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Abstract In this note we prove a simultaneous extension of the author’s joint result
withM. Harris for critical values of Rankin–Selberg L-functions L(s,�×�′) (Grob-
ner and Harris in J Inst Math Jussieu 15:711–769, 2016, Thm. 3.9) to (i) general
CM-fields F and (ii) cohomological automorphic representations�′ = �1� · · ·��k

which are the isobaric sum of unitary cuspidal automorphic representations�i of gen-
eral linear groups of arbitrary rank over F . In this sense, the main result of these notes,
cf. Theorem 1.9, is a generalization, as well as a complement, of the main results
in Raghuram (Forum Math 28:457–489, 2016; Int Math Res Not 2:334–372, 2010.
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80 H. Grobner

1 Rationality for isobaric automorphic representations: the general case

1.1 Introductory comments: a leitfaden for the reader

The purpose of this note is to prove a broad generalization of our own rationality-result,
[12, Thm. 3.9], established ibidem for critical values of the Rankin–Selberg L-function
L(s,� × �′) of certain automorphic representations � ⊗ �′ of GLn × GLn−1 over
an imaginary quadratic fieldK. Our generalization of this result will be in terms of the
nature of the base fieldK, and even more importantly, of the nature of the automorphic
representation �′.

1.1.1 A short review of our result in [12]

To put ourselves in medias res, we will briefly recall our rationality-theorem, [12,
Thm. 3.9]. It applies to a pair (�,�′) of a cohomological cuspidal automorphic
representation � of GLn(AK) and a cohomological abelian automorphic represen-
tation �′ of GLn−1(AK), i.e., an isobaric sum of distinct unitary Hecke characters
�′ = χ � · · · � χn−1, over imaginary quadratic fields K. By a principle found in
[14,22,27], which works in even greater generality as exploited in the latter refer-
ences, one may attach a Whittaker period p(�) and p(�′) to such representations:
Explained in due shortness, this period is defined by comparison of

(i) a fixed rational structure of the (unique)Whittaker modelW (� f ) (resp.W (�′
f ))

of the finite part of the given automorphic representation and
(ii) a fixed rational structure on a (uniquely chosen) � f – (resp. �′

f –) isotypic sub-

space in the cohomology Hbn (Sn, Eμ) (resp. Hbn−1(Sn−1, Eλ)) of the adelic
“locally symmetric space” Sn (reps. Sn−1) in the lowest, possible degree bn
(resp. bn−1).

As both, the Whittaker model and the above cohomological model, are irreducible
representations, their rational structures are unique up to multiplication by non-zero
complex numbers. Hence, the Whittaker periods p(�) and p(�′) may simply be
defined as a choice of normalization-factor, which makes the isomorphism between
theWhittakermodel and our cohomologicalmodel, induced from the globalψ-Fourier
coefficient, respect the two fixed choices of rational structures on domain and target
space.

Recall the Gauß-sum G(ω�′
f
) of the central character ω�′

f
of �′

f and assume

that the coefficient modules Eμ and Eλ in cohomology allow a non-trivial GLn−1(C)-
equivariant intertwining Eμ ⊗ Eλ → C. Under these assumptions the rationality-
theorem [12, Thm. 3.9] asserts that for every critical point of L(s,� × �′), i.e., for
every half-integer s0 = 1

2+m, forwhich the archimedean L-factors on both sides of the
functional equation of L(s,�×�′) are holomorphic, there is a non-zero archimedean
period p(m,�∞,�′∞) ∈ C

∗, only depending on m, �∞ and �′∞, such that

L
(
1
2 + m,� f × �′

f

)
∼Q(� f )Q(�′

f )
p(�) p(�′) p(m,�∞,�′∞) G(ω�′

f
). (1.1)
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In other words, the critical value L( 12 + m,� f × �′
f ) equals the product of three

periods and the aboveGauß-sum, up tomultiplication by an element in the composition
of rationality-fields Q(� f )Q(�′

f ): These latter fields are defined by reference to the
natural action of Aut(C) on non-archimedean representations � f and �′

f (see [32],
§I.1), and, most importantly, they are number fields. Hence, our rationality-theorem
[12, Thm. 3.9] amounts to a description of the transcendental part of L( 12 +m,� f ×
�′

f ), asserting that all critical values of L(s,� × �′) are a product of transcendental
periods and a Gauß-sum, up to a factor coming out of a concrete number field, namely
Q(� f )Q(�′

f ), attached to � f and �′
f .

1.1.2 The main result of this paper

In this paper, we show that (1.1) is still true, if we enlarge our framework to

(i) general CM-fields F—instead of imaginary quadratic fields K and
(ii) general cohomological isobaric automorphic representations �′ = �1 � · · · �

�k , which are fully-induced fromdistinct unitary cuspidal automorphic represen-
tation �i of general linear groups GLni (AF ) of arbitrary rank ni ≥ 1—instead
of sums of Hecke characters χi .

In summary, our main result is

Theorem Let F be any CM-field. Let � be a cuspidal automorphic representation of
GLn(AF ), which is cohomological with respect to Eμ and let �′ = �1 � · · · � �k

by an isobaric automorphic representation ofGLn−1(AF ), fully induced from distinct
unitary cuspidal automorphic representations �i , 1 ≤ i ≤ k, which is cohomological
with respect to Eλ and of central character ω�′ . We assume that there is a non-trivial
GLn−1(F⊗QR)-equivariant intertwining Eμ⊗Eλ → C. Then, for every critical point
1
2 +m of L(s,�×�′), there is a non-zero archimedean period p(m,�∞,�′∞) ∈ C

∗,
only depending on m, �∞ and �′∞, such that

L
(
1
2 + m,� f × �′

f

)
∼Q(� f )Q(�′

f )
p(�) p(�′) p(m,�∞,�′∞) G(ω�′

f
),

where “∼Q(� f )Q(�′
f )
” means up to multiplication by an element in the composition

of number fields Q(� f )Q(�′
f ).

