∈ K. Hence, the effect describes the change

imposed by applying the corresponding sequence of transitions, independently of the

configuration in which it starts. The depth of the computation (2) is the maximum value

of |f−1
1 fi| for 1 ≤ i ≤ n. We have 1 ∈ L(A) if and only if for some q ∈ QF , there is a

well-nested (q0, q)-computation for 1 with effect 1.

For d ∈ C(t), a well-nested (p, q)-computation (2) for t is called a (p, d, q)-loop for

t if in addition f1d ≤ fi for 1 < i < n. Note that there is a (p, d, q)-loop for t that starts

in (p, kf) (where f is of type t) with effect e and depth m if and only if there exists a

(p, d, q)-loop for t with effect e and depth m that starts in (p, t).

Given p, q ∈ Q, t ∈ T , d ∈ C(t), it is decidable whether there is a (p, d, q)-
loop for t: This amounts to checking whether a given automaton with input alphabet

{a, a−1, b, b−1} accepts a word representing the identity of F2 such that no proper

prefix represents the identity of F2. Since this can be accomplished using pushdown

automata, we can compute the set

Xt = {(p, d, q) ∈ Q× C(t)×Q | there is a (p, d, q)-loop for t}.

Loop patterns Given a word w = (p1, d1, q1) · · · (pn, dn, qn) ∈ X∗
t , a loop as-

signment for w is a choice of a (pi, di, qi)-loop for t for each position i, 1 ≤ i ≤ n.

The effect of a loop assignment is e1 · · · en ∈ K, where ei ∈ K is the effect of the

loop assigned to position i. The depth of a loop assignment is the maximum depth

of an appearing loop. A loop pattern for t is a word w ∈ X∗
t that has a loop as-

signment with effect 1. The depth of the loop pattern is the minimum depth of a loop

assignment with effect 1. Note that applying the loops for the symbols in a loop pat-

tern (p1, d1, q1) · · · (pn, dn, qn) does not have to be a computation: We do not require

qi = pi+1. Instead, the loop patterns describe the possible ways in which a well-nested

computation can enter (and leave) subtrees of the Cayley graph of F2 in order to have

effect 1. The sets

Pt = {w ∈ X∗
t | w is a loop pattern for t}

for t ∈ T will therefore play a central role in the decision procedure.

Recall the definition of the partial order �H from Sec. 4. We have shown that �H

is a wqo (Lemma 1). The second important result on �H is:

Lemma 2. For each t ∈ T , Pt is an upward closed subset of X∗
t with respect to �H .
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Lemma 1 and 2 already imply that each Pt is a regular language, since the upward

closure of each singleton is regular. This can also be deduced by observing that �H is

a monotone order in the sense of [7]. Therein, Ehrenfeucht et al. show that languages

that are upward closed with respect to monotone well-quasi-orders are regular. Our next

step is a characterization of the Pt that allows us to compute finite automata for them.

In order to state this characterization, we need the following definitions.

Let X,Y be alphabets. A regular substitution is a map σ : X → 2Y
∗

such that

σ(x) ⊆ Y ∗ is regular for every x ∈ X . For w ∈ X∗, w = w1 · · ·wn, wi ∈ X , let

σ(w) = R1 · · ·Rn, where σ(wi) = Ri for 1 ≤ i ≤ n. Given R ⊆ Y ∗ and a regular

substitution σ : X → 2Y
∗

, let σ−1(R) = {w ∈ X∗ | σ(w) ∩ R 6= ∅}. If R is regular,

then σ−1(R) is regular as well [31, Prop. 2.16], and an automaton for σ−1(R) can be

obtained effectively from automata for R and the σ(x). The alphabet Yt is given by

Yt = Xt ∪ ((Q×H ×Q) ∩ E).

We will interpret a word in Y ∗
t as that part of a computation that happens in a node of

type t: A symbol in Yt \ Xt stands for a transition that stays in the current node and

only changes the local H-value and the state. A symbol (p, d, q) ∈ Xt represents the

execution of a (p, d, q)-loop in a subtree of the current node. The morphism πt : Y
∗
t →

X∗
t is the projection onto X∗

t , meaning πt(y) = y for y ∈ Xt and πt(y) = ε for

y ∈ Yt \Xt. The morphism νt : Y
∗
t → H is defined by

νt((p, d, q)) = 1 for (p, d, q) ∈ Xt

νt((p, h, q)) = h for (p, h, q) ∈ Yt \Xt.

