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A B S T R A C T :  A method is presented for determination of an n th order rational transform 
approximation for a time function, given at least n + 1 of its Laguerre coefficients. The 
method is based on approximating the discrete set of Laguerre coefficients with a rational 
generating function. The method does not require predetermination of the poles; and allows 
the use of as many Laguerre coefficients as are available, without increasing the complexity 
of the model. Applications to time domain synthesis and transfer function identification 
are discussed. 

In t roduc t ion  

An important class of functions from the point of view of signal representa- 
tion and approximation is the class with n th order rational Laplace transforms. 
These functions arise naturally in such fields as model identification and time- 
domain synthesis. The problem of finding the best n th order rational function 
to represent a given time function is, therefore, important; unfortunately it is 
beset with difficulties. If a truncated orthonormal expansion is used, the pole 
locations must be predetermined by some a priori means, and the order is 
determined by the number of orthonormal functions used (1, 2). Fourier series 
techniques involve compounded approximations and do not afford a clear 
picture of the errors involved (3, 4). Sampled-data techniques involve aliasing 
problems which also make errors difficult to evaluate (5-10). None of these 
methods clearly shows how close the result is to the best (in some prescribed 
sense) n th order rational function. 

In this paper an approach is presented which uses the generating function 
for the Laguerre coefficients of an arbitrary time function. This generating 
function is shown to be proper and rational with n poles if and only if the time 
function has a Laplace transform which is proper and rational with n poles. 
The problem of signal representation and approximation is transformed, 
therefore, into one of finding good rational generating functions for a discrete 
series of coefficients--which is, in many ways, a more tractable problem than 
the original. 

This approach is advantageous in that the poles are not preassigned and 
that  an arbitrarily large number of Laguerre coefficients can be used to find a 
low order transform. Because of the norm-preserving character of the trans- 
formation introduced, the error analysis is especially clear. Three types of 
errors contribute to the overall representation or approximation error: 
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1) The errors in measuring or calculating the Laguerre coefficients of a 
signal or impulse response; 

2) The error caused by using only a finite number of these coefficients; 
3) The error in fitting the rational generating function to the given 

coefficients. 

These errors, all more or less under the control of the user, can often be easily 
estimated. The root-integral-square-error of the final result is bounded by the 
sum of these three root-integral-square-errors. 

A method based on regression techniques is presented for fitting a generating 
function to the Laguerre coefficients. This method is not optimal but is easy 
to use and has proven dependable and practical in many situations. An example 
of an application to lumped delay-line synthesis is discussed. 

Representation of Functions with n th Order Rational Transforms 
A particularly important set of complete orthonormal functions on (0, oo) 

are the Laguerre functions, discussed by Wiener (11), 

T - ~  ' n = O ,  1 , 2 , . . . .  

oo) can be expressed as a limit-in-the-mean of a sum of Any function in L 2 (0, 
these functions 

where 

f(t) = E A x . ( t )  
n~'O 

A = f(t)X.(t)dt (1) 

are the Laguerre coefficients of f(t) and comprise its Laguerre spectrum. We 
define the Laguerre transform of f(t) as the generating function of its Laguerre 
spectrum as follows: 

Definition I: Let f(t) E L 2 (0, oo ) .  The function of z 

oo 

F(z) = Z Lz-", 
n~O 

where fn is given by Eq. 1, is termed the Laguerre transform of f(t). When 
z = exp(j~), this function exists as a limit-in-the-mean and is in L~(0, 2~). 

The following is a simple relationship between F(s) = F (jw), the Fourier 
transform off(t),  and F(z). 

Theorem I: 

F ( z )  = ~¢2z F ( Z - 1 )  
z + - - - T  ~ " 
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Proof :  An application of the F. Riesz-Fischer theorem (12) yields 

1 f y ( z ) z ,  dz 
f~ = 2-~ --z n = 0 , 1 , 2 ,  . . . ,  

where the integration is carried out around the unit circle. Letting z - 

in this, gives 

( l + s ~  1_ ] ~ V2 F M ( - - s ) d s  
f~ = 2~j j_ j~  1 +------~ 1 -- s /  

where 

l + s  
1 - - 8  

V2 ( 1 - - s ~ -  
A . ( s ) = l + s  Y - - ~ /  n = 0 ,1 ,2 ,  . . .  