Our main result has the following direct consequence:

Corollary Let � and �′ be as in the statement of the main theorem above. Let
1
2 +m, 1

2 +� be two critical values of L(s,�×�′) and abbreviate��∞,�′∞(m, �) :=
p(m,�∞,�′∞)p(�,�∞,�′∞)−1. Then, whenever LS( 12 + �,� × �′) is non-zero
(e.g., if � is unitary and � �= 0),

LS
( 1
2 + m,� × �′)

LS
( 1
2 + �,� × �′) ∼Q(� f )Q(�′

f )
��∞,�′∞(m, �),

which only depends on the archimedean components �∞ and �′∞.
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82 H. Grobner

In particular, if LS( 32 + m,� × �′) is non-zero (e.g., if � is unitary and m �= −1),
then the quotient of consecutive critical L-values satisfies

1

��∞,�′∞(m)

LS
( 1
2 + m,� × �′)

LS( 32 + m,� × �′)
∈ Q(� f )Q(�′

f ).

Here we wrote ��∞,�′∞(m) := ��∞,�′∞(m,m + 1)

As its key-feature, our corollary avoids any reference to Whittaker periods and
expresses quotients of critical values of L(s,� × �′) in terms of archimedean fac-
tors only. The reader may want to compare this corollary to the main result of [15],
where a similar result on quotients of consecutive critical values of Rankin–Selberg
L-functions attached to cuspidal representations � and �′ over totally real fields has
been established. Our corollary hence complements this important result.

In order to keep our presentation precise, but at the same time short, we will focus
on the crucial parts of the proof of our main theorem in this note and avoid repeating
arguments given in [12] already, if they transfer verbatim to the more general situation
here. In other words, we will only work out in details those steps of the proof, which
need an extra argument, not contained in [12], and refer to precise statements in [12],
if possible. The reader is hence strongly advised to keep a copy of [12] ready at hand.
Unexplained notation or references (e.g., “§2.1.1”) refer to this source [12].

1.2 The setup

1.2.1 Algebraic data

We let F be any CM-field of dimension 2d = dimQ F and set of archimedean places
S∞. Each place v ∈ S∞ refers to a fixed pair of conjugate complex embeddings (ιv, ῑv)

of F , where we will drop the subscript “v” if it is clear from the context. We let O be
the ring of integers of F and for v /∈ S∞, Ov its local integral completion in Fv . The
non-trivial additive character ψ : F\A → C

∗ is defined as in §2.1.1. Throughout this
note G denotes the general linear group GLn and G ′ denotes the general linear group
GLn−1, both defined over F (n ≥ 2).

1.2.2 Highest weight modules

We let Eμ (resp. Eλ) be an irreducible finite-dimensional representation of the realLie
group G∞ = RF/Q(G)(R) (resp. G ′∞ = RF/Q(G ′)(R)) on a complex vector-space,
given by its highest weightμ = (μv)v∈S∞ (resp. λ = (λv)v∈S∞ ). Both representations
are assumed to be algebraic: In terms of the standard choice of a maximal torus
and positivity on the corresponding set of roots, this means that μv = (μιv , μῑv ) ∈
Z
n × Z

n (and the analogous assertion for λ). If σ ∈ Aut(C) is any automorphism of
the field C, then we define σEμ to be the irreducible finite-dimensional representation
of G∞ of highest weight σμ = ((σμ)v)v∈S∞ , where at a place v = (ιv, ῑv) we let
(σμ)v = (μσ−1◦ιv

, μσ−1◦ῑv
). The analogous definition yields us an irreducible finite-

dimensional representation σEλ of G ′∞.
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1.2.3 Real unitary subgroups

We chose a maximal compact subgroup C∞ (resp. C ′∞) of G∞ (resp. G ′∞) and define
real Lie subgroups K∞ := ZG∞C∞ ∼= (R>0U (n))d ofG∞ (resp. K ′∞ := ZG ′∞C ′∞ ∼=
(R>0U (n − 1))d of G ′∞), where U (k) denotes the usual compact unitary Lie group
of rank k.

1.2.4 The cuspidal representation �

Throughout this note, � denotes a cuspidal automorphic representation of G(A) with
non-trivial (g∞, K∞)-cohomology with respect to Eμ: This is equivalent to � being
regular algebraic in the sense of [6, Def. 3.12] (cf. [13, Thm. 6.3] for details). We
do not assume � to be unitary, but allow arbitrary integer twists ‖det‖m of unitary
cuspidal automorphic representations �̃: � = �̃ · ‖det‖m. For convenience we will
not distinguish between a cuspidal automorphic representation, its smooth Fréchet
space completion of moderate growth and its (non-smooth) Hilbert space completion
in the L2-spectrum. Introducing subindices “v”, �∞ = ⊗v∈S∞�v is hence locally of
the form described in §2.4:

�v
∼= IndG(C)

B(C)

[
z
�v,1+m
1 z̄

−�v,1+m
1 ⊗ · · · ⊗ z

�v,n+m
n z̄

−�v,n+m
n

]
,

where

�v, j := �(μιv , j) := −μιv,n− j+1 − m + n + 1

2
− j

and induction is unitary. By [6, Thm. 3.13], for each σ ∈ Aut(C) there exists a
unique cuspidal automorphic representation σ � of G(A), which is cohomological
with respect to σEμ and whose finite part satisfies (σ �) f = σ (� f ) := � f ⊗σ C.
Sincem is an integer, we have σ � = (σ �̃) · ‖det‖m, where σ �̃ is a regular algebraic,
unitary cuspidal automorphic representation, defined similarly. We let W (� f ) be the
finite part of the global Whittaker model W (�,ψ−1) defined by the ψ−1-Fourier
coefficient.

