Rationality and Intelligence: A Brief Update

Stuart Russell

Abstract The long-term goal of Al is the creation and understandingtedligence.
This requires a notion of intelligence that is precise efaiogallow the cumulative
development of robust systems and general results. Theepbofrational agency
has long been considered a leading candidate to fulfill & This paper, which
updates a much earlier version (Russell, 1997), reviewsehaence of conceptual
shifts leading to a different candidatspunded optimalitythat is closer to our in-
formal conception of intelligence and reduces the gap batvtleeory and practice.
Some promising recent developments are also described.

1 Artificial Intelligence

Al is a field whose ultimate goal has often been somewhatilingdd and subject
to dispute. Some researchers aim to emulate human cognitibers aim at the
creation of intelligence without concern for human chaggstics, and still others
aim to create useful artifacts without concern for abstnations of intelligence.

My own motivation for studying Al is to create and understamelligence as a
general property of systems, rather than as a specificwtriif humans. | believe
this to be an appropriate goal for the field as a whole, andrititdy includes the
creation of useful artifacts—both as a spin-off from andigidg force for techno-
logical development. The difficulty with this “creation aftelligence” view, how-
ever, is that it presupposes that we have some productiieaitwhat intelligence
is. Cognitive scientists can say “Look, my model correctiggicted this experi-
mental observation of human cognition,” and artifact depets can say “Look, my
system is worth billions of euros,” but few of us are happywpiapers saying “Look,
my system is intelligent.”

A definition of intelligence needs to lermal—a property of the system'’s input,
structure, and output—so that it can support analysis anthegis. The Turing test
does not meet this requirement, because it references amialf (and parochial)
human standard. A definition also needs taybeera) rather than a list of special-
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ized faculties—planning, learning, game-playing, and se-with a definition for
each. Defining each faculty separately presupposes th&c¢hky isnecessaryor
intelligence; moreover, the definitions are typically notrgposable into a general
definition for intelligence.

The notion ofrationality as a property odgents—entities that perceive and act—
is a plausible candidate that may provide a suitable forrafadion of intelligence.
Section 2 provides background on the concept of agents. Ulbseguent sections,
following the development in Russell (1997), examine a sega of definitions
of rationality from the history of Al and related disciplisieconsidering each as a
predicateP that might be applied to characterize systems that ardigeast:

e Py: Perfect rationality or the capacity to generate maximally successful be-
haviour given the available information.

e P,: Calculative rationality or the in-principle capacity to compute the perfectly
rational decision given the initially available informarti

e P5: Metalevel rationality or the capacity to select the optimal combination of
computation-sequence-plus-action, under the constifséntthe action must be
selected by the computation.

e P, Bounded optimalityor the capacity to generate maximally successful be-
haviour given the available information and computatioraburces.

For eachP, | shall consider three simple questions. First, Brgystems interest-
ing, in the sense that their behaviour is plausibly desbit#as intelligent? Second,
could P-systems ever exist? Third, to what kind of research andhi@olgical de-
velopment does the study Bfsystems lead?

Of the four candidates,, bounded optimality, comes closest to meeting the
needs of Al research. It is more suitable tHanthroughP5; because it is a real
problem with real and desirable solutions, and also becHisaisfies some es-
sential intuitions about the nature of intelligence. Sompartant questions about
intelligence can only be formulated and answered withirfiiu@ework of bounded
optimality or some relative thereof.

2 Agents

In the early decades of Al's history, researchers tendedfiaelintelligence with re-
spect to specific tasks and the internal processes thosewask thought to require
in humans. Intelligence was believed to involve (among iothiegs) the ability to
understand language, the ability to reason logically, &edability to solve prob-
lems and construct plans to satisfy goals. At the core of saphbilities was a store
of knowledge. The standard conception of an Al system wassagt@fconsultant
something that could be fed information and could then ansprestions. The out-
put of answers was not thought of as astion about which the Al system had a
choice, any more than a calculator has a choice about whabensmo display on
its screen given the sequence of keys pressed.
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The view that Al is about building intelligerdgents—entities that sense their
environment and act upon it—became the mainstream appféatie field only
in the 1990s (Russell and Norvig, 1995; Dean et al, 1995)iniggvreviously been
the province of specialized workshops on “situatednesd™ambeddedness”. The
“consultant” view is a special case in which answering qoestis a form of
acting—a change of viewpoint that occurred much earlienenghilosophy of lan-
guage with the development of speech act theory. Now, idsiesimply giving an-
swers, a consulting agent could refuse to do so on the grafimtvacy or promise
to do soinreturn for some consideration. The agent viewradsorally encompasses
the full variety of tasks and platforms—from robots and deiets to game-playing
systems and financial trading systems—in a single theatdtaamework.

What matters about an agent is whatides not how it does it. An agent can
be defined mathematically by agent functiorthat specifies how an agent behaves
under all circumstances. More specifically,@be the set of percepts that the agent
can observe at any instant (wi@" being the set of observation sequences of any
length) andA be the set of possible actions the agent can carry out in tieenst
world (including the action of doing nothing). The agent dtion is a mapping
f : O* — A. This definition is depicted in the upper half of Figure 1.

As we will see in Section 3, rationality provides a normatprescription for
agent functions and does not specify—although it does cainstthe process by
which the actions are selected. Rather thaaumehat a rational agent must, for
example, reason logically or calculate expected utilittte arguments for (Nils-
son, 1991) or against (Agre and Chapman, 1987; Brooks, 1i®&9nclusion of
such cognitive faculties must justify their position on greunds of efficacy in rep-
resenting a desirable agent function. A designer of ageagsahpriori, complete
freedom in choosing the specifications, boundaries, amtddahnections of subsys-
tems, as long they they compose to form a complete agentisimvdy one is more
likely to avoid the “hallucination” problem that arises whthe fragility of a subsys-
tem is masked by having an intelligent human providing irtput and interpreting
its outputs.