Hence, when w ∈ Y ∗
t describes part of a computation, νt(w) is the change it imposes

on the current node. For p, q ∈ Q and t ∈ T , define the regular set

Rt
p,q = {(p0, g1, p1)(p1, g2, p2) · · · (pn−1, gn, pn) ∈ Y ∗

t | p0 = p, pn = q}.

Then π−1
t (Pt) ∩ ν−1

t (1) ∩ Rt
p,q consists of those words over Yt that admit an assign-

ment of loops to occurrences of symbols in Xt so as to obtain a well-nested (p, q)-
computation for t with effect 1. Given d ∈ C(t), t ∈ T , the regular substitution

σt,d : Xt → 2Y
∗

d is defined by

σt,d((p, d, q)) =
⋃

{Rd
p′,q′ | (p, d, p

′), (q′, d−1, q) ∈ E}

σt,d((p, u, q)) = {ε} for u ∈ C(t) \ {d}.

For tuples (Ut)t∈T and (Vt)t∈T with Ut, Vt ⊆ X∗
t , we write (Ut)t∈T ≤ (Vt)t∈T if

Ut ⊆ Vt for each t ∈ T . We can now state the following fixpoint characterization:

Lemma 3. (Pt)t∈T is the smallest tuple such that for every t ∈ T we have ε ∈ Pt and

⋂

d∈C(t)

σ−1
t,d

(

π−1
d (Pd) ∩ ν−1

d (1)
)

⊆ Pt.

Given a language L ⊆ X∗
t , let L↑t = {v ∈ X∗

t | u �H v for some u ∈ L}.
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Theorem 2. The rational subset membership problem is decidable for every group G =
H ≀ F , where H is finite and F is a finitely generated free group.

Proof. Since H ≀ F is a subgroup of H ≀ F2 (since F is a subgroup of F2), it suffices to

show decidability for G = H ≀ F2. First, we compute finite automata for the languages

Pt. We do this by initializing U
(0)
t := {ε}↑t for each t ∈ T and then successively

extending the sets U
(i)
t , which are represented by finite automata, until they equal Pt:

If there is a t ∈ T and a word

w ∈
⋂

d∈C(t)

σ−1
t,d

(

π−1
d (U

(i)
d ) ∩ ν−1

d (1)
)

\ U
(i)
t ,

we set U
(i+1)
t := U

(i)
t ∪{w}↑t and U

(i+1)
u := U

(i)
u for u ∈ T \{t}. Otherwise we stop.

By induction on i, it follows from Lemma 2 and Lemma 3 that U
(i)
t ⊆ Pt.

In each step, we obtain U
(i+1)
t by adding new words to U

(i)
t . Since the sets U

(i)
t

are upward closed by construction and there is no infinite (strictly) ascending chain

of upward closed sets in a wqo, the algorithm above has to terminate with some tuple

(U
(k)
t )t∈T . This, however, means that for every t ∈ T

⋂

d∈C(t)

σ−1
t,d

(

π−1
d (U

(k)
d ) ∩ ν−1

d (1)
)

⊆ U
(k)
t .

Since on the other hand ε ∈ U
(k)
t and U

(k)
t ⊆ Pt, Lemma 3 yields U

(k)
t = Pt.

Now we have 1 ∈ L(A) if and only if π−1
1 (P1) ∩ ν−1

1 (1) ∩ R1
q0,q

6= ∅ for some

q ∈ QF , which can be reduced to non-emptiness for finite automata. ⊓⊔

Theorem 3. The rational subset membership problem is decidable for every group H ≀
V with H finite and V virtually free.

Proof. This is immediate from Thm. 2 and Prop. 1: If F is a free subgroup of index m

in V , then Hm ≀F is isomorphic to a subgroup of index m in H ≀ V and decidability of

rational subset membership is preserved by finite extensions [12, 17]. ⊓⊔

5 Undecidability

In this section, we will prove the second main result of this paper: The wreath product

Z ≀ Z contains a fixed submonoid with an undecidable membership problem. Our proof

is based on the undecidability of the halting problem for 2-counter machines.