which is the Laplace transform of h~ (t). Hence, by Parseval's theorem, 

V2 F ( 1  + s )  
F(s) = 1 +-----~s 

and (2) 
F ( z ) -  xf2z F ( Z - - 1 )  

- z + - - ~  ~ " 

It  also follows from Parseval's relation that  

/o f } i f l2dt = ~ [f .I  2 1 J~ = - -  IF(s) l~ds = 1 2dz 
.=0 2~j ~ ~ .  IF(z)l 7"  (3) 

Theorem I gives a simple method for computing the Laguerre spectrum of 
a function with a rational Laplace transform. For example, consider 

so that  

f ( t )  = e-'  sin (t)u(t) 

1 
F(s) = ( s +  1) 2 +  1 

V 2 ( z + l ) z  _ V - 2 [ 1  3 11 ] 
F(z) =5z  ~ + 2 z + l  ~ + z - ~ - - - -  z-~ + ' ' "  125 

It  follows from Eq. 2 that  functions with rational proper Laplace trans- 
forms have rational proper Laguerre transforms. For convenience, we introduce 
the following: 

D e f i n i t i o n  H :  A function of x is said to be in R~ (x) if it is of the form 
n--1 

alx i 
i~O 

b,x ~ 
i~O 
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Theorem II: I t  follows that  f(t) E L2(0, ~ )  has a Laplace transform 
in R,(s) if and only if its Laguerre transform is in Rn(z-1). In this case F(s) has 
all its poles in the open left-hand s-plane and Y (z) has all its poles in the open 
unit  disc. 

Proof: Let F(s) E R~ (s). Then 

F ( z )  - - -  

~-1 ( z _  1 ) i  
~ z  .,~a~ 

z +  l ~-" b ' (Z - -  1) 

The converse follows similarly. The last remark of the theorem follows from 
the fact tha t  the bilinear transformation maps the left-half plane ~o the unit  
disc. The zero of F(s) at infinity maps into z = - 1, but  in virtue of the fac- 
tor V2z/(z + 1) no zero of F(z) necessarily occurs at z = - 1. 

The Approximation Problem 

The approximation problem, discussed in the introduction, is formulated 
as follows : Given f(t) E L 2 (0, ~ ), find f(t) such tha t  

P(8) = z[/( t)J  E R~(s). 

and the integral-square-error 

I[f - lit 2 = i f  - ]]2dt 

is small. Using the representation of the previous section, we restate the prob- 
lem as follows : Given { f .  } ~ such tha t  

find a sequence {].}~ such tha t  

Ifnl 2 < ~ ,  

~(z)  = ~: ]nz -n ~ R.(~-I) .  
n ~ 0  

and the summed-squared-error 

] I f - -  ffl 2 = ~ ]fn - f~]2 
n~O 

is small. 
In a practical situation only a finite number of Laguerre coefficients can be 

obtained, and these inevitably are corrupted by measurement or calculation 
noise. Symbolize the finite observed set by 

fo*, f l*,  " "  " , f N * ,  
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put 

and define 
f~* = 0 for i >  N. 

N 
F*(z) = E f,*z-'. 

i~O 

Assume throughout that n ~ h r. I t  is now necessary to find two polynomials 

N (z )  ~-. ol 0 -I- o~1Z-1 -~- " ' "  -~  Oln-lZ - ( n - l )  

and 

such that 
D (z)  -~ 1 "3 L f~l z--1 "q I- " ' "  -Jr- 3n z - n  

1 / N(z) F,(z) I~dz ~ l ] , _ f , 1 2 =  min. (4) 
2-~-~j D(z---)- z = ,-o 

Then F (z) N (z) - D(z) is the least-integral-square-error approximation to F*(z), 

the measured or calculated version of F(z). Hence P(s) is the n *h order rational 
function closest to F(s) in L2-norm by Eq. 3, based on the information con- 
tained in the f**. Unfortunately the minimization of Eq. 4 requires the solution 
of highly nonlinear regression equations for the 3i.  1 

A closely related problem that can be solved exactly is finding N (z) and 
D(z) such that  

2fl--~j / I N ( z ) -  D(z)F*(z) I~ dZz = min. (5) 

This leads to linear regression equations for the 3~ (14) which are easy to solve 
and which have been used successfully by the author for a number of problems. 