Another important benefit of the agent view of Al is that it cests the field
directly to others that have traditionally looked on the exhited agent as a natural
topic of study, including economics, operations researohtrol theory, and even
evolutionary biology. These connections have facilitateslimportation of techni-
cal ideas (Nash equilibria, Markov decision processes,sandn) into Al, where
they have taken root and flourished.

3 Perfect Rationality

So which agent functions are intelligent? Clearly, doirgyrilght thing is more intel-
ligent that doing the wrong thing. The rightness of actiansaptured by the notion
of rationality: informally, an action is rational to the exit that is consistent with
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Percept history
Agent function

State history

Performance measurg

Fig. 1 The agent receives percepts from the environment and gesexrdoehaviour which in turn
causes the environment to generate a state history. Therparice measure evaluates the state
history to arrive at the value of the agent.

the agent’s goals (or the task for which it was designedjnftioe point of view of
the information possessed by the agent.

Rationality is, therefore, always understood relativéndgent’s ultimate goals.
These are expressed mathematically by a performance neddson sequences
of environment states. L&t(f,E,U) denote the expected value accordindto
obtained by an agent functiohin environment clas&, where (for now) we will
assume a probability distribution over element&oT hen a perfectly rational agent
is defined by an agent functidigp such that

fopt = argmaxV (f,E,U) Q)

This is just a fancy way of saying that the best agent doesdkgitcan. The pointis
that perfectly rational behaviour is a well-defined funotaf thetask environment
fixed byE andU.

Turning to the three questions listed in Section 1: Are peifeational agents in-
teresting things to have? Yes, certainly—if you have onalfggyou prefer it to any
other agent. A perfectly rational agent is, in a sense, p#yfentelligent. Do they
exist? Alas no, except for very simple task environmentshsas those in which
everybehavior is optimal (Simon, 1958). Physical mechanisms take to per-
form computations, while real-world decisions generatiyrespond to intractable
problem classes; imperfection is inevitable.

Despite their lack of existence, perfectly rational agdrase, like imaginary
numbers, engendered a great deal of interesting reseanchx&mple, economists
prove nice results about economies populated by them ané-gfz@oretic mecha-
nism designers much prefer to assume perfect rationalithepart of each agent.
Far more important for Al, however, was the reduction fromlabgl optimiza-
tion problem (Equation 1) to a local one: from the perfectorality of agents
to the perfect rationality of individual actions. That isparfectly rational agent
is one that repeatedly picks an action that maximizes theard utility of the
next state. This reduction involved three separate an@llatghconnected results:
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the axiomatic utility theory of von Neumann and Morgenstéra44) (which ac-
tually takes for granted the agent’s ability to express gnezices between distri-
butions over immediate outcomes), Bellman’s 1957 theorsegfuential decisions,
and Koopmans’ 1972 analysis of preferences over time inrmadwork of multi-
attribute utility theory (Keeney and Raiffa, 1976).

While utility is central to the decision-theoretic notiof perfect rationality,
goalsare usually considered to define the task for a logic-basedtagccording
to Newell (1982), such an agent is perfectly rational if eaction is part of a plan
that will achieve one of the agent’s goals. There have baemats to define goals
in terms of utilities, beginning with Wellman and Doyle (199but difficulties re-
main because goals are essentially incomplete as taskfispgons. They do not
specify what to do when goal achievement cannot be guamnteevhen goals
conflict, or when several plans are available for achievigga, or when the agent
has achieved all its goals. It may be better to interpretgypat as primary defini-
tions of the agent’s task but as subsidiary devices for fiogusomputational effort
with an overall decision-theoretic context. For exampd&neone moving to a new
city may, after weighing many alternatives and tradeofigaruncertainty, settle on
the goal of buying a particular apartment and thereaftargdbeir deliberations on
finding a plan to achieve that goal, to the exclusion of otlussibilities. At the mo-
ment we do not have a good understanding of goal formatiordegsion-theoretic
agent, but it is clear that such behavior cannot be analy#hihvihe framework of
perfect rationality.

As discussed so far, the framework does not say where thef®alnd the per-
formance measure reside—they could be in the head of thgraer of the agent
itself. If they are in the designer’s head, the designer bawtall the work to build
the agent function, anticipating all possible percept segas. If they are in the
agent’s head, the designer can delegate the work to the;dgeeample, in the
setting of reinforcement learning, it is common to equip dgent with a fixed ca-
pacity to extract a distinguished reward signal from theiremment, leaving the
agent to learn the corresponding utility function on staldse designer may also
equip the agent with a prior over environments (Carnap, 1968ving the agent
to perform Bayesian updating as it observes the particulgiranment it inhab-
its. Solomonoff (1964) and Kolmogorov (1965) explored thiestion of universal
priors over computable environments; universality, utufioately, leads to undecid-
ability of the learning problem. Hutter (2005) makes an dmbs attempt to define
a universal yet computable version of perfect rationabty does not pretend to
provide the instantaneous decisions required for an aBusystem; instead, this
work belongs in the realm d%-systems, or calculatively rational agents.

Perhaps the biggest open question for the theory of pedi@onality lies in its
extension from single-agent to multi-agent environme@tsne theorists have pro-
posed manysolution concepts-essentially, definitions of admissible strategies—
but have notidentified one that yields a unique recommenwlé&tip to tie-breaking)
for what to do (Shoham and Leyton-Brown, 2009).
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4 Calculative Rationality

P2-section

The theory ofP;, perfect rationality, says nothing about implementat®nal-
culative rationality, on the other hand, is concerned withgpams for computing
the choices that perfect rationality stipulates.