2-counter machines A 2-counter machine (also known as Minsky machine) is a tuple

C = (Q, q0, qf , δ), where Q is a finite set of states, q0 ∈ Q is the initial state, qf ∈ Q

is the final state, and δ ⊆ (Q \ {qf}) × {c0, c1} × {+1,−1,= 0} × Q is the set of

transitions. The set of configurations is Q×N×N, on which we define a binary relation

→C as follows: (p,m0,m1) →C (q, n0, n1) if and only if one of the following holds:

– There is (p, ci, b, q) ∈ δ such that b ∈ {−1, 1}, ni = mi + b, and n1−i = m1−i.
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– There is (p, ci,= 0, q) ∈ δ such that ni = mi = 0 and n1−i = m1−i.

It is well known that every Turing-machine can be simulated by a 2-counter machine

(see e.g. [26]). In particular, we have:

Theorem 4. There is a fixed 2-counter machine C = (Q, q0, qf , δ) such that the fol-

lowing problem is undecidable: Given m,n ∈ N, does (q0,m, n) →∗
C (qf , 0, 0) hold?

Submonoids of Z ≀ Z In this section, we only consider wreath products of the form

H ≀Z. An element (f,m) ∈ H ≀Z such that the support of f is contained in the interval

[a, b] (with a, b ∈ Z) and 0,m ∈ [a, b] will also be written as a list [f(a), . . . , f(b)],
where in addition the element f(0) is labeled by an incoming (downward) arrow and

the element f(m) is labeled by an outgoing (upward) arrow.

We will construct a fixed finitely generated submonoid of the wreath product Z ≀ Z
with an undecidable membership problem. For this, let C = (Q, q0, qf , δ) be the 2-

counter machine from Thm. 4. W.l.o.g. we can assume that there exists a partition Q =
Q0 ∪Q1 such that q0 ∈ Q0 and

δ ⊆ (Q0 × {c0} × {+1,−1,= 0} ×Q1) ∪ (Q1 × {c1} × {+1,−1,= 0} ×Q0).

In other words, C alternates between the two counters. Hence, a transition (q, ci, x, p)
can be just written as (q, x, p).

Let Σ = Q⊎{c,#} and let ZΣ be the free abelian group generated by Σ. First, we

prove that there is a fixed finitely generated submonoid M of ZΣ ≀Z with an undecidable

membership problem. Let a 6∈ Σ be a generator for the right Z-factor; hence Z
Σ ≀ Z

is generated by Σ ∪ {a}. Let K =
⊕

m∈Z
Z
Σ . In the following, we will freely switch

between the description of elements of ZΣ ≀Z by words over (Σ ∪{a})±1 and by pairs

from K ⋊ Z.

Our finitely generated submonoid M of ZΣ ≀ Z is generated by the following el-

ements. The right column shows the generators in list notation (elements of Z
Σ are

written additively, i.e., as Z-linear combinations of elements of Σ):

p−1a#a2#aq for (p,= 0, q) ∈ δ [
´

−p,#, 0,#,
ˆ
q] (3)

p−1a#aca2qa−2 for (p,+1, q) ∈ δ [
´

−p,#,
ˆ
c, 0, q] (4)

p−1a#a3qa6c−1a−8 for (p,−1, q) ∈ δ [
´

−p,#,
ˆ

0, 0, q, 0, 0, 0, 0, 0,−c] (5)

c−1a8ca−8 [
´ˆ

−c, 0, 0, 0, 0, 0, 0, 0, c] (6)

c−1a#a7ca−6 [
´

−c,#,
ˆ

0, 0, 0, 0, 0, 0, c] (7)

q−1
f a−1 [

ˆ

0,
´

−qf ] (8)

#−1a−2 [
ˆ

0, 0,
´

−#] (9)

For initial counter values m,n ∈ N let I(m,n) = aq0a
2cma4cna−6; its list notation is

[
´

0,
ˆ
q0, 0,m · c, 0, 0, 0, n · c]. (10)
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Here is some intuition: The group element I(m,n) represents the initial configura-

tion (q0,m, n) of the 2-counter machine C. Lemma 4 below states that (q0,m, n) →∗
C

(qf , 0, 0) is equivalent to the existence of Y ∈ M with I(m,n)Y = 1, i.e., I(m,n)−1 ∈
M . Generators of type (3)–(7) simulate the 2-counter machine C. States of C will be

stored at cursor positions 4k + 1. The values of the first (resp., second) counter will

be stored at cursor positions 8k + 3 (resp., 8k + 7). Note that I(m,n) puts a single

copy of the symbol q0 ∈ Σ at position 1, m copies of symbol c (which represents

counter values) at position 3, and n copies of symbol c at position 7. Hence, indeed,

