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Abstract

The lattice vertex operator VL associated to a positive definite even
lattice L has an automorphism of order 2 lifted from −1 isometry of L. It
is established that the fixed point vertex operator algebra V

+
L is rational.

1 Introduction

The notion of rational vertex operator algebra is an analogue to that of semisim-
ple Lie algebra or semisimple associative algebra. Rational vertex operator alge-
bras whose admissible module category is semisimple form a fundamental class
of vertex operator algebras. Familiar examples of rational vertex operator alge-
bras include the vertex operator algebras VL associated with even lattices [D1],
[DLM1], vertex operator algebras associated to the irreducible vacuum represen-
tations for affine Kac-Moody algebras with positive levels [FZ], [DL], [LL], vertex
operator algebras associated to the minimal series for the Virasoro algebra [W].

Let V be a vertex operator algebra and G a finite automorphism group of
V, then the space of G-invariants V G is itself a vertex operator algebra. A well
known conjecture in the orbifold conformal field theory states that if V is rational
then V G is rational. Solving this conjecture has significant applications in the
theory of vertex operator algebras and conformal field theory.

Let VL be a lattice vertex operator algebra associated with a positive definite
even lattice L which plays an important role in shaping the theory of vertex
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operator algebras. The vertex operator algebra VL has an automorphism θ of
order 2 lifted from the −1 isometry of L and we denote the θ-fixed points of
VL by V +

L . The vertex operator algebras V +
L have been studied extensively. The

irreducible modules for V +
L were classified in [DN2] and [AD]. The fusion rules

among irreducible V +
L -modules were computed in [ADL]. The C2-cofiniteness of

V +
L was obtained in [Y] and [ABD]. But the rationality of V +

L has only been
established if L has rank one [A2], or L is a special lattice [DGH]. In this paper,
we extend the rationality result to any lattice. That is, V +

L is rational for any
positive definite even lattice L.

We prove the rationality of V +
L in three steps. First, we show that the Zhu

algebra A(V +
L ) is a finite dimensional semisimple associative algebra. Although

A(V +
L ) was studied in [DN2] and [AD] in great detail for the purpose of classifica-

tion of irreducible modules, there is still a distance to claim the semi-simplicity.
Second, we use the rationality of V +

L in the case that L has rank one and the
fusion rules to deal with the rationality of V +

L if L has an orthogonal base. Last,
we use the rationality of V +

L1
to prove the rationality of V +

L for any L where L1 is
a sublattice of L with the same rank and has an orthogonal base. The main idea
in the proof of rationality is to prove that if there is a V +

L -module exact sequence

0 → M1 → M → M2 → 0

for any irreducible V +
L -modules M1 and M2, then M is a direct sum of M1 and

M2.
The representation theory of V +

L is complete in some sense after this paper.
But the structure theory of V +

L is far from over. Determining the derivation Lie
algebra and the automorphism group of V +

L for an arbitrary positive definite even
L remains a major problem. This has been achieved when the rank of L is one,
two or three [DG1], [DG2], [S1], [S2], or L is a special lattice which is either
unimodular or does not have roots [S1], [S2]. Extending these results to general
lattice seems a big challenge.

The paper is organized as follows: In Section 2, we recall definitions of vertex
operator algebra, module, intertwining operator and fusion rules. We also give
some basic facts on vertex operator algebras in this section. In Section 3, we
present the results on vertex operator algebras M(1)+ and V +

L and the irreducible
modules. Section 4 is devoted to the proof of the semi-simplicity of A(V +

L ). We
deal with the rationality of V +

L when L has an orthogonal base in Section 5. The
rationality of V +

L for any positive definite even lattice L is given in Section 6.

2 Preliminaries

In this section we briefly review the definitions of twisted modules and rationality
from [FLM], [DLM2]. We present the Zhu algebra, the tensor product and fusion
rules from [FHL] and [Z]. We also discuss the extensions of modules following
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[A2] and give a sufficient condition under which the extensions are trivial. This
result will be used extensively in latter sections.

A vertex operator algebra V is a Z-graded vector space V =
⊕

n∈Z Vn equipped
with a linear map Y : V → (EndV )[[z, z−1]], a 7→ Y (a, z) =

∑
n∈Z anz

−n−1 for a ∈
V such that dim Vn is finite for all integer n and that Vn = 0 for sufficiently small
n (see [FLM]). There are two distinguished vectors, the vacuum vector 1 ∈ V0 and
the Virasoro element ω ∈ V2. By definition Y (1, z) = idV , and the component
operators {L(n)|n ∈ Z} of Y (ω, z) =

∑
n∈Z L(n)z

−n−2 give a representation of
the Virasoro algebra on V with central charge c. Each homogeneous subspace
Vn (n ≥ 0) is an eigenspace for L(0) with eigenvalue n.