To discuss calculative rationality, then, we need to disquegrams. The agent’s
decision-making system can be divided into thachine M which is considered
fixed, and theagent program | which the designer chooses from the sp&fig of
all programs that the machine supportd.rfeed not be a raw physical computer, of
course; it can be a software “virtual machine” at any levahdtraction.) Together,
the machineM and the agent prograindefine an agent functioh=Agen{l,M),
which, as noted above, is subject to evaluation. Conversayanimplementation
of the agent functiorf onM; there may, of course, be many such implementations,
but also, crucially, there may be none (see Section 6).

It is important to understand the distinction between amtageogram and the
agent function it implements. An agent program may recesvéput the current
percept, but also has internal state that reflects, in some fbe previous percepts.
It outputs actions when they have been selected. From thedeythe behaviour
of the agent consists of the selected actimsrspersed with inactiofor whatever
default actions the machine generates). Depending on haythe action selection
takes, many percepts may go by unnoticed by the program.

Calculative rationality is displayed by programs thhgxecuted infinitely fast
would result in perfectly rational behaviour. That is, atdit, assuming it is not al-
ready busy computing its choice for some previous time stepprogram computes
the valuefop([01,...,0t]).

Whereas perfect rationality is highly desirable but doesexést, calculative ra-
tionality often exists—its requirements can be fulfilled deyal programs for many
settings—but it is not necessarily a desirable propertyekample, a calculatively
rational chess program will choose the “right” move, but nie 16° times too
long to do so.

The pursuit of calculative rationality has nonethelessnbé® main activity
of theoretically well-founded research in Al; the field hasehb filling in a table
whose dimensions are the various environment propertesiiinistic or stochas-
tic, fully or partially observable, discrete or continupdgnamic or static, single-
agent or multi-agent, known or unknown) for various classesepresentational
formalisms (atomic, propositional, or relational). In tlgical tradition, planning
systems and situation-calculus theorem-provers satisfyconditions of calcula-
tive rationality for discrete, fully observable environmtg moreover, the power of
first-order logic renders the required knowledge pradiiomkpressible for a wide
range of problems. In the decision-theoretic traditioaréare calculatively rational
agents based on algorithms for solving fully or partiallysetvable Markov deci-
sion processes, defined initially atomic by atomic fornmagige.qg., transition matri-
ces), later by propositional representations (e.g., dyo&ayesian networks), and
now by first-order probabilistic languages Srivastava €8ll4). For continuous
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domains, stochastic optimal control theory (Kumar and NMaral986) has solved
some restricted classes of problems, while many othersineopan.

In practice, neither the logical nor the decision-theargtditions can avoid the
intractability of the decision problems posed by the reguient of calculative ra-
tionality. One response, championed by Levesque (198&),rigle out sources of
exponential complexity in the representations and reagpaisks addressed, so that
calculative and perfect rationality coincide—at leasiyvé ignore the little matter
of polynomial-time computation. The accompanying redeaesults on tractable
sublanguages are perhaps best seen as indications of vampdexity may be an
issue rather than as a solution to the problem of complesiitge real-world prob-
lems usually require exponentially large representatiomer the input restrictions
stipulated for tractable inference (Doyle and Patil, 1991)

The most common response to complexity has been to use sapeedup tech-
nigues and approximations in the hope of getting reasormdiaviour. Al has de-
veloped a very powerful armoury of methods for reducing thmputational cost
of decision making, including heuristic evaluation fupcts, pruning techniques,
sampling methods, problem decomposition, hierarchicatrabtion, compilation,
and the application of metalevel control. Although somehefse methods can re-
tain guarantees of optimality and are effective for moddyatarge problems that
are well structured, it is inevitable that intelligent agewill be unable to act ratio-
nally in all circumstances. This observation has been a conpface since the very
beginning of Al. Yet systems that select suboptimal actiatioutside calculative
rationality per se and we need a better theory to understand them.

5 Metalevel Rationality

Metalevel rationality, also called Type Il rationality byd. Good (1971), is based
on the idea of finding an optimal tradeoff between computaticosts and deci-
sion quality. Although Good never made his concept of Typeationality very
precise—he defines it as “the maximization of expectedtytitiking into account
deliberation costs-it is clear that the aim was to take advantage of some sort of
metalevel architecturto implement this tradeoff. Metalevel architecture is aigies
philosophy for intelligent agents that divides the agenigpam into two (or more)
notional parts. The@bject levelcarries out computations concerned with the appli-
cation domain—for example, projecting the results of ptgisactions, computing
the utility of certain states, and so on. Timetalevels a second decision-making
process whose application domain consists of the objget-mmputations them-
selves and the computational objects and states that tfemt.dfletareasoning has
a long history in Al, going back at least to the early 1970% (Reissell and We-
fald, 19914, for historical details). One can also view cidle search methods and
pruning strategies as embodying metalevel expertise eoimgethe desirability of
pursuing particular object-level search operations.
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The theory ofrational metareasoninfprmalizes Good’s intuition that the met-
alevel can “do the right thinking.” The basic idea is thatemibjlevel computa-
tions are actions with costs (the passage of time) and ber{efiprovements in
decision quality). A rational metalevel selects compotadiaccording to their ex-
pected utility. Rational metareasoning has as a precumsottteory ofinforma-
tion value(Howard, 1966)—the notion that one can calculate the daciieoretic
value of acquiring an additional piece of information by slating the decision
process that would be followed given each possible outcofrteeninformation
request, thereby estimating the expected improvement @iside quality aver-
aged over those outcomes. The application to computatyoaksses, by analogy
to information-gathering, seems to have originated withtiidaon (1968). In Al,
Horvitz (1987, 1989), Breese and Fehling (1990), and Ruasel Wefald (1989,
1991a,b) all showed how the idea of value of computationccolve the basic
problems of real-time decision making.