1.2.5 The isobaric representation �′

Let
∑k

i=1 ni = n−1 be any partition of n−1. As the second representation-theoretic
ingredient, �′ denotes an automorphic representation of G ′(A) with non-trivial
(g′∞, K ′∞)-cohomology with respect to Eλ, which is the isobaric sum of pairwise
different, unitary cuspidal automorphic representations �i of GLni (A), 1 ≤ i ≤ k,

�′ := �1 � · · · � �k ∼= IndG
′(A)

P ′(A)
[�1 ⊗ · · · ⊗ �k].

Here, P ′ denotes the standard parabolic subgroup of G ′ with Levi factor isomorphic
to

∏k
i=1 GLni (and the latter isomorphy of representations is automatic, [1,2,21,31]).
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84 H. Grobner

Remark 1.1 As a paradigmatic example, any representation �′ which is the cohomo-
logical quadratic base change from a quasi-split unitary group as in [7], p. 122, will
be of the above form, see [7, Thm. 6.1].

Since the cuspidal representations �i are pairwise different, a combination of [29,
Prop. 7.1.3, Thm. 3.5.12 and Rem. 3.5.14] implies that �′ is globally ψ-generic. We
let W (�′

f ) be the finite part of the global Whittaker model W (�′, ψ) defined by the
ψ-Fourier coefficient.

Abstract local genericity of the irreducible unitary representations �′
v at an

archimedean place v ∈ S∞ hence shows (cf., e.g., [13] §5.5) that necessarily

�′
v

∼= IndG
′(C)

B′(C)

[
z
kv,1
1 z̄

−kv,1
1 ⊗ · · · ⊗ z

kv,n−1
n−1 z̄

−kv,n−1
n−1

]
,

where

kv, j := k(λιv , j) := −λιv,n− j + n

2
− j,

i.e., each �′
v is of the form considered in §2.5.

Let ρP ′ be the usual square-root of the modulus character of P ′(A), [5, 0, 3.5]. We
write ρi := ρP ′ |GLni

for the restriction of ρP ′ to the particular factor GLni of the Levi
subgroup. By [5, III, Thm. 3.3] the global representations �i := �i · ρi are regular
algebraic cuspidal automorphic representations (for details see [13, pp. 1002–1003]).
Hence, as for � above, for each σ ∈ Aut(C) and all 1 ≤ i ≤ k, there are uniquely
determined cuspidal automorphic representations σ �i , which are cohomological with
respect to the corresponding, σ -permuted coefficient module of GLni (C) and whose
finite part satisfies (σ �i ) f = σ (�i, f ) := �i, f ⊗σ C. The representations (σ �i ) ·ρ−1

i
are hence pairwise different, unitary cuspidal automorphic representations. We let

σ �′ := (σ �1) · ρ−1
1 � · · · � (σ �k) · ρ−1

k

be their isobaric sum.

Lemma 1.2 The representation σ �′ is fully induced, i.e.,

σ �′ = (σ �1) · ρ−1
1 � · · · � (σ �k) · ρ−1

k
∼= IndG

′(A)

P ′(A)

[
(σ �1) · ρ−1

1 ⊗ · · · ⊗ (σ �k) · ρ−1
k

]

and we have (σ �′) f ∼= σ (�′
f ).

Proof For the first assertion observe that (σ �i,v) · ρ−1
i,v is irreducible and unitary for

each 1 ≤ i ≤ k and each place v of F . Hence, IndG
′(Fv)

P ′(Fv)
[(σ �1,v) ·ρ−1

1,v ⊗· · ·⊗(σ �k,v) ·
ρ−1
k,v] is irreducible for each v of F , see [2] (for v /∈ S∞) and [1,31] (for v ∈ S∞). It

follows that

IndG
′(A)

P ′(A)
[(σ �1) · ρ−1

1 ⊗ · · · ⊗ (σ �k) · ρ−1
k ] ∼= ⊗vInd

G ′(Fv)

P ′(Fv)
[(σ �1,v)

·ρ−1
1,v ⊗ · · · ⊗ (σ �k,v) · ρ−1

k,v]
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Rationality for isobaric automorphic representations: the… 85

is irreducible as well. Hence, σ �′ = (σ �1) ·ρ−1
1 � · · ·�(σ �k) ·ρ−1

k being isomorphic
to a non-trivial subquotient of the latter global, induced representation, cf. [21], p. 208,
shows that

σ �′ = (σ �1) · ρ−1
1 � · · · � (σ �k) · ρ−1

k
∼= IndG

′(A)

P ′(A)

[
(σ �1) · ρ−1

1 ⊗ · · · ⊗ (σ �k) · ρ−1
k

]
.