An automorphism g of a vertex operator algebra V is a linear isomorphism of
V satisfying g(ω) = ω and gY (a, z)g−1 = Y (g(a), z) for any a ∈ V . We denote by
Aut(V ) the group of all automorphisms of V . For a subgroup G < Aut(V ), the
fixed point set V G = {a ∈ V | g(a) = a, g ∈ G } has a canonical vertex operator
algebra structure.

Let g be an automorphism of a vertex operator algebra V of order T . Then
V is a direct sum of eigenspaces for g:

V =
T−1⊕

r=0

V r, V r = { a ∈ V | g(a) = e−
2πir
T a }.

Definition 2.1. A weak g-twisted V -module M is a vector space equipped with
a linear map

YM : V → (EndM){z},

a 7→ YM(a, z) =
∑

n∈Q

anz
−n−1, an ∈ EndM

such that the following conditions hold for 0 ≤ r ≤ T − 1, a ∈ V r, b ∈ V and
u ∈ M :

(1) bmu = 0 if m is sufficiently large,
(2) YM(a, z) =

∑
n∈Z+ r

T

anz
−n−1,

(3) YM(1, z) = idM ,
(4) (the twisted Jacobi identity)

z−1
0 δ

(
z1 − z2

z0

)
YM(a, z1)YM(b, z2)− z−1

0 δ

(
z2 − z1
−z0

)
YM(b, z2)YM(a, z1)

= z−1
2

(
z1 − z0

z2

)− r
T

δ

(
z1 − z0

z2

)
YM(Y (a, z0)b, z2).

A weak g-twisted V -module is denoted by (M, YM), or simply by M . In the
case g is the identity, any weak g-twisted V -module is called a weak V -module.
A g-twisted weak V -submodule of a g-twisted weak module M is a subspace N
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of M such that anN ⊂ N hold for all a ∈ V and n ∈ Q. If M has no g-twisted
weak V -submodule except 0 and M , M is called irreducible or simple.

Set YM(ω, z) =
∑

n∈Z L(n)z
−n−2. Then {L(n) |n ∈ Z } give a representation

of the Virasoro algebra on M with central charge c and the L(−1)-derivative
property

YM(L(−1)a, z) =
d

dz
YM(a, z) for all a ∈ V (2.1)

holds for any a ∈ V (see [DLM1]).

Definition 2.2. An admissible g-twisted V -module M is a weak g-twisted V -
module which has a 1

T
Z≥0-gradation M =

⊕
n∈ 1

T
Z≥0

M(n) such that

amM(n) ⊂ M(wta+ n−m− 1) (2.2)

for any homogeneous a ∈ V and m, n ∈ Q.

In the case g is the identity, any admissible g-twisted V -module is called an
admissible V -module. Any g-twisted weak V -submodule N of a g-twisted admis-
sible V -module is called a g-twisted admissible V -submodule if N =

⊕
n∈ 1

T
Z≥0

N∩

M(n).
A g-twisted admissible V -module M is said to be irreducible if M has no non-

trivial admissible weak V -submodule. When a g-twisted admissible V -module
M is a direct sum of irreducible admissible submodules, M is called completely
reducible.

Definition 2.3. A vertex operator algebra V is said to be g-rational if any g-
twisted admissible V -module is completely reducible. If V is idV -rational, then
V is called rational.

Definition 2.4. A g-twisted V -module M =
⊕

λ∈C Mλ is a C-graded weak g-
twisted V -module with Mλ = {u ∈ M |L(0)u = λu} such that Mλ is finite
dimensional and for fixed λ ∈ C, Mλ+n/T = 0 for sufficiently small integer n. A
vector w ∈ Mλ is called a weight vector of weight λ, and we write λ = wtw.

We next define Zhu’s algebra A(V ) which is an associative algebra following
[Z]. For any homogeneous vectors a, b ∈ V , we define

a ∗ b = Resz
(1 + z)wta

z
Y (a, z)b,

a ◦ b = Resz
(1 + z)wta

z2
Y (a, z)b

and extend the two operations to V ×V bilinearly. Denote by O(V ) the subspace
of V linearly spanned by a ◦ b, for all a, b ∈ V and set A(V ) = V/O(V ). The
following theorem is due to [Z].
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Theorem 2.5. (1) The bilinear operation ∗ induces A(V ) an associative algebra
structure. The vector [1] is the identity and [ω] is in the center of A(V ).