Perhaps the simplest form of metareasoning occurs whenljeetdevel is
viewed by the metalevel as a black-bamytime(Dean and Boddy, 1988) dlex-
ible (Horvitz, 1987) algorithm, i.e., an algorithm whose demisguality depends on
the amount of time allocated to computation. This depengleaic be represented by
a performance profiland the metalevel simply finds the optimal tradeoff between
decision quality and the cost of time (Simon, 1955). More ptax problems arise
if one wishes to build complex real-time systems from angtoomponents. First,
one has to ensure tl@erruptibility of the composed system—that is, to ensure that
the system as a whole can respond robustly to immediate dbsnfanoutput. The
solution is to interleave the execution of all the composgaitocating time to each
component so that the total time for each complete iteratiygrovement cycle of
the system doubles at each iteration. In this way, we cantearisa complex sys-
tem that can handle arbitrary and unexpected real-time désnjast as if it knew
the exact time available in advance, with just a sm&ll) constant factor penalty
in speed (Russell and Zilberstein, 1991). Second, one hakotate the available
computation optimally among the components to maximizetolted output qual-
ity. Although this is NP-hard for the general case, it can tleexl in time linear
in program size when the call graph of the components isdtesstured (Zilber-
stein and Russell, 1996). Although these results are denivihe simple context of
anytime algorithms with well-defined performance profitbgy point to the possi-
bility of more general schemes for allocation of computagioesources in complex
systems.

The situation gets more interesting when the metalevel cangide the object
level and direct its activities, rather than just switchingn and off. The work done
with Eric Wefald looked in particular at search algorithimsyhich the object-level
computations extend projections of the results of variausses of actions further
into the future. For example, in chess programs, each clgeet computation ex-
pands a leaf node of the game tree and advances the cloclkantastion in the
so-calledjoint-state Markov decision proceswhose state space is the Cartesian
product of the object-level state space (which includeg}iamd the metalevel state
space of computational states—in this case, partially g¢ee game trees. The ac-
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tions available are to expand a leaf of the game tree or toitete search and
make a move on the board. It is possible to derive a greedyympicapproxima-
tion to the value of each possible computation and thereloptrol search effec-
tively. This method was implemented for two-player games;player games with
chance nodes, and single-agent search. In each case, thgyeasaral metareason-
ing scheme resulted in efficiency improvements of roughlpater of magnitude
over traditional, highly-engineered algorithms (Rusaelll Wefald, 1991a).

An independent thread of research on metalevel controlrbegh work by Koc-
sis and Szepesvari (2006) on the UCT algorithm, which operiatthe context of
Monte Carlo tree search (MCTS) algorithms. In MCTS, each matation takes
the form of a simulation of a randomized sequence of actieadihg from a leaf
of the current tree to a terminal state. UCT is a metalevetibtigt for selecting
a leaf from which to conduct the next simulation, and has rdoumtied to dramatic
improvements in Go-playing algorithms over the last fewrge# views the met-
alevel decision problem as a multi-armed bandit problemri{Band Fristedt, 1985)
and applies an asymptotically near-optimal bandit deniside recursively to make
a choice of which computation to do next. The application afdit methods to
metalevel control seems quite natural, because a banditggnoinvolves deciding
where to do the next “experiment” to find out how good each baarth is. Are
bandit algorithms such as UCT approximate solutions to suemniicular case of the
metalevel decision problem defined by Russell and Wefald® ariswer, perhaps
surprisingly, is no. The essential difference is that, indiaproblems, every trial
involves executing a real object-level action with realtsp@hereas in the metarea-
soning problem the trials amulationswhose cost is usuallyndependentf the
utility of the action being simulated. Hence UCT appliesditalgorithms to prob-
lems that are not bandit problems. A careful analysis (Haal,e2012) shows that
metalevel problems in their simplest form are isomorphisdtection problemsa
class of statistical decision problems studied since tf®4® quality control and
other areas. Hay et al develop a rigorous mathematical framefor metalevel
problems, showing that, for some cases, hard upper boumdsecastablished for
the number of computations undertaken by an optimal methfmlicy, while, for
other cases, the optimal policy may (with vanishingly snpatibability) continue
computing long past the point where the cost of computatimeeds the value of
the object-level problem.

Achieving accurate metalevel control remains a difficulelogroblem in the
general case. Myopic strategies—considering just one atatipn at a time—can
fail in cases where multiple computations are required i@ty chance of alter-
ing the agent’s current preferred action. Obviously, thabpegm of optimal selection
of computationsequencess at least as intractable as the underlying object-level
problem. One possible approach could be to apply metaleuglarcement learn-
ing, especially as the “reward function” for computatioriratis, the improvement
in decision quality—is easily available to the metalepett hoc It seems plausi-
ble that the human brain has such a capacity, since its haedsvanlikely to have
a method of deriving clever new algorithms for new classedeagision problems.
Indeed, there is a sense in whiglgorithms are not a necessary part of Al systems
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Instead, one can imagine a general, adaptive process ohadl{i guided compu-
tation interacting with properties of the environment t@guwce more and more
efficient decision making.

