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Density functional approximations for the exchange-correlation energyExc
DFA of an electronic system

are often improved by admixing some exact exchangeEx : Exc'Exc
DFA1~1/n!~Ex2Ex

DFA!. This
procedure is justified when the error inExc

DFA arises from thel50 or exchange end of the
coupling-constant integral*0

1 dl Exc,l
DFA . We argue that the optimum integern is approximately the

lowest order of Go¨rling–Levy perturbation theory which provides a realistic description of the
coupling-constant dependenceExc,l in the range 0<l<1, whencen'4 for atomization energies of
typical molecules. We also propose a continuous generalization ofn as an index of correlation
strength, and a possible mixing of second-order perturbation theory with the generalized gradient
approximation. ©1996 American Institute of Physics.@S0021-9606~96!01846-6#

Kohn–Sham density functional theory1–3 typically
makes a local or semilocal approximation for the exchange-
correlation energy functionalExc@r↑ ,r↓# of the electron spin
densities, even though it also provides orbitals from which a
Fock integral or ‘‘exact’’ exchange energy may be con-
structed. Given any pair of spin densitiesr↑~r ! and r↓~r !,
there is usually a unique Slater determinantC0 of Kohn–
Sham orbitals which yields those densities and minimizes4,5

the expectation value of the kinetic energy operatorT̂, and
thus an exact Kohn–Sham exchange energy
Ex5^C0uV̂eeuC0&2(e2/2)*d3rd3r 8 r~r !r~r 8!/ur 82r u, where
V̂ee is the electron–electron repulsion operator and
r5r↑1r↓ . Hybrids

6–9 which incorporate some of this exact
exchange provide a simple and accurate description of the
atomization energies, bond lengths, and vibration frequen-
cies of most molecules.10–17 The current popularity of hy-
brids in quantum chemistry demands a simple rationale for
how much exact exchange should be included for a particular
system or property. Such a rationale might motivate further
improvements in calculational methods.

Becke6 showed that the proper starting point for hybrid
theory is the adiabatic connection formula,18–20

Exc5E
0

1

dlExc,l , ~1!

where

Exc,l5^CluV̂eeuCl&2
e2

2 E d3r E d3r 8
r~r !r~r 8!

ur2r 8u
~2!

is l21 times the potential energy of exchange and correlation
for electron–electron interactionle2/ur2r 8u, in a system
whose external potentialvl~r ! is adjusted to hold the elec-
tron densityr~r ! fixed at its physicall51 value.Cl is the
ground-state wave function of this system. Atl50, the
Kohn–Sham noninteracting system is recovered. From the
Hellmann–Feynman theorem, the coupling-constant integral
of Eq. ~1! incorporates the kinetic energy of correlation. A
simple two-point approximation to this integral is

~Exc,l501Exc,l51!/2, whereExc,l505Ex is the exchange en-
ergy of the Kohn–Sham orbitals. Becke6 reasoned that local
or semilocal density functionals are more accurate atl51
~where the exchange-correlation hole is deeper and thus
more localized around its electron21! than atl50. His half-
and-half hybrid6,22

Exc
hyb5

1

2
~Ex1Exc,l51

DFA !, ~3!

whereEx is the exact exchange energy and DFA is a density
functional approximation, uses the local spin density~LSD!
approximation forExc,l51

DFA . The underlying ideas aboutl50
andl51 can also be implemented in other ways.23–25

Becke7 later proposed the three-parameter hybrid

Exc
hyb5Exc

LSD1a0~Ex2Ex
LSD!1ax~Ex

GGA2Ex
LSD!

1ac~Ec
GGA2Ec

LSD!, ~4!

whereExc
GGA5*d3r f ~r↑ ,r↓ ,¹r↑ ,¹r↓! is a generalized gradi-

ent approximation, andExc
LSD5*d3r f ~r↑ ,r↓ ,0,0! is its LSD

piece. The parametersa050.20,ax50.72, andac50.81 were
determined by fitting to a data set of measured atomization
energies. IfEx

GGA andEc
GGA are correct for the uniform gas

@as they were in Becke’s original B3PW91,26–28 but not21,29

in the popular B3LYP~Refs. 26, 30, 31!#, then the resulting
hybrid of Eq.~4! is also correct in the uniform-gas limit. A
recent~B1! simplification8,29 setsax512a0 andac51, i.e.,

Exc
hyb5Exc

DFA1a0~Ex2Ex
DFA!, ~5!

with a050.16 or 0.28~depending on the choice of GGA!
~Ref. 8! and DFA5GGA. The errors in GGA atomization
energies are most severe for multiply-bonded molecules like
N2; for evidence that these errors arise principally from the
l→0 or exchange limit, see Ref. 25.