(2) Let M =
⊕∞

n=0M(n) be an admissible V -module with M(0) 6= 0. Then
the linear map

o : V → EndM(0), a 7→ o(a)|M(0)

induces an algebra homomorphism from A(V ) to EndM(0). Thus M(0) is a left
A(V )-module.

(3) The map M 7→ M(0) induces a bijection between the set of equivalence
classes of irreducible admissible V -modules and the set of equivalence classes of
irreducible A(V )-modules.

Now we consider the tensor product vertex algebra and the tensor product
modules for tensor product vertex operator algebra. The tensor product of vertex
operator algebras (V 1, Y, 1, ω1), · · · , (V p, Y, 1, ωp) is constructed on the tensor
product vector space

V = V 1 ⊗ · · · ⊗ V p

where the vertex operator Y (·, z) is defined by

Y (v1 ⊗ · · · ⊗ vp, z) = Y (v1, z)⊗ · · · ⊗ Y (vp, z)

for vi ∈ V i (1 ≤ i ≤ p), the vacuum vector is

1 = 1⊗ · · · ⊗ 1

and the Virasoro element is

ω = ω1 ⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ ωp.

then (V, Y, 1, ω) is a vertex operator algebra (see [FHL], [LL]).
Let M i be an admissible V i-module for i = 1, ..., p. We may construct the

tensor product admissible module M1 ⊗ · · · ⊗Mp for the tensor product vertex
operator algebra V 1 ⊗ · · · ⊗ V p by

Y (v1 ⊗ · · · ⊗ vp) = Y (v1, z)⊗ · · · ⊗ Y (vp, z).

Then (M1 ⊗ · · · ⊗Mp, Y ) is an admissible V 1 ⊗ · · · ⊗ V p-module. The following
result was given in [FHL] and [DMZ].

Theorem 2.6. Let V 1, · · · , V p be rational vertex operator algebras, then V 1 ⊗
· · ·⊗ V p is rational and any irreducible V 1 ⊗ · · ·⊗ V p-module is a tensor product
M1 ⊗ · · · ⊗Mp , where M1, · · · ,Mp are some irreducible modules for the vertex
operator algebras V 1, · · · , V p, respectively.
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Let M =
⊕

r∈CM(r) be a V -module. Set M ′ =
⊕

λ∈C M
∗
λ , the restricted dual

of M . It was proved in [FHL] that M ′ is naturally a V -module where the vertex
operator map denoted by Y ′ is defined by the property

〈Y ′(a, z)u′, v〉 = 〈u′, Y (ezL(1)(−z−2)L(0)a, z−1)v〉

for a ∈ V, u′ ∈ M ′ and v ∈ M . The V -module M ′ is called the contragredient
module of M . It was proved that if M is irreducible , then so is M ′. A V -module
M is said to be self dual if M and M ′ are isomorphic V -modules.

We now recall the notion of intertwining operators and fusion rules from
[FHL].

Definition 2.7. Let M1, M2, M3 be weak V -modules. An intertwining operator

Y(·, z) of type

(
M3

M1 M2

)
is a linear map

Y(·, z) : M1 → Hom(M2,M3){z}

v1 7→ Y(v1, z) =
∑

n∈C

v1nz
−n−1

satisfying the following conditions:
(1) For any v1 ∈ M1, v2 ∈ M2and λ ∈ C, v1n+λv

2 = 0 for n ∈ Z sufficiently
large.

(2) For any a ∈ V, v1 ∈ M1,

z−1
0 δ(

z1 − z2
z0

)YM3(a, z1)Y(v1, z2)− z−1
0 δ(

z1 − z2
−z0

)Y(v1, z2)YM2(a, z1)

= z−1
2 δ(

z1 − z0
z2

)Y(YM1(a, z0)v
1, z2).

(3) For v1 ∈ M1,
d

dz
Y(v1, z) = Y(L(−1)v1, z).

All of the intertwining operators of type

(
M3

M1 M2

)
form a vector space

denoted by IV

(
M3

M1 M2

)
. The dimension of IV

(
M3

M1 M2

)
is called the

fusion rule of type

(
M3

M1 M2

)
for V .

We now have the following result which was essentially proved in [ADL].