Although rational metareasoning seems to be a useful toab@ing with com-
plexity, the concept of metalevel rationality as a formalnfiework for resource-
bounded agents does not seem to hold water. The reason,isitita metareason-
ing is expensive, it cannot be carried out optimally. Thusileva metalevel-rational
agent would be highly desirable (although not quite as dbkras a perfectly ra-
tional agent), it does not usually exist. The history of abjevel rationality has
repeated itself at the metalevel: perfect rationality atitietalevel is unattainable
and calculative rationality at the metalevel is useles&r&tore, a time/optimality
tradeoff has to be made for metalevel computations, as fameie with the my-
opic approximation mentioned above. Within the framewdrknetalevel rational-
ity, however, there is no way to identify the appropriateéeff of time for metalevel
decision quality. Any attempt to do so via a metametalevep$y results in a con-
ceptual regress. Furthermore, it is entirely possible ithabme environments, the
most effective agent design will do no metareasoning abatlwill simply respond
to circumstances. These considerations suggest thagthteapproach is to step out-
side the agent, as it were; to refrain from micromanagingrheidual decisions
made by the agent. This is the approach taken in boundedalfitim

6 Bounded Optimality

The difficulties with perfect rationality and metalevelicetality arise from the im-
position of optimality constraints oactionsor computationsneither of which the
agent designer directly controls. The basic problem is tis&tall agent functions
arefeasible(Russell and Subramanian, 1995) on a given mackinée feasible
functions are those implemented by some programMohus, the optimization
over functions in Equation 1 is meaningless. It may be pdiotg that not all agent
functions are computable, but feasibility is in fact muaticggr than computability,
because it relates the operation of a program on a formalimaamodel with finite
speed to the actual temporal behaviour generated by thé.agen

Given this view, one is led immediately to the idea that optifeasible behaviour
is an interesting notion, and to the idea of finding the progtiaat generates ik,
bounded optimality, is exhibited by a progragp; that satisfies

lopt = argmax. 4,V (Agentl,M),E,U) . (2)

Certainly, one would be happy to halg:, which is as intelligent as possible given
the computational resources and structural constrairtteeainachinévl. Certainly,
bounded optimal programs exist, by definition. And the regeagenda appears to
be very interesting, even though it is difficult.
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In Al, the idea of bounded optimality floated around amongesalvdiscus-
sion groups interested in resource-bounded rationalithénlate 1980s, particu-
larly those at Rockwell (organized by Michael Fehling) anar$ord (organized by
Michael Bratman). The term itself seems to have been origihlay Horvitz (1989),
who defined it informally as “the optimization of computat# utility given a set
of assumptions about expected problems and constrainesonnces.”

Similar ideas also emerged in game theory, where there has dehift from
consideration of optimal decisions in games to a consiaeratf optimal decision-
making programs. This leads to different results becauseits the ability of each
agent to do unlimited simulation of the other, who is alsodainlimited simulation
of the first, and so on. Depending on the precise machinediioits chosen, it is
possible to prove, for example, that the iterated Prisgrigitemma has cooperative
equilibria (Megiddo and Wigderson, 1986; Papadimitriod afannakakis, 1994;
Tennenholtz, 2004), which is not the case for arbitrarytstiias.

Philosophy has also seen a gradual evolution in the defirgfioationality. There
has been a shift from considerationaaft utilitarianism—the rationality of individ-
ual acts—taule utilitarianism, or the rationality of general policies for acting. The
requirement that policies be feasible for limited agents diacussed extensively by
Cherniak (1986) and Harman (1983). A philosophical propgsaerally consistent
with the notion of bounded optimality can be found in the “MbfFirst Aid Man-
ual” (Dennett, 1986). Dennett explicitly discusses theidéreaching an optimum
within the space of feasible decision procedures, usingp@xample the Ph.D. ad-
missions procedure of a philosophy department. He pointshai the bounded
optimal admissions procedure may be somewhat messy and awaynio obvious
hallmark of “optimality"—in fact, the admissions commigtenay continue to tin-
ker with it since bounded optimal systems may have no waydogeize their own
bounded optimality.

My work with Devika Subramanian placed the general idea afnoed opti-
mality in a formal setting and derived the first rigorous tessan bounded optimal
programs (Russell and Subramanian, 1995). This requirgichgeip completely
specified relationships among agents, programs, mackineispnments, and time.
We found this to be a very valuable exercise in itself. Fomepie, the informal no-
tions of “real-time environments” and “deadlines” endedwith definitions rather
different than those we had initially imagined. From thiaridation, a very simple
machine architecture was investigated in which the progransists of a collec-
tion of decision procedures with fixed execution time andislec quality. In a
“stochastic deadline” environment, it turns out that thiéitytattained by running
several procedures in sequence until interrupted is oftgheln than that attain-
able by any single decision procedure. That is, it is oftettebdirst to prepare a
“quick and dirty” answer before embarking on more involvedcalations in case
the latter do not finish in time. In an entirely separate lifiénquiry, Livhat and
Pippenger (2006) show that, under a bound on the total nuaflyates in a circuit-
based agent, the bounded optimal configuration may, for daskeenvironments,
involve two or more separate circuits that compete for crmtf the effectors and,
in essence, pursue separate goals.
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The interesting aspect of these results, beyond their \ewedemonstration of
nontrivial proofs of bounded optimality, is that they exhilm a simple way what
| believe to be a major feature of bounded optimal agentsfabethat the pres-
sure towards optimality within a finite machine results inrmoomplex program
structures. Intuitively, efficient decision-making in angplex environment requires
a software architecture that offers a wide variety of pdesstbmputational options,
so that in most situations the agent has at least some cotigmstavailable that
provide a significant increase in decision quality.