Previous work6–8,10–17establishes the usefulness of the
hybrid of Eq.~5!, but does not provide a qualitative physical
explanation for this form or for the empirical value of the
parametera0. The aim of this work is to provide such an
explanation. We will show thata0'1/4 is to be expected for
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the atomization energies of most molecules, but also that
larger values ofa0 may be more appropriate for total ener-
gies of atoms and molecules, and smaller values for atomi-
zation energies of molecules with nearly degenerate ground
states of the unperturbed~l50! problem.

Every density functional approximationExc
DFA@r↑ ,r↓# has

a coupling-constant decompositionExc,l
DFA like Eq. ~1! @see Eq.

~13!#, which permits us to defineEx
DFA 5 Exc,l50

DFA andEc
DFA

5 Exc
DFA 2 Ex

DFA . We propose a simple model for the hybrid
coupling-constant dependence,

Exc,l
hyb~n!5Exc,l

DFA1~Ex2Ex
DFA!~12l!n21, ~6!

wheren>1 is an integer to be determined. Equation~6! re-
duces to the exactEx at l50, as it should, and toExc,l

DFA at or
nearl51, whereExc,l

DFA is most trustworthy. The integern
controls how rapidly the correction to DFA vanishes as
l→1. Then

Exc
hyb5E

0

1

dlExc,l
hyb5Exc

DFA1
1

n
~Ex2Ex

DFA!. ~7!

We now argue that the optimum integern should be the
lowest order of perturbation theory which provides a realistic
description of the shape orl-dependence of the exactExc,l ,

Exc,l'e2~c01c1l1•••1cn21l
n21! ~0<l<1!. ~8!

This choice maximizes the similarity ofExc,l
hyb to Exc,l

DFA near
l51, while ensuring that no unnecessary powers ofl are
introduced into Eq.~6!. For example, if the curve ofExc,l vs
l is constant~n51!, then the best correction toExc,l

DFA in Eq.
~6! is a constant shift; if this curve is a straight line~n52!,
then the best correction is a straight line; if this curve is a
cubic ~n54!, then the best correction is a cubic, etc. In other
words, we assume thatExc,l

DFA and Exc,l
hyb can each be fitted

accurately by a polynomial like Eq.~8!, with an indexn no
higher than that needed for an accurate representation of the
exactExc,l .

The appropriate zero-order problem is the Kohn–Sham
noninteracting Hamiltonian, and the perturbation is con-
structed to hold the density fixed.32–34 However, we expect
that in most casesn can be estimated by examining the con-
vergence of the traditional Mo” ller–Plesset perturbation ex-
pansion, in which the zero-order problem is the Hartree–
Fock Hamiltonian.

The n51 case is exemplified by Kr261, a strongly posi-
tive closed-shell ion. AlthoughExc,l

hyb of Eq ~6! will not match
Exc,l
DFA for any l, n51 is clearly the best choice for the

exchange-dominated case.35 Equation~7! becomes

Exc
hyb~n51!5Ex1Ec

DFA, ~9!

which incorporates 100% of exact exchange plus GGA cor-
relation. Equation~9! has been tested for molecular atomiza-
tion energies by Clementi and Chakravorty;36 the results are
superior to Hartree–Fock values, but inferior to values cal-
culated from GGA exchange and correlation without exact
exchange. Clearly, molecular atomization energies are not
exchange dominated. Equation~9! has also been applied to
insulating solids.37

Then52 case might apply when second-order perturba-
tion theory is adequate. Equation~7! becomes

Exc
hyb~n52!5Exc

DFA1
1

2
~Ex2Ex

DFA!, ~10!

which reduces to the half-and-half hybrid6,23 of Eq. ~3! when
Exc,l
DFA is also a straight line. An unsatisfactory and artificial

feature of then52 model is that, althoughExc,l
hyb matches

Excl
DFA at l51, the first derivative is not matched. In reality,

l51 is not a special point, but simply one which falls in the
large-l range where density functional approximations work
best.