Theorem 2.8. Let V 1, V 2 be rational vertex operator algebras. Let M1,M2,M3

be V 1-modules and N1, N2, N3 be V 2-modules such that

dimIV 1

(
M3

M1 M2

)
< ∞, dimIV 2

(
N3

N1 N2

)
< ∞.
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Then the linear map

σ : IV 1

(
M3

M1 M2

)
⊗ IV 2

(
N3

N1 N2

)
→ IV 1⊗V 2

(
M3 ⊗N3

M1 ⊗N1 M2 ⊗N2

)

Y1(·, z)⊗ Y2(·, z) 7→ (Y1 ⊗ Y2)(·, z)

is an isomorphism, where (Y1 ⊗ Y2)(·, z) is defined by

(Y1 ⊗Y2)(·, z)(u
1 ⊗ v1, z)u2 ⊗ v2 = Y1(u

1, z)u2 ⊗ Y2(v
1, z)v2.

Now letM1,M2 be weak V -modules, we call a weak V -moduleM an extension
of M2 by M1 if there is a short exact sequence

0 → M1 → M → M2 → 0.

Then we could define the equivalence of two extensions, and then define the
extension group Ext1V (M

2,M1). Recall that V is called C2-cofinite if the subspace
C2(V ) of V spanned by u−2v for u, v ∈ V has finite codimension. We have the
following facts [A1].

Theorem 2.9. Let M and N be irreducible V-modules, then Ext1V (N,M) = 0 if
and only if Ext1V (M

′, N ′) = 0.

Theorem 2.10. Let V be a C2-cofinite vertex operator algebra, then V is rational
if and only if Ext1V (N,M) = 0 for any pair of irreducible V -modules M and N .

The following result will be extensively used in Sections 5 and 6.

Lemma 2.11. Let V be a vertex operator algebra and U a rational vertex operator
subalgebra of V with the same Virasoro element. Let M1,M2 be irreducible V -
modules. Assume that

IU

(
N1

N N2

)
= 0

for any irreducible U-submodules N1, N,N2 of M1, V,M2, respectively. Then
Ext1V (M

2,M1) = 0.

Proof: Let M be an extension of M2 by M1. Then M = M1⊕M2 as U -modules
as U is rational. Let N1, N,N2 be any irreducible U -submodules of M1, V,M2,
respectively. Then PN1Y (u, z)|N2 for u ∈ N is an intertwining operator of type

IU

(
N1

N N2

)
where PN1 is the projection from M to N1. From the assumption,

PN1Y (u, z)|N2 = 0. Since N1, N,N2 are arbitrary, we see that unM
2 ⊂ M2 for

any u ∈ V and n ∈ Z. As a result, M2 is a V -module and Ext1V (M
2,M1) = 0.

The proof is complete.
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3 Vertex operator algebras M(1)+ and V +
L

In this section we recall vertex operator algebras M(1)+ and V +
L [FLM] and

related results [DN1], [DN2], [DN3], [A1], [A2], [AD], [ADL]. In particular, the
irreducible modules, fusions and contragredient modules of irreducible modules
for V +

L are discussed.
Let L be a positive definite even lattice in the sense that L has a symmetric

positive definite Z-valued Z-bilinear form (·, ·) such that (α, α) ∈ 2Z for any
α ∈ L. We set h = C ⊗Z L and extend (· , ·) to a C-bilinear form on h. Let
ĥ = C[t, t−1] ⊗ h ⊕ CC be the affinization of commutative Lie algebra h defined
by

[β1 ⊗ tm, β2 ⊗ tn] = m(β1, β2)δm,−nC and [C, ĥ] = 0

for any βi ∈ h, m, n ∈ Z. Then ĥ≥0 = C[t]⊗h⊕CC is a commutative subalgebra.
For any λ ∈ h, we can define a one dimensional ĥ≥0-module Ceλ by the actions
ρ(h⊗ tm)eλ = (λ, h)δm,0e

λ and ρ(C)eλ = eλ for h ∈ h and m ≥ 0. Now we denote
by

M(1, λ) = U(ĥ)⊗U(ĥ≥0) Ce
λ ∼= S(t−1C[t−1]),

the ĥ-module induced from ĥ≥0-module Ceλ. Set M(1) = M(1, 0). Then there
exists a linear map Y : M(1) → (EndM(1, λ)[[z, z−1]] such that (M(1), Y, 1, ω)
has a simple vertex operator algebra structure and (M(1, λ), Y ) becomes an ir-
reducible M(1)-module for any λ ∈ h (see [FLM]). The vacuum vector and the
Virasoro element are given by 1 = e0 and ω = 1

2

∑d
a=1 ha(−1)21 respectively,

where {ha} is an orthonormal basis of h.