One objection to the basic model of bounded optimality aetliabove is that so-
lutions are notobustwith respect to small variations in the environment or the ma
chine. This in turn would lead to difficulties in analyzingnaplex system designs.
Theoretical computer science faced the same problem imideggthe running time
of algorithms, because counting steps and describinguictsdn sets exactly gives
the same kind of fragile results on optimal algorithms. Td(@ notation was de-
veloped to provide a way to describe complexity that is irshejent of machine
speeds and implementation details and that supports thelative development
of complexity results. The corresponding notion for agesm@symptotic bounded
optimality (ABO) (Russell and Subramanian, 1995). As wildsssical complexity,
we can define both average-case and worst-case ABO, whes&''ttare means the
environment. For example, worst-case ABO is defined asvistio

Worst-case asymptotic bounded optimality
an agent program | is timewise (or spacewise) worst-case ABOon M
iff

3k,no VI',n n>ng = V*(Agen{l,kM),E,U,n) >
V*(Agen{l’;M),E,U,n)

where KM denotes a version of M speeded up by a factor k (or with
k times more memory) and*¥f,E,U,n) is the minimum value of
V(f,E,U) for all E in E of complexity n.

In English, this means that the program is basically alomgrigght lines if it just
needs a faster (larger) machine to have worst-case bemasgood as that of any
other program in all environments.

Another possible objection to the idea of bounded optimpaditthat it simply
shifts the intractable computational burden of metaleatibnality from the agent’s
metalevel to the designer’s object level. Surely, one mégbue, the designer now
has to solve offline all the metalevel optimization probleiimst were intractable
when online. This argument is not without merit—indeed, aid be surprising if
the agent design problem turns out to be easy. There is hoyvgesignificant differ-
ence between the two problems, in that the agent designeessimably creating
an agent for an entire class of environments, whereas ttadiyitmetalevel agent
is working in a specific environment. That this can make tlebl@measierfor the
designer can be seen by considering the example of sortjugims. It may be
very difficult indeed to sort a list of a trillion elements,thtis relatively easy to
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design an asymptotically optimal algorithm for sortingfant, the difficulties of the
two tasks are unrelated. The unrelatedness would still tasIBO as well as ABO
design, but the ABO definitions make it a good deal clearer.

It can be shown easily that worst-case ABO is a generalizati@asymptotically
optimal algorithms, simply by constructing a “classicalieanment” in which clas-
sical algorithms operate and in which the utility of the altfon’s behaviour is a
decreasing positive function of runtime if the output isreat and zero otherwise.
Agents in more general environments may need to trade gfiubguality for time,
generate multiple outputs over time, and so on. As an ibdisin of how ABO is
a useful abstraction, one can show that under certaing#strs one can construct
universalABO programs that are ABO for any time variation in the ufilitinc-
tion, using the doubling construction from Russell and &i#ltein (1991). Further
directions for bounded optimality research are discusséalb

7 What Is To Be Done?

The 1997 version of this paper described two agendas foargseone agenda
extending the tradition of calculative rationality and #rey dealing with metarea-
soning and bounded optimality.

7.1 Improving the calculative toolbox

The traditional agenda took as its starting point the kindgdnt could be built us-
ing the components available at that time: a dynamic Bagpeséwork to model
a partially observable, stochastic environment; paramétarning algorithms to
improve the model; a particle filtering algorithm to keepclkaf the environment
state; reinforcement learning to improve the decision fiencgiven the state esti-
mate. Such an architecture “breaks” in several ways whetfadth the complexity
of real-world environments (Russell, 1998):

1. Dynamic Bayesian networks are not expressive enoughrdl&é@&nvironments
with many related objects and uncertainty about the existemd identity of
objects; a more expressive language—essentially a uidficat probability and
first-order logic—is required.

2. A flat space of primitive action choices, especially whengied with a greedy
decision function based on reinforcement learning, cahaaotlle environments
where the relevant time scales are much longer than theiolita single prim-
itive action. (For example, a human lifetime involves tefigilions of primitive
muscle activation cycles.) The agent architecture mugpatierarchical rep-
resentations of behaviour, including high-level actiomerdong time scales.
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3. Attempting to learn a value function accurate enough fipett a greedy one-
step decision procedure is unlikely to work; the decisiomction must support
model-based lookahead over a hierarchical action model.

On this traditional agenda, a great deal of progress hagmetuor the first item,
there are declarative (Milch et al, 2005) and proceduraffef, 2001; Goodman
et al, 2008)probabilistic programming languagdkat have the required expressive
power. For the second item, a theory of hierarchical reodorent learning has been
developed (Sutton et al, 1999; Parr and Russell, 1998).fdwy can be applied to
agent architectures defined by arbitrgrtial programs—that is, agent programs
in which the choice of action at any point may be left unspedif\ndre and Russell
(2002); Marthi et al (2005). The hierarchical reinforcemierning process con-
verges in the limit to the optimal completion of the agentgueon, allowing the
effective learning of complex behaviours that cover retdsi long time scales. For
the third item, lookahead over long time scales, a satisfgctemantics has been
defined for high-level actions, at least in the determiaisétting, enabling model-
based lookahead at multiple levels of abstraction (Matthl,e2008).

These are promising steps, but many problems remain urtsdivem a practical
point of view, inference algorithms for expressive protiati languages remain far
too slow, although this is the subject of intense study asgmein many research
groups around the world. Furthermore, algorithms capableasning new model
structures in such languages are in their infancy. The sanrié for algorithms
that construct new hierarchical behaviours from more giiiactions: it seems
inevitable that intelligent systems will need high-levetians, but as yet we do not
know how to create new ones automatically. Finally, thereeHzeen few efforts at
integrating these new technologies into a single agenitaathre. No doubt such
an attempt will reveal new places where our ideas break aad tebe replaced
with better ones.