The n54 case is exemplified by typical molecules like
the 32 in the G1 data set, for which fourth-order Mo” ller–
Plesset perturbation theory~MP4! yields atomization
energies38 with a small mean absolute error of 2.6 kcal/mol.
For this case,

Exc
hyb~n54!5Exc

DFA1
1

4
~Ex2Ex

DFA!. ~11!

Moreover,Exc,l
hyb matchesExc,l

DFA in value, slope, and second
derivative atl51. Equation~11! constitutes our rationale for
the hybrid of Eq.~5! and our explanation of the value of the
semiempirical parametera050.16 or 0.28.8

Finally, the casen@4 arises when there is a degenerate
or nearly-degenerate ground-state of the unperturbed~l50!
problem, as exemplified to some extent by the molecule O3
~Ref. 13! or by ‘‘stretched’’ H2,

24,39

Exc
hyb~n@4!'Exc

DFA. ~12!

In this case,Exc,l
hyb of Eq. ~6! has a very negative~'2`! slope

at l50, so the full density functional approximation is re-
covered, as expected on the basis of arguments6–8,25,39–41that
a local or semilocal functional for the exchange energy in-
corporates an estimate of ‘‘static correlation,’’ while the cor-
responding approximation for the correlation energy models
‘‘dynamic correlation.’’ The geometry and vibration fre-
quencies of ozone~O3! are better described

13 by GGA alone
than by a Becke hybrid with 20% or 25% of exact exchange.

An ideal hybrid would be sophisticated enough to opti-
mize n for each system and property, but the accuracy of
MP4 ~Ref. 38! for most molecules suggestsn54 as the best
single choice. Table I shows the atomization energies of 19
molecules constructed from this rationalized value ofn, us-
ing as a density functional the nonempirical GGA of Perdew
and Wang~PW91!.27,28 Since Rayleigh–Schro¨dinger pertur-
bation theory is size-consistent,47 this hybrid could also work
for insulating solids.

Figure 1 displays thel-dependence ofExc,l
hyb~n54! from

Eq. ~6!, in comparison withExc,l
DFA . What is actually shown is

2DExc,l5Exc,l~N2!22Exc,l~N!, appropriate to the atomiza-
tion energyDE of N2. Exc,l

DFA has been evaluated from the
relationship22,32,48

Exc,l@r↑ ,r↓#5
d

dl
$l2Exc@r↑a ,r↓a#%, ~13!
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wherersa~r ! is the uniformly-scaled spin densitya3rs~ar !
anda5l21. The shape of the curve2DExc,l

hyb is smooth and
plausible.

To contrast the hybrid presented here from those of Refs.
49 and 50, we note that the two-legged hybrid of Ref. 49 and
the @1/1#-Padéof Ref. 50 estimate the curvature of the exact
l-dependence using GGA results nearl51, while the@2/2#-
Padéhybrid of Ref. 50 inputs yet another piece of informa-
tion, the exact initial slopedExc,l/dl ul50 from perturbation
theory. In the present work, our single parametern is deter-
mined only from knowledge of the convergence of perturba-

tion theory. Furthermore, oncen is chosen, Eq.~7! requires
only exact exchange and GGA exchange-correlation ener-
gies, just as in Eq.~5!.

In a more speculative vein, we propose a continuous
generalization of the parametern of Eq. ~6! as an index of
‘‘correlation strength;’’ for other definitions, see Refs. 47
and 51. This indexn would be determined by fitting the
left-hand side of

dExc,l
hyb/dlul505dExc,l

DFA/dlul502~n21!~Ex2Ex
DFA!

~14!

to the exactdExc,l/dl ul50 given by second-order density
functional theory perturbation theory.32–34 This value ofn
predicts the optimum amount of exact exchange to be ad-
mixed with a density functional approximation, and might
also predict the convergence of the perturbation expansion.
@If the n predicted by Eq.~14! were&2, we could drop the
density functional contribution altogether, and simply use
second-order perturbation theory.# Note thatn can be defined
either for a system~e.g., an atom or molecule! usingExc,l in
Eq. ~14! or a process~e.g., atomization of a molecule! using
the energy changeDExc,l in Eq. ~14!. We are currently test-
ing hybrids of second-order perturbation theory with GGA.
Proper implementation may require a nonempirical GGA
which has a perturbation expansion in powers ofl about
l50 for a finite system, unlike LSD or PW91. We have
recently developed such a GGA.52 Within this GGA, the de-
rivative on the right-hand side of Eq.~14! is given by twice
Eq. ~9! of Ref. 52.
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