For the second claim, observe that at v /∈ S∞, the action of σ ∈ Aut(C) commutes
with unnormalized, algebraic induction “aInd”, i.e., one has

σ IndG
′(Fv)

P ′(Fv)
[�1,v ⊗ · · · ⊗ �k,v] = IndG

′(Fv)

P ′(Fv)
[�1,v ⊗ · · · ⊗ �k,v] ⊗σ C

∼= aIndG
′(Fv)

P ′(Fv)
[(�1,v ⊗σ C) ⊗ · · · ⊗ (�k,v ⊗σ C)]

∼= IndG
′(Fv)

P ′(Fv)
[(σ �1,v) · ρ−1

1,v ⊗ · · · ⊗ (σ �k,v) · ρ−1
k,v],

This completes the proof. ��
As a consequence of Lemma 1.2, reading [5, III, Thm. 3.3] backwards shows that

σ �′ is cohomological with respect to σEλ. Moreover, the same argument as above
shows that σ �′ is globally ψ-generic for all σ ∈ Aut(C).

Hence, σ �′ satisfies the same properties imposed on �′ above, i.e., Aut(C) leaves
the class of (g′∞, K ′∞)-cohomological isobaric sums of pairwise different, unitary
cuspidal automorphic representations stable.

1.3 Differences to the imaginary quadratic case: archimedean considerations

1.3.1 Highest weight representations carrying cuspidal data

Let Eμ be a coefficient module as in Sect. 1.2.4, i.e., H∗(g∞, K∞� ⊗ Eμ) �= 0 for a
cuspidal representation � as described above. This implies strong restrictions on the
highest weight μ = (μv)v∈S∞ in terms of its local components at archimedean places
(which we may now have in an arbitrary number d = |S∞|), which we summarize
shortly as

Lemma 1.3 (1) μιv − μv
ῑv

= (−2m, . . . ,−2m) for all v ∈ S∞.
(2) (σμ)ῑv = μ

σ−1◦ιv
for all v ∈ S∞ and all σ ∈ Aut(C).

Proof (1) By assumption Eμ supports non-zero cohomology with respect to the cusp-
idal representation� = �̃·‖det‖m, where �̃ is unitary. Hence, Eμ+m is conjugate
self-dual by [5, I, Cor. 4.2] and [4, Lem. 1.3]. This implies (1).

(2) Let σ ∈ Aut(C). The irreduciblemodule σEμ of highest weight σμ = ((σμ)v)v∈S∞
supports non-zero (g∞, K∞)-cohomology with respect to the cuspidal automor-
phic representation σ �. Since σ � = (σ �̃) · ‖det‖m, our point (1) above implies
that (σμ)ιv − (σμ)vῑv = (−2m, . . . ,−2m) for all v ∈ S∞ and the same integer m
for all σ . Inserting the definition of σμ gives

μσ−1◦ιv, j + μσ−1◦ῑv ,n− j+1 = −2m.
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86 H. Grobner

for all 1 ≤ j ≤ n. On the other hand, applying (1) to the embedding ι′v := σ−1 ◦ ιv
of F , we obtain

μσ−1◦ιv, j + μ
σ−1◦ιv,n− j+1 = −2m

for all 1 ≤ j ≤ n. Combining the latter two equations shows μσ−1◦ῑv ,n− j+1 =
μ

σ−1◦ιv,n− j+1 for every j and arbitrary v ∈ S∞, and σ ∈ Aut(C). This proves (2).
��

1.3.2 Cohomological automorphic representations

Although maybe looking as a pure technicality at first, Lemma 1.3 (2) is an important
assertion: It guarantees that the action of Aut(C) on those coefficient modules Eμ

and Eλ, which carry automorphic cohomology as in Sects. 1.2.4 and 1.2.5,—although
defined abstractly as a potentially arbitrary permutation of all the embeddings ι : F ↪→
C—does not tear apart the data (μιv , μῑv ) resp. (λιv , λῑv ) which is attached to a pair
of embeddings (ιv, ῑv) forming an archimedean place v. This implies the following
corollary, which says that Aut(C) acts on �∞ and �′∞ simply as a permutation of
the local factors, potentially followed by a conjugation of the characters forming the
inducing data:

Corollary 1.4 For σ ∈ Aut(C), let σ�v := �((σμ)ιv , j) = �(μσ−1◦ιv
, j) and σ kv :=

k((σ λ)ιv , j) = k(λσ−1◦ιv
, j). For the archimedean components of the automorphic

representations σ � and σ �′, we obtain

(1) (σ �)∞ ∼= ⊗v∈S∞IndG(C)
B(C)

[
z

σ�v,1+m
1 z̄

−σ�v,1+m
1 ⊗ · · · ⊗ z

σ�v,n+m
n z̄

−σ�v,n+m
n

]

(2) (σ �′)∞ ∼= ⊗v∈S∞IndG
′(C)

B′(C)

[
z

σ kv,1
1 z̄

−σ kv,1
1 ⊗ · · · ⊗ z

σ kv,n−1
n−1 z̄

−σ kv,n−1
n−1

]

Proof For � this follows from Lemma 1.3, [5, IV Lem. 4.9] and the uniqueness
of irreducible unitary generic representations of GLr (C), r ≥ 1, with non-trivial
cohomology with respect to a given finite-dimensional coefficient module, cf. [8,
Thm. 6.1] (See also [13, §5.5] for a detailed exposition of the latter assertion). For �′
one first applies what we just said about � to the cuspidal datum �1, …, �k and then
carefully uses [5, III, Thm. 3.3] together with induction in stages. ��

As a final consequence, and this is establishes the purpose of this section, we derive
the following

“Meta-Lemma” Let A∞ be an assertion of first-order predicate calculus, involving
only σ �∞ or σ �′∞ for a family of σ ∈Aut(C). If A∞ is true if and only if its restriction
Av to σ �v and σ �′

v is true for all v ∈ S∞, and Av is shown by an argument in [12],
then A∞ holds.