I(m,n) sets up the initial configuration (q0,m, n) for C. Even cursor positions will

carry the special symbol #. Note that generator (8) is the only generator which changes

the cursor position from even to odd or vice versa. It will turn out that if I(m,n)Y = 1
(Y ∈ M ), then generator (8) has to occur exactly once in Y ; it terminates the simula-

tion of the 2-counter machine C. Hence, Y can be written as Y = U(q−1
f a−1)V with

U, V ∈ M . Moreover, it turns out that U ∈ M is a product of generators (3)–(7), which

simulate C. Thereby, even cursor positions will be marked with a single occurrence of

the special symbol #. In a second phase, which corresponds to V ∈ M , these special

symbols # will be removed again and the cursor will be moved left to position 0. This

is accomplished with generator (9). In fact, our construction enforces that V is a power

of (9).

During the simulation phase (corresponding to U ∈ M ), generators of type (3) im-

plement zero tests, whereas generators of type (4) (resp., (5)) increment (resp., decre-

ment) a counter. Finally, (6) and (7) copy the counter value to the next cursor position

that is reserved for the counter (that is copied). During such a copy phase, (6) is first

applied ≥ 0 many times. Finally, (7) is applied exactly once.

Lemma 4. For all m,n ∈ N we have: (q0,m, n) →∗
C (qf , 0, 0) if and only if there

exists Y ∈ M such that I(m,n)Y = 1.

The following result is an immediate consequence of Thm. 4 and Lemma 4.

Theorem 5. There is a fixed finitely generated submonoid M of the wreath product

Z
Σ ≀ Z with an undecidable membership problem.

Finally, we can establish the main result of this section.

Theorem 6. There is a fixed finitely generated submonoid M of the wreath product

Z ≀ Z with an undecidable membership problem.

Proof. By Thm. 5 it suffices to reduce the submonoid membership problem of ZΣ ≀ Z
to the submonoid membership problem of Z ≀ Z. If m = |Σ|, then Prop. 1 shows that

Z
Σ ≀ Z ∼= Z

m ≀mZ is isomorphic to a subgroup of index m in Z ≀ Z. So if Z ≀ Z had a

decidable submonoid membership problem for each finitely generated submonoid, then

the same would be true of ZΣ ≀ Z. ⊓⊔

Theorem 6 together with the undecidability of the rational subset membership problem

for groups H ≀(Z×Z) for non-trivial H [23] implies the following: For finitely generated
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non-trivial abelian groups G and H , H ≀G has a decidable rational subset membership

problem if and only if (i) G is finite6 or (ii) G has rank 1 and H is finite.

By [4], Z ≀Z is a subgroup of Thompson’s group F as well as of Baumslag’s finitely

presented metabelian group 〈a, s, t | [s, t] = [at, a] = 1, as = aat〉. Hence, we get:

Corollary 1. Thompson’s group F and Baumslag’s finitely presented metabelian group

both contain finitely generated submonoids with an undecidable membership problem.

6 Open problems

As mentioned in the introduction, the rational subset membership problem is undecid-

able for every wreath product H ≀ (Z × Z), where H is a non-trivial group [23]. We

conjecture that for every non-trivial group H and every non-virtually free group G, the

rational subset membership problem for H ≀ G is undecidable. The reason is that the

undecidability proof for H ≀ (Z×Z) [23] only uses the grid-like structure of the Cayley

graph of Z × Z. In [19] it was shown that the Cayley graph of a group G has bounded

tree width if and only if the group is virtually free. Hence, if G is not virtually free,

then the Cayley-graph of G has unbounded tree width, which means that finite grids of

arbitrary size appear as minors in the Cayley-graph of G. One might therefore hope to

again reduce a tiling problem to the rational subset membership problem for H ≀G (for

H non-trivial and G not virtually free).

Another interesting case, which is not resolved by our results, concerns the rational

subset membership problem for wreath products G ≀ V with V virtually free and G a

finitely generated infinite torsion group. Finally, all these questions can also be asked

for the submonoid membership problem. We do not know any example of a group with

decidable submonoid membership problem but undecidable rational subset membership

problem. If such a group exists, it must be one-ended [22].
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