Let L̂ be the canonical central extension of L by 〈κ〉 = 〈κ|κ2 = 1〉 :

1 → 〈κ〉 → L̂
−
→ L → 1

with the commutator map c(α, β) = κ(α,β) for α, β ∈ L. Let e : L → L̂ be a
section such that e0 = 1 and ǫ : L × L → 〈κ〉 the corresponding 2-cocycle. We
may assume that ǫ is bimultiplicative. Then ǫ(α, β)ǫ(β, α) = κ(α,β),

ǫ(α, β)ǫ(α + β, γ) = ǫ(β, γ)(α, β + γ),

and eαeβ = ǫ(α, β)eα+β for α, β, γ ∈ L. Let θ denote the automorphism of L̂

defined by θ(eα) = e−α and θ(κ) = κ. Set K = {a−1θ(a)|a ∈ L̂}. Note that if

(α, β) ∈ 2Z for all α, β ∈ L then the L̂ = L × 〈κ〉 is a direct product of abelian
groups. In this case we can and do choose ǫ(α, β) = 1 for all α, β ∈ L.

The lattice vertex operator algebra associated to L is given by

VL = M(1)⊗ Cǫ[L],

8



where Cǫ[L] is the twisted group algebra of L with a basis eα for α ∈ L and is an

L̂-module such that eαe
β = ǫ(α, β)eα+β. Note that if (α, β) ∈ 2Z for all α, β ∈ L

then Cǫ[L] = C[L] is the usual group algebra.
Recall that L◦ = { λ ∈ h | (α, λ) ∈ Z } is the dual lattice of L. There is an

L̂-module structure on C[L◦] =
⊕

λ∈L◦ Ceλ such that κ acts as −1 (see [DL]).
Let L◦ = ∪i∈L◦/L(L+λi) be the coset decomposition such that (λi, λi) is minimal
among all (λ, λ) for λ ∈ L+λi. In particular, λ0 = 0. Set C[L+λi] =

⊕
α∈L Ce

α+λi .

Then C[L◦] =
⊕

i∈L◦/L C[L+ λi] and each C[L+ λi] is an L̂-submodule of C[L◦].

The action of L̂ on C[L+ λi] is as follows:

eαe
β+λi = ǫ(α, β)eα+β+λi

for α, β ∈ L. On the surface, the module structure on each C[L + λi] depends
on the choice of λi in L + λi. It is easy to prove that different choices of λi give
isomorphic L̂-modules.

Set C[M ] =
⊕

λ∈M Ceλ for a subset M of L◦, and define VM = M(1)⊗C[M ].
Then VL is a rational vertex operator algebra and VL+λi

for i ∈ L◦/L are the
irreducible modules for VL (see [B], [FLM], [D1], [DLM1]).

Define a linear isomorphism θ : VL+λi
→ VL−λi

for i ∈ L◦/L by

θ(β1(−n1)β2(−n2) · · ·βk(−nk)e
α+λi) = (−1)kβ1(−n1)β2(−n2) · · ·βk(−nk)e

−α−λi

for βi ∈ h, ni ≥ 1 and α ∈ L if 2λi 6∈ L, and

θ(β1(−n1)β2(−n2) · · ·βk(−nk)e
α+λi)

= (−1)kc2λi
ǫ(α, 2λi)β1(−n1)β2(−n2) · · ·βk(−nk)e

−α−λi

if 2λi ∈ L where c2λi
is a square root of ǫ(2λi, 2λi). Then θ defines a linear

isomorphism from VL◦ to itself such that

θY (u, z)v = Y (θu, z)θv

for u ∈ VL and v ∈ VL◦ . In particular, θ is an automorphism of VL which induces
an automorphism of M(1).