1.3.3 Archimedean consequences of the Meta-Lemma

Making our choices place-by-place v ∈ S∞ and applying our meta-lemma, we obtain
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Rationality for isobaric automorphic representations: the… 87

(1) A natural Q(Eμ)-rational vector-space structure on Hq(g∞, K∞,�∞ ⊗ Eμ)

(resp. Q(Eλ)-rational vector-space structure on Hq(g′∞, K ′∞,�′∞ ⊗ Eλ)) as in
§2.7.

(2) Basis-vectors [�∞] (resp. [�′∞]) of the one-dimensional spaces Hbn (g∞, K∞,

W (�∞) ⊗ Eμ) (resp. Hbn−1(g′∞, K ′∞,W (�′∞) ⊗ Eλ)), where br = d · r(r−1)
2 ,

as in §3.3.
(3) A well-defined “interlacing-hypothesis” of the highest weights μ and λ as in

Hypothesis 2.3: This means we assume the validity of

Hypothesis 1.5 For all archimedean places v = (ιv, ῑv) the following inequalities
hold:

μιv,1 ≥ −λιv,n−1 ≥ μιv,2 ≥ −λιv,n−2 ≥ · · · ≥ −λιv,1 ≥ μιv,n

μv
ῑv ,1 ≥ −λvῑv ,n−1 ≥ μv

ῑv ,2 ≥ −λvῑv ,n−2 ≥ · · · ≥ −λvῑv ,1 ≥ μv
ῑv ,n .

(4) Given (the well-definedness of) this hypothesis, a description of the set of critical
points Crit(� × �′) ⊂ 1

2 + Z of L(s,� × �′):

1
2 + m ∈ Crit(� × �′) ⇔ HomRF/Q(G ′)(C)(Eμ−m ⊗ Eλ,C) �= 0.

The proof proceeds as in Lem. 3.5, though, one needs to correct a slight mistake
ibidem first: The restriction to non-negative m ≥ 0 there is not to be made. See
also Thm. 2.21 in [25], where this has meanwhile been proved in even greater
generality.

(5) For all 1
2 + m ∈Crit(� × �′), compatible choices of intertwining operators

T (m) ∈ HomRF/Q(G ′)(C)(Eμ−m ⊗Eλ,C) as in §3.7. Again, following the previous
point, there is no restriction on m being positive or negative here.

(6) Finally and most importantly, for all 1
2 +m ∈Crit(�×�′), well-defined complex

numbers c( 12 +m,�∞,�′∞), defined as in §3.10, and proved to be non-vanishing
as in Thm. 3.8. This allows us to define archimedean periods p(m, σ �∞, σ �′∞)

as in §3.10, i.e., as the inverse of c( 12 + m, σ �∞, σ �′∞), for all σ ∈ Aut(C). As
it has been discussed above, this works whether or not m ≥ 0.

1.4 Differences to the imaginary quadratic case: non-archimedean
considerations

1.4.1 Special Whittaker vectors

We will choose very particular vectors ξ�′
v

∈ W (�′
v), at all non-archimedean places

v /∈ S∞ in analogy to §3.9. Let T ′ ⊂ B ′ ⊂ G ′ be the diagonal maximal torus in
the standard Borel subgroup B ′ of G ′ and denote T ′(Fv)

+ := {t ∈ T ′(Fv)|ti t−1
i+1 ∈

Ov, tn−1 = 1}. Since �′
v is the generic, the assumptions of [20, Proposition (3.2)] are

satisfied. Hence, any non-vanishing functional ξ�′
v

∈ W (�′
v) is already non-zero on

T ′(Fv)
+ ⊂ G ′(Fv). As another ingredient, let K ′(m′

v) be the mirahoric subgroup of
G ′(Fv) of levelm′

v . Ifm
′
v equals the conductor of�

′
v , then, by [17, Theorem (5.1)] the
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space ofWhittaker vectors, transforming by the central character ω�′
v
of�′

v under the
K ′(m′

v) is one-dimensional, its elements being called new vectors. As a consequence
of the above discussion, we may fix a matrix t�′

v
∈ T ′(Fv)

+ on which all the non-
trivial new vectors of�′

v do not vanish simultaneously, where we observe that we may
choose the same matrix for all σ -twists of �′

v , i.e., such that t�′
v

= tσ �′
v
. Moreover,

if the non-archimedean place v is outside the set of ramification of �′ and ψ , then we
may take t�′

v
:= id. Depending on these (mild) choices, for all v /∈ S∞, we define

ξ�′
v

∈ W (�′
v) to be the unique new vector such that ξ�′

v
(t�′

v
) = 1.

As the last ingredient, we remark that we may similarly also choose particular
Whittaker vectors ξ�v for �v , v /∈ S∞: These choices depend on our data fixed for
�′

v above and can be made, mutatis mutandis, precisely as in §3.9: First, we fix a
matrix t�v ∈ T (Fv)

+, analogously as for G ′(Fv). Now, for a non-archimedean place
v outside the set of ramification of �′ and ψ , we let ξ�v be the unique new vector of
�v , which satisfies ξ�v (t�v) = 1. It is a certain, non-zero multiple c�v of the essential
vector, see [17, (4.1) Théorème]. If v is, however, inside the set of ramification of �′
or ψ , then we take ξ�v to be the unique Whittaker vector, whose restriction to G ′(Fv)

is supported on N ′(Fv)t�′
v
K ′(m′

v) and there equal to ψ−1
v ω−1

�′
v
. See also [26, 3.1.4]

and [22, 2.1.1], where such choices were coined first.
Finally, we observe that Lemma 3.7 still holds for these special Whittaker vectors.