7.2 Optimizing computational behaviour

A pessimistic view of Equation 2 is that it requires evalngtevery possible pro-
gram in order to find one that works best—hardly the most psorgior original
strategy for Al research. But in fact the problem has a goad destructure and
it is possible to prove bounded optimality results for reeddy general classes of
machines and task environments.

Modular design using a hierarchy of components is commogdyn |as the only
way to build reliable complex systems. The components ffgkiitain behavioural
specifications and interact in well-defined ways. To producemposite bounded-
optimal design, the optimization problem involves alldngexecution time to com-
ponents (Zilberstein and Russell, 1996) or arranging tleroof execution of the
components (Russell and Subramanian, 1995) to maximizelbperformance. As
illustrated earlier in the discussion of universal ABO altfons, the techniques for
optimizing temporal behaviour are largely orthogonal te ¢bntentof the system
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components, which can therefore be optimized separatelysi@er, for example,
a composite system that uses an anytime inference algoattema Bayesian net-
work as one of its components. If a learning algorithm imsthe accuracy of
the Bayesian network, the performance profile of the infeeesromponent will im-
prove, which will result in a reallocation of execution tirtteat is guaranteed to
improve overall system performance. Thus, techniques asdhe doubling con-
struction and the time allocation algorithm of Zilberstaimd Russell (1996) can be
seen as domain-independenttools for agent design. Théjedmaunded optimality
results that do not depend on the specific temporal aspettte ehvironment class.
As a simple example, we might prove that a certain chess anogiesign is ABO
for all time controls ranging from blitz to full tournamernity.

The results obtained so far for optimal time allocation hassumed a static,
offline optimization process with predictable componentgenance profiles and
fixed connections among components. One can imagine far sobtée designs in
which individual components must deal with unexpectedbysbr fast progress in
computations and with changing needs for information frélneocomponents. This
might involve exchanging computational resources amongpoments, establishing
new interfaces, and so on. This is more reminiscent of a ctatipnal market,
as envisaged by Wellman (1994), than of the classical stibehierarchies, and
would offer a useful additional level of abstraction in stdesign.

7.3 Learning and bounded optimality

In addition to combinatorial optimization of the structared temporal behaviour of
an agent, we can also use learning methods to improve thgrdesi

e Thecontentof an agent’'s knowledge base can of course be improved byindu
tive learning. Russell and Subramanian (1995) show thatappately bounded
optimal designs can be guaranteed with high probabilityadhecomponent is
learned in such a way that its output quality is close to ogtamong all compo-
nents of a given execution time. Results from statisticatrieng theory, partic-
ularly in the agnostic learning and empirical risk minintisa models (Kearns
et al, 1992; Vapnik, 2000), can provide learning methodsehss support vec-
tor machines—with the required properties. The key addiigtep is to analyze
the way in which slight imperfection in each component earthrough to slight
imperfection in the whole agent.

e Reinforcement learningan be used to learn value information such as utility
functions, and several kinds efd convergence guarantees have been established
for such algorithms. Applied in the right way to the metaledecision problem,

a reinforcement learning process can be shown to convesgbdanded-optimal
configuration of the overall agent.

e Compilationmethods such as explanation-based learning can be useaht tr
form an agent’s representations to allow faster decisiokimga Several agent
architectures including @R (Laird et al, 1986) use compilation to speed up all
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forms of problem solving. Some nontrivial results on cogegice have been ob-
tained by Tadepalli (1991), based on the observation that afgiven amount
of experience, novel problems for which no solution has Istered should be
encountered only infrequently.

Presumably, an agent architecture can incorporate alétle@sning mechanisms.
One of the issues to be faced by bounded optimality resesatw to prove conver-
gence results when several adaptation and optimizatiomamégms are operating
simultaneously.

7.4 Offline and online mechanisms

One can distinguish betweefflineandonlinemechanisms for constructing bounded-
optimal agents. An offline construction mechanism is netfitsart of the agent and

is not the subject of bounded optimality constraints.Céte an offline mechanism
designed for a class of environmehtsThen a typical theorem will say th@toper-
ates in a specific environmehte E and returns an agent design that is ABO (say)
for E—that is, an environment-specific agent.

In the online case, the mechaniéhs considered part of the agent. Then a typical
theorem will say that the agent is ABO for &l < E. If the performance measure
used is indifferent to the transient cost of the adaptati@ptimization mechanism,
the two types of theorems are essentially the same. On tlea b#ind, if the cost
cannot be ignored—for example, if an agent that learns disko be preferred to
an agent that reaches the same level of performance buslewre slowly—then
the analysis becomes more difficult. It may become necessatgfine asymptotic
equivalence for “experience efficiency” in order to obtadbust results, as is done
in computational learning theory.

It is worth noting that one can easily prove the value of tifeg learning” in
the ABO framework. An agent that devotes a constant fraaifdts computational
resources to learning-while-doing cannot do worse, in tB&®Aense, than an agent
that ceases learning after some point. If some improvensestill possible, the
lifelong learning agent will always be preferred.

7.4.1 Fixed and variable computation costs

Another dimension of design space emerges when one cossitecomputational
cost of the “variable part” of the agent design. The desigrblam is simplified
considerably when the cost is fixed. Consider again the tbsietalevel reinforce-
ment learning, and to make things concrete let the metatla@sion be made by a
Q function mapping from computational state and action taezaSuppose further
that the Q function is to be represented by a neural net. lfapelogy of the neural
net is fixed, then all Q functions in the space have the samsuére time. Conse-
quently, the optimality criterion used by the standard &+héng process coincides
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with bounded optimality, and the equilibrium reached wi#l & bounded-optimal
configurationt On the other hand, if the topology of the network is subjeclto

teration as the design space is explored, then the exedirienof the different

Q-functions varies. In this case, the standard Q-learniaggss will not necessarily
converge to a bounded-optimal configuration; typicallyyiit tend to build larger

and larger (and therefore more and more computationallgmrsige) networks to
obtain a more accurate approximation to the true Q-funciatifferent adaptation

mechanism must be found that takes into account the passtigee@nd its effect

on utility.