The solution of Eq. 5 is derived as follows: Let 

nq-N 
D(z)F*(z) = ~_, ykz -~. (6) 

k~O 

Whatever the values chosen for the coefficients of D (z), it is clear that the 
minimization of Eq. 5 must result in choosing 

N (z) = Yo --}- YlZ -I q- "'" -4- y,~-iz -('~-1), (7) 

which cancels the first n terms of Eq. 6. This ensures that  N/D and Y*(z) agree 
in the first n terms. Assuming that N (z) is chosen in this way, Eq. 5 becomes 

'~-#j £jr dz = ,~+ N 1 IN - DF*I  2 z E y~2, (8) 
k~n 

where 

Yk = fk* -4- ~ 3~f*k-i 
#ffil 

k = n ,  n4-  1, . . . .  

1 An exact solution is unknown to the author, although iterative techniques appear promising. 

Vol. 280, No. 5, November 1965 391 



Kenneth Steiglitz 

Differentiating Eq. 8 with respect to B~ and setting the result equal to zero 
yields the following set of linear equations for the B j: 

n+N n+N 
~ E  * * f k-,f k-i-~ -- E f*k--,f*k i = 1, . . . , n .  (9) 
j ~ l  k ~ n  k ~n  

Solving for the/~,  involves the inversion of this n X n matrix equation. After 
thus finding D (z), there results from Eq. 7 

N (z) = first n terms in D (z)Y* (z). (m) 

Using Eq. 2 the approximant becomes 

P(s) = - -  
V2 N (  1 - k s ~  

1 - s ] .  

l + S D  I - s ]  

We have gone from an original f(t) to a set of observed Laguerre coefficients 
f*~, to a rational generating function for these f*~, to a rational function of s. 
The error in L2-norm is 

(fo~ l i -  fl~dt) '/~ 

= I I f  - / 1 1  = 11~(~) - F ( z ) l l  ~ I IF (~)  - F * ( ~ ) I I  + I IF * (~ )  - ~(~)11 

= (:~ If ,  - ] , ,12 .q_ ~ If, i,)l,: -t- ( ~ If*, - / , 1 ' ) ' :  
/=0 i=N+l  /=n+l  

(~ If ,  -- f*, [ '):/ '  q- ( ~ If~}') ' / '  -F ( ~ ]f*~ -- f,[:):/ ' ,  (11) 
i=0 i=Nq-1 i=n-t-i 

by two applications of the triangle inequality. The first term in Eq. 11 repre- 
sents the measurement or calculation noise of the Laguerre coefficients; the 
second term represents the truncation error caused by using only a finite 
number of Laguerre coefficients; and the last term represents the fitting error. 
By the completeness of the Laguerre functions on (0, oo ) the t runcat ion error 
can be made arbitrarily small by  choosing N sufficiently large; this can be done 
without changing n, the order of the approximation. The fitting error can be 
computed from the given data, and the measurement or calculation error is 
usually known approximately. Thus an upper bound on the integral-square- 
error can be est imated in a typical identification or synthesis problem. 

Example of Application to Time Domain Synthesis 

To illustrate the method described, the rational transform approximation 
of the delayed impulse 

f(t) = ~(t -- 6.3) 
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FIG. 1. Impulse response of eighth-order delay network. 

is considered.  This  p rob lem is classical in  t i m e - d o m a i n  synthes is  (13) a nd  

so lu t ion  of i t  provides  a severe tes t  for a n y  a p p r o x i m a t i o n  technique ,  since, 

f(t)  is no t  in  L 2. Sixteen Laguerre  coefficients 

fn = ;xn(6.3) n = 0 , - . . ,  15 

were used, and  an  e ighth-order  model  was chosen. The  resu l t ing  a pp r ox i ma t i on  is 

F(s) = 0'02191s7 q- 0"05325s~ - 2"013s5 + 11"93s~ - 35"32s3 + 59"84s~ - 56.20s + 23.04 
s s + 8.823s 7 + 30.52s 6 + 86.42s 6 + 142.6s 4 + 189.8s 8 + 161.6s 2 + 89.29s + 23.00" 

Figures  1 a n d  2 show the  impulse  a n d  step response of th is  de lay  network.  The  

ra t io  of de lay  to 5 -95  per  cent  r ise- t ime of the  s tep response is 3.5, which com- 

pares f avorab ly  wi th  o ther  t ime  d o m a i n  syn thes i s  procedures  for an  e ighth-  

order ne twork  (4). 
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TIME 

FIG. 2. Step response of eighth-order delay network. 
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Summary 
A m e t h o d  for  t he  d e t e r m i n a t i o n  of an  n tla o rde r  r a t i o n a l  t r a n s f o r m  for a 

t ime  func t ion ,  g iven  a t  l eas t  n + 1 of i ts  L a g u e r r e  coefficients,  has  been  pre-  
s e n t e d  wi th ,  as a n  i l l u s t r a t i on  of t he  me tho d ,  an  a p p l i c a t i o n  to  a p r o b l e m  of 
l u m p e d  de lay - l ine  syn thes i s .  