1.4.2 Rational structures for Whittaker models

Keeping in mind the above considerations, we see as in Prop. 2.7 that the repre-
sentations W (� f ) and W (�′

f ) may be defined over the rationality fields Q(� f ),
respectively Q(�′

f ), by taking invariants of normalized new vectors in each model.
Moreover, both fieldsQ(� f ) andQ(�′

f ) are number fields by the regular-algebraicity
of the cuspidal representations � and �1, …�k , see [6, Thm. 3.13] (or, for a detailed
proof, [13, Thm. 8.1]).

1.5 Global considerations

1.5.1 Eisenstein cohomology

We let Sn := G(F)\G(A)/K∞, Sn−1 := G ′(F)\G ′(A)/K ′∞ and S̃n−1 :=
G ′(F)\G ′(A)/C ′∞ ∼= Sn−1 × R

d+, similar to §3.1. These spaces are orbifolds and
we have dimR(S̃n−1) = bn + bn−1.

We define ϕP ′ to be the associate class of cuspidal automorphic representations
of L ′(A), which is defined by the unitary cuspidal τ := �1 ⊗ · · · ⊗ �k . The space
AJ ′,{P ′},ϕP ′ of automorphic forms is then defined as in §3.1. See also the original
source [10, §1.3] or [11, §2.3]. We obtain the following important result on Eisenstein
cohomology:

Proposition 1.6 The natural morphism

ıbn−1
�′ : Hbn−1(g′∞, K ′∞,�′ ⊗ Eλ) → Hbn−1(g′∞, K ′∞,AJ ′,{P ′},ϕP ′ ⊗ Eλ)
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Rationality for isobaric automorphic representations: the… 89

of G(A f )-modules, induced by the natural injection ı�′ : �′ ↪→ AJ ′,{P ′},ϕP ′ , is an
isomorphism. Hence, there is the following commuting triangle of natural injections
of G ′(A f )-modules

Hbn−1(g′∞, K ′∞,�′ ⊗ Eλ)

ı
bn−1
�′
∼=�Eis

�′

Hbn−1(Sn−1, Eλ) Hbn−1(g′∞, K ′∞,AJ ′,{P ′},ϕP ′ ⊗ Eλ)
F

bn−1
λ

Proof We assume familiarity with the general results of [11]. In [11, §3.1], following
[9], a filtration

AJ ′,{P ′},ϕP ′ = A(0)
J ′,{P ′},ϕP ′ ⊇ A(1)

J ′,{P ′},ϕP ′ ⊇ · · · ⊇ A(m)

J ′,{P ′},ϕP ′ (1.2)

ofAJ ′,{P ′},ϕP ′ offinite lengthm = m({P ′})has beendefined.The successive quotients
are shown to be isomorphic to a direct sum, index by a set of (isomorphism classes)
of quadruples in M ( j)

J ′,{P ′},ϕP ′ , 0 ≤ j ≤ m. See [11, Thm. 4] for this result and [11,

§3.2] for a precise definition of M ( j)
J ′,{P ′},ϕP ′ . By construction (of the filtration (1.2)

and of the setsM ( j)
J ′,{P ′},ϕP ′ ), one necessarily finds (P ′, τ, 0, 0) ∈ M (m)

J ′,{P ′},ϕP ′ , cf. [11,

§3.1–3.2]. However, as all summands in �′ are different and unitary, the description
of the residual spectrum of GLN , cf. [24] II–III, implies that this is the only quadruple
at all, i.e., ∪m

j=0M
( j)
J ′,{P ′},ϕP ′ = {(P ′, τ, 0, 0)}. As a consequence, see again [11, Thm.

4] in combination with Mulitplicity One for the discrete spectrum of G ′(A),

AJ ′,{P ′},ϕP ′ = A(0)
J ′,{P ′},ϕP ′ = A(1)

J ′,{P ′},ϕP ′ = · · · = A(m)

J ′,{P ′},ϕP ′

∼= IndG
′(A)

P ′(A)

[
τ ⊗ S(ǎG

′
P ′,C)

]
,

where S(ǎG
′

P ′,C) is the symmetric algebra of the dual of the Lie algebra of the split
component AP ′ of P ′, modulo the split component of G ′. Hence,

Hq (
g′∞, K ′∞,AJ ′,{P ′},ϕP ′ ⊗ Eλ

) ∼= Hq
(
g′∞, K ′∞, IndG

′(A)

P ′(A)

[
τ ⊗ S(ǎG

′
P ′,C)

]
⊗ Eλ

)
,

for all degrees q, see also [11, Cor. 16]. By the minimality of the degree q = bn−1,
we obtain

Hbn−1(g′∞, K ′∞,AJ ′,{P ′},ϕP ′ ⊗ Eλ) ∼= �′
f ,

see [13] (7.25), revealing Hbn−1(g′∞, K ′∞,AJ ′,{P ′},ϕP ′ ⊗ Eλ) as irreducible. The

natural map in cohomology ıbn−1
�′ induced from the natural inclusion ı�′ : �′ ↪→
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AJ ′,{P ′},ϕP ′ has by construction the same image as the map in cohomology induced
from the Eisenstein summation map