Whatever the solution to this problem turns out to be, theadirtgmt point is that
the notion of bounded optimality helps to distinguish adéiph mechanisms that
will result in good performance from those that will not. Adation mechanisms
derived from calculative rationality will fail in the morealistic setting where an
agent cannot afford to aim for perfection.

7.5 Looking further ahead

The discussion so far has been limited to fairly sedate fafregent architecture
in which the scope for adaptation is circumscribed to paldicfunctional aspects
such as metalevel Q functions. However, an agent must inrgkedeal with an
environment that is far more complex than itself and thatitaidvariation over
time at all levels of granularity. Limits on the size of theeatjs memory may imply
that almost complete revision of the agent’s mental strnecisi needed to achieve
high performance. For example, songbirds grow their bratulistantially during the
singing season and shrink them again when the season i} 8ueh situations may
engender a rethinking of some of our notions of agent arctoite and optimality,
and suggest a view of agent programs as dynamical systetmgavibus amounts of
compiled and uncompiled knowledge and internal proceskesloctive learning,
forgetting, and compilation.

If a true science of intelligent agent design is to emergeilithave to operate in
the framework of bounded optimality. One general approadiseernible in the ex-
amples given earlier—is to divide up the space of agent desigo “architectural
classes” such that in each class the structural variatisaffgiently limited. Then
ABO results can be obtained either by analytical optimaatvithin the class or
by showing that an empirical adaptation process results iapproximately ABO
design. Once this is done, it should be possible to compatetecture classes di-
rectly, perhaps to establish asymptotic dominance of oasscbver another. For
example, it might be the case that the inclusion of an apptgfmacro-operator
formation” or “greedy metareasoning” capability in a givamchitecture will result
in an improvement in behaviour in the limit of very complexgonments—that s,
one cannot compensate for the exclusion of the capabilitpdrgasing the machine

1 A similar observation was made by Horvitz and Breese (1980¢dses where the object level is
so restricted that the metalevel decision problem can bedah constant time.
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speed by a constant factor. Moreover, within any particatahitectural class it is
clear that faster processors and larger memories lead tindace. A central tool
in such work will be the use of “no-cost” results where, foample, the allocation
of a constant fraction of computational resources to le@yor metareasoning can
do no harm to an agent’s ABO prospects.

Getting all these architectural devices to work togethevahmly is an important
unsolved problem in Al and must be addressed before we cae mpragress on
understanding bounded optimality within these more cormatehitectural classes.
If the notion of “architectural device” can be made suffitigrtoncrete, then Al
may eventually develop grammarfor agent designs, describing the devices and
their interrelations. As the grammar develops, so shoudaitcompanying ABO
dominance results.

8 Summary

I have outlined some directions for formally grounded Aleasch based on bounded
optimality as the desired property of Al systems. This pecspe on Al seems to
be a logical consequence of the inevitable philosophicaVve from optimiza-
tion over actions or computations to optimization over pamgs. | have suggested
that such an approach should allow synergy between theakatid practical Al re-
search of a kind not afforded by other formal frameworkshingame vein, | believe
it is a satisfactory formal counterpart of the informal gofitreating intelligence.
In particular, it is entirely consistent with our intuitis@bout the need for complex
structure in real intelligent agents, the importance ofrésource limitations faced
by relatively tiny minds in large worlds, and the operatidreeolution as a design
optimization process. One can also argue that bounded algfrmesearch is likely
to satisfy better the needs of those who wish to emulate humaigence, because
it takes into account the limitations on computational tgses that are presumably
an important factor in the way human minds are structuredratige behaviour that
results.

Bounded optimality and its asymptotic version are, of ceursthing but for-
mally defined properties that one may want systems to saliséytoo early to tell
whether ABO will do the same kind of work for Al that asymptotiomplexity has
done for theoretical computer science. Creativity in desggstill the prerogative
of Al researchers. It may, however be possible to systemaltie design process
somewhat and to automate the process of adapting a systdsndoniputational
resources and the demands of the environment. The conckptiatied optimality
provides a way to make sure the adaptation process is “¢drrec

My hope is that with these kinds of investigations, it willeeually be possi-
ble to develop the conceptual and mathematical tools to @nsame basic ques-
tions about intelligence. For examplehy do complex intelligent systems (appear
to) have declarative knowledge structures over which tieagan explicitly? This
has been a fundamental assumption that distinguishes Al dtber disciplines for
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agent design, yet the answer is still unknown. Indeed, RoodBs, Hubert Dreyfus,
and others flatly deny the assumption. What is clear is thatllineed something
like a theory of bounded optimal agent design to answer this iguest

Most of the agent design features that | have discussed ineteging the use
of declarative knowledge, have been conceived within thedsrd methodology of
“first build calculatively rational agents and then speeghttup.” Yet one can le-
gitimately doubt that this methodology will enable the Alnmmunity to discover
all the design features needed for general intelligence.réason is that no con-
ceivable computer will ever be remotely close to approxintgperfect rationality
for even moderately complex environments. It may well bectge, therefore, that
agents based on approximations to calculatively ratioasighs arenot even close
to achieving the level of performance that is potentiallhiacable given the un-
derlying computational resources. For this reason, | belieis imperative not to
dismiss ideas for agent designs that do not seem at firstgtarfit into the “classi-
cal” calculatively rational framework.
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