T h e  m e t h o d  is a d v a n t a g e o u s  in t h a t :  The  poles  a re  no t  p r e d e t e r m i n e d ,  
p e r m i t t i n g  2n  degrees  of f r e edom ; t he  er rors  a re  u n d e r  t he  con t ro l  of t he  user  ; 
as m a n y  L a g u e r r e  coefficients as a re  a v a i l a b l e  can  be  used,  w i t h o u t  i nc reas ing  
the  c o m p l e x i t y  of the  m o d e l ;  a n d  the  m a i n  c o m p u t a t i o n a l  effort  i nvo lves  
on ly  t he  invers ion  of an  n X n ma t r ix ,  eas i ly  done  even  for  large  n on an  a u t o -  
m a t i c  d ig i t a l  c o m p u t e r .  

B y  us ing  convo lu t i on  t echn iques  to  m e a s u r e  the  L a g u e r r e  coefficients  of an  
u n k n o w n  p l a n t  impu l se  response ,  t he  m e t h o d  can  be used  for  t r a c k i n g  p l a n t  
t r ans f e r  func t ions  in con t ro l  app l i ca t i ons .  

References 
(1) Elkind, Green, and Starr, "Application of Multiple Regression Analysis to Identification 

of Time-varying Linear Dynamic Systems," 1962 Joint Automatic Control Conference, 
Section 4-3, pp. 1-9, New York, New York. 

(2) B. Liu, "Matching of Initial Behavior in Time Domain Approximation," Jour. Frank. 
Inst., Vol. 277, No. 2, pp. 107-118, Feb. 1964. 

(3) M. Strieby, "A Fourier Method for Time Domain Synthesis," Proc. of Symposium on 
Modern Network Theory, Polytechnic Inst. of Brooklyn, pp. 197-209, Apr. 1955. 

(4) B. Liu, "A Time Domain Approximation Method and Its Application to Lumped Delay 
Lines," I R E  Trans. on Circuit Theory, Vol. CT-9, No. 3, pp. 256-61, Sept. 1962. 

(5) G. C. Lendaris, "The Identification of Linear Systems," Trans. A I E E ,  Vol. 81 (Appl. 
and Ind.), pp. 231-242, Sept. 1962. 

(6) M.J.  Levin, "Estimation of a System Pulse Transfer Function in the Presence of Noise," 
I E E E  Trans. on Automatic Control, Vol. AC-9, No. 3, pp. 229-235, July 1964. 

(7) W. C. Yengst, "Approximation to a Specified Time Response," I R E  Trans. on Circuit 
Theory, Vol. CT-9, No. 2, pp. 152-62; June 1962. 

(8) F. B. Hildebrand, "Introduction to Numerical Analysis," New York, McGraw-Hill, 
pp. 378-379, 1956. 

(9) L. Weiss, and R. N. McDonough, "Prony's Method, Z-Transforms, and Fade Approxi- 
mation," SIA3T Review, Vol. 5, No. 2, pp. 145-9, April 1963. 

(10) R. N. McDonough, "Representation and Analysis of Signals; Part XV, Matched Ex- 
ponents for the Representation of Signals," Johns Hopkins Univ., Dept. of Elec. Eng., 
April 30, 1963, report to Air Force Cambridge Research Center, Contract AF 19(604)- 
1941. 

(11) N. Wiener, "Extrapolation, Interpolation, and Smoothing of Stationary Time Series," 
New York, John Wiley and Sons, pp. 35-6, 1960. 

(12) E. C. Titchmarsh, "The Theory of Functions," Oxford, England, Oxford University 
Press. Sec. 13.62, 1939. 

(13) E. A. Guillemin, "Synthesis of Passive Networks," New York, John Wiley and Sons, 
pp. 690-707, 1957. 

(14) R. E. Kahnan, "Design of a Self-Optimizing Control System," Trans. ASME, Vol. 80, 
pp. 468-78, Feb. 1958. 

394 Jour~a] of The Franklin Institute 