Eis0 : IndG ′(A)

P ′(A)
[τ ] ∼−→ �′,

cf. [21]. Hence, recalling that all Eisenstein series attached to K∞-finite sections in

IndG
′(A)

P ′(A)
[τ ] are holomorphic at � = 0, ıbn−1

�′ is non-zero by [28], Satz 4.11. See

also [3] 2.9. As Hbn−1(g′∞, K ′∞, IndG
′(A)

P ′(A)
[τ ] ⊗ Eλ) ∼= �′

f is irreducible, too, by

the minimality of q = bn−1, ı
bn−1
�′ is an isomorphism. Now define F

bn−1
λ to be the

restriction to Hbn−1(g′∞, K ′∞,AJ ′,{P ′},ϕP ′ ⊗ Eλ) of the isomorphism of [9, Thm. 18]

and �Eis
�′ := F

bn−1
λ ◦ ıbn−1

�′ . Recalling the direct sum decomposition of Eisenstein

cohomology, cf. [10, Thm. 2.3] or [11, §4.1–4.3] shows that F bn−1
λ (and hence also

�Eis
�′ ) are injections. ��

1.5.2 Rational structures on submodules of automorphic cohomology and related
Whittaker periods

As a consequence of the previous section, the following global results and assertions
transfer from [12]: firstly, we obtain

Proposition 1.7 Foranyσ ∈ Aut(C) the naturalσ -linear bijection σ̃ :Hbn−1(Sn−1, Eλ)

→ Hbn−1(Sn−1,
σEλ) maps the image of �Eis

�′ onto the image of �Eis
σ �′ .

Proof Let σϕP ′ be the associate class of the unitary cuspidal automorphic reprepsen-
tation στ := (σ �1) ·ρ−1

i ⊗· · ·⊗ (σ �k) ·ρ−1
k . By its very definition σ �′ is the isobaric

automorphic sum of the unitary cuspidal automorphic representations (σ �i ) · ρ−1
P ′ ,

from which it is fully-induced, see Lemma 1.2. Applying Proposition 1.6 to �′ and
σ �′ reduces the problem to showing that σ̃ : Hbn−1(Sn−1, Eλ) → Hbn−1(Sn−1,

σEλ)

mapsF bn−1
λ (Hbn−1(g′∞, K ′∞,AJ ′,{P ′},ϕP ′ ⊗ Eλ)) onto the analogously defined mod-

uleF bn−1
σ λ (Hbn−1(g′∞, K ′∞,AJ ′,{P ′},σϕP ′ ⊗σEλ)). However, using that ı

bn−1
�′ and ıbn−1

σ �′
are isomorphisms, i.e., invoking Proposition 1.6 once more, exactly the same argu-
ments as in [13, proof of Thm. 7.23] go through, where this assertion is proved for
regular coefficients Eλ. This shows the claim. ��
Definition 1.8 As a consequence of Propositions 1.6 and 1.7 the composition
(�Eis

σ �′)−1 ◦ σ̃ ◦ �Eis
�′ makes sense and we denote the resulting σ -linear bijection

Hbn−1(g′∞, K ′∞,�′ ⊗ Eλ) → Hbn−1(g′∞, K ′∞,σ �′ ⊗ σEλ)

again by σ̃ .

As an immediate corollary, we obtain aQ(�′
f )-structure on the image of the injec-

tion�Eis
�′ , which naturally extends theQ(Eλ)-structure of Hbn−1(Sn−1, Eλ) defined by

Betti-cohomology: This follows easily from Propositions 1.7 above, invoking [6, Lem.
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3.2.1] (and recalling that Q(Eλ) ⊆ Q(�′
f ), which ones concludes exactly as in the

proof of [13, Cor. 8.7]). Hence, by transfer of structure along the injection �Eis
�′ , con-

structed in Proposition 1.6, the irreducibleG ′(A f )-module Hbn−1(g′∞, K ′∞,�′ ⊗Eλ)

carries aQ(�′
f )-structure.We assume fromnowon to have fixed precisely this rational

structure on the cohomology of �′ (and analogously on all its σ -twists σ �′).
Similarly, as it is well-known, the same arguments apply for the cuspidal automor-

phic representation� and its (g∞, K∞)-cohomology, which injects into Hbn (Sn, Eμ):
We obtain aQ(� f )-structure on Hbn (g∞, K∞,�⊗ Eμ), which naturally extends the
Q(Eμ)-structure of Hbn (Sn, Eμ) defined by Betti-cohomology and a natural σ -linear
bijection σ̃ : Hbn (g∞, K∞,� ⊗ Eμ) → Hbn (g∞, K∞, σ � ⊗ σEμ).

With respect to these two rational structures on relative Lie algebra cohomology
and the σ -linear bijections σ̃ , the proof of Prop. 3.1 goes through word-for-word,
recalling the validity of [17, Theorem (5.1)] for �′

v , v /∈ S∞. Hence, we obtain this
wayWhittaker-periods p(�) and p(�′), well-defined up tomultiplication byQ(� f )

∗,
resp.Q(�′

f )
∗. In turn, again as in Prop. 3.1, these periods define rationally normalized

isomorphism �
cusp
0 and �Eis

0 of the corresponding Whittaker models and relative Lie
algebra cohomologies.

1.6 Statement and proof of the main theorem

Theorem 1.9 Let F be any CM-field. Let� be a cuspidal automorphic representation
of GLn(A) (as in Sect. 1.2.4) which is cohomological with respect to Eμ and let �′
by an isobaric automorphic representation of GLn−1(A) (as in Sect. 1.2.5) which is
cohomological with respect to Eλ and of central character ω�′ . We assume that the
highest weights μ = (μv)v∈S∞ and λ = (λv)v∈S∞ satisfy the interlacing-hypothesis
1.5. Then the following holds:

(1) For all critical values 1
2 + m ∈ Crit(� × �′) and every σ ∈ Aut(C),

σ

⎛
⎝ L

(
1
2 + m,� f × �′

f

)

p(�) p(�′) p(m,�∞,�′∞) G(ω�′
f
)

⎞
⎠

=
L

(
1
2 + m, σ � f × σ �′

f

)

p(σ �) p(σ �′) p(m, σ �∞, σ �′∞) G(ωσ �′
f
)
.

(2)

L
(
1
2 + m,� f × �′

f

)
∼Q(� f )Q(�′

f )
p(�) p(�′) p(m,�∞,�′∞) G(ω�′

f
),

where“∼Q(� f )Q(�′
f )
”means up tomultiplication by an element in the composition

of number fields Q(� f )Q(�′
f ).

Proof As a first step, we observe that Lemma 3.4 and the results of §3.8 transfer
verbatim from [12] to our case here. Hence, recollecting all the preparatory results of
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this note, the following diagram, which amplifies the main diagram of §3.2, is finally
well-defined:

Hbn
c (Sn, Eμ) × Hbn−1 (Sn−1, Eλ) Hbn

c (S̃n−1, Eμ) × Hbn−1 (S̃n−1, Eλ)

∧

Hbn
cusp(Sn, Eμ) × Hbn−1 (Sn−1, Eλ) Hbn+bn−1

c (S̃n−1, Eμ ⊗ Eλ)

T ∗

Hbn (g∞, K∞,� ⊗ Eμ) × Hbn−1 (g′∞, K ′∞,�′ ⊗ Eλ)

�=�
cusp
� ×�Eis

�′

Hbn+bn−1
c (S̃n−1,C)

∫

W (� f ) × W (�′
f )

�0=�
cusp
0 ×�Eis

0

Dia
C

As a next step, we observe that the results of [17,18], as well as [6, Lemme 4.6 ] are
valid for �v , whenever ψ = ⊗vψv is unramified at v /∈ S∞, whence the proof of
[23, Prop. 2.3.(c)] carries over to the situation considered here. In other words, the
correction-factors c�v of Sect. 1.4.1 satisfy σ(c�v) = cσ �v for all σ ∈ Aut(C) and at
all non-archimedean places, where both �′ and ψ are unramified.

As afinal consequence, the proof of [12, Thm. 3.9] nowgoes throughword-for-word
in our more general situation at hand and we hence obtain Theorem 1.9 (1) by chasing
our special Whittaker vectors ξ� f := ⊗v /∈S∞ξ�v and ξ�′

f
:= ⊗v /∈S∞ξ�′

v
through the

above diagram. Assertion (2) follows from (1) applying Strong Multiplicity One for
isobaric automorphic representations ([19], Thm. 4.4) together with Multiplicity One
([10] §3.3 and [16,30]). ��
Remark 1.10 Theorem 1.9 represents a rather vast generalization of [26, Thm. 1.1]
and [25, Thm. 1.1] over general CM-fields F : In the latter references, the analogous
result has been shown for cuspidal automorphic representations �′ (over F = Q in
[26] and over a general number field F in [25])—a condition, which we stretched to all
isobaric sums �′, which are fully-induced from cuspidal representation �1, . . . ,�k

(as in Sect. 1.2.5) over arbitraryCM-fields F . The situation for isobaric representations
over general numberfields F will be significantlymore complicated, notably at infinity.

2 A consequence

2.1 Ratios of critical values

The following result is a direct consequence of our main result. It avoids any reference
toWhittaker periods and expresses quotients of critical values of L(s,�×�′) in terms
of archimedean factors only. The reader may compare this corollary to the main result
of [15] on quotients of consecutive critical values of Rankin–Selberg L-functions
attached to cuspidal representations � and �′ over totally real fields.
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Corollary 2.1 Let F be anyCM-field. Let� be a cuspidal automorphic representation
of GLn(A) (as in Sect. 1.2.4) which is cohomological with respect to Eμ and let
�′ = �1 � · · · � �k by an isobaric automorphic representation of GLn−1(A) (as
in Sect. 1.2.5) which is cohomological with respect to Eλ and of central character
ω�′ . We assume that the highest weights μ = (μv)v∈S∞ and λ = (λv)v∈S∞ satisfy
the interlacing-hypothesis 1.5. Let 1

2 + m, 1
2 + � ∈ Crit(� × �′) be two critical

values and abbreviate ��∞,�′∞(m, �) := p(m,�∞,�′∞)p(�,�∞,�′∞)−1. Then,

whenever LS( 12 + �,� × �′) is non-zero (e.g., if � is unitary and � �= 0),

LS
( 1
2 + m,� × �′)

LS
( 1
2 + �,� × �′) ∼Q(� f )Q(�′

f )
��∞,�′∞(m, �),

and hence only depends on the archimedean components �∞ and �′∞.
In particular, if LS( 32 + m,� × �′) is non-zero (e.g., if � is unitary and m �= −1),
then the quotient of consecutive critical L-values satisfies

1

��∞,�′∞(m,m + 1)

LS
( 1
2 + m,� × �′)

LS
( 3
2 + m,� × �′) ∈ Q(� f )Q(�′

f ).
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