For any θ-stable subspace U of VL◦ , let U± be the ±1-eigenspace of U for θ.
Then V +

L is a simple vertex operator algebra.
Also recall the θ-twisted Heisenberg algebra h[−1] and its irreducible module

M(1)(θ) from [FLM]. Let χ be a central character of L̂/K such that χ(κ) =

−1 and Tχ the irreducible L̂/K-module with central character χ. Note that if

(α, β) ∈ 2Z for all α, β ∈ L then L̂/K = L/K × 〈κ〉 and each Tχ is, in fact, an
L/2L-module. In particular, Tχ is one-dimensional. In this case, let β1, · · · , βd

be a basis of L, then Tχ = Tχ1 ⊗ · · · ⊗ Tχd
where each Tχi

is an irreducible
Zβi/2Zβi-module such that eβi

acts as χ(eβi
). This fact will be used later.
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It is well known that V
Tχ

L = M(1)(θ) ⊗ Tχ is an irreducible θ-twisted VL-

module (see [FLM], [D2]). We define actions of θ on M(1)(θ) and V
Tχ

L by

θ(β1(−n1)β2(−n2) · · ·βk(−nk)) = (−1)kβ1(−n1)β2(−n2) · · ·βk(−nk)

θ(β1(−n1)β2(−n2) · · ·βk(−nk)t) = (−1)kβ1(−n1)β2(−n2) · · ·βk(−nk)t

for βi ∈ h, ni ∈
1
2
+ Z+ and t ∈ Tχ. We denote the ±1-eigenspace of M(1)(θ)

and V
Tχ

L under θ by M(1)(θ)± and (V
Tχ

L )± respectively. We have the following
results proved in [DN1], [DN3] and [AD]:

Theorem 3.1. Any irreducible module for the vertex operator algebra M(1)+ is
isomorphic to one of the following modules:

M(1)+,M(1)−,M(1, λ) ∼= M(1,−λ) (0 6= λ ∈ h),M(1)(θ)+,M(1)(θ)−.

Theorem 3.2. Let {λj} be the set of representatives of L◦/L, then any irreducible
V +
L -module is isomorphic to one of the following modules:

V ±
L , Vλj+L(2λj /∈ L), V ±

λj+L(2λj ∈ L), (V
Tχ

L )±.

Now we consider some decompositions of the modules for the vertex operator
algebras M(1)+ and V +

L . We denote Mh(1) for the vertex operator algebra M(1)
associated with h and similarly for the modules. It is clear that if h′ is a subspace
of h such that the restriction of the bilinear form on h to h′ is non-degenerate, then
M+

h′ is a simple vertex operator subalgebra of M+
h . Furthermore, if h = h1

⊕
h2

such that (h1, h2) = 0, then the modules in Theorem 3.1 viewed as M+
h1
⊗ M+

h2
-

modules can be decomposed as follows:

M+
h
∼= (M+

h1
⊗M+

h2
)
⊕

(M−
h1
⊗M−

h2
),

M−
h
∼= (M+

h1
⊗M−

h2
)
⊕

(M−
h1
⊗M+

h2
),

Mh(1, λ) ∼= Mh1(1, λ1)⊗Mh2(1, λ2),

Mh(1)(θ)
+ ∼= (Mh1(1)(θ)

+ ⊗Mh2(1)(θ)
+)

⊕
(Mh1(1)(θ)

− ⊗Mh2(1)(θ)
−),

Mh(1)(θ)
− ∼= (Mh1(1)(θ)

+ ⊗Mh2(1)(θ)
−)

⊕
(Mh1(1)(θ)

− ⊗Mh2(1)(θ)
+).

Let L = Zα be a positive definite even lattice of rank one. Then all irreducible
V +
L -modules are decomposed into direct sums of irreducible M(1)+-modules as

follows (cf. [DG1] and [A1])

V ±
L

∼= M(1)±
∞⊕

m=1

M(1, mα),

10



Vλ+L
∼=

⊕

m∈Z

M(1, λ +mα),

V ±
α
2
+L

∼=

∞⊕

m=0

M(1,
α

2
+mα),

(V Ti

L )± ∼= M(1)(θ)±, i = 1, 2

where Ti is the one dimensional L̂/K-module Tχ with χ(eα) = ±1 respectively.
We also have the following result given in [Y] and [ABD].

Theorem 3.3. V +
L is C2-cofinite.

The following results were obtained in [A2].

Theorem 3.4. The vertex operator algebra V +
L is rational, if L is a positive

definite even lattice of rank one.

Proposition 3.5. Let L be a positive definite even lattice such that V +
L is C2-

cofinite and A(V +
L ) is semisimple. Let M1,M2 be irreducible V +

L -modules. If the
difference of the lowest weight of M1 and M2 is not a nonzero integer, then

Ext1
V +
L

(M2,M1) = 0.

Remark 3.6. In the next section, we will prove that for a positive definite even
lattice L, the Zhu’s algebra A(V +

L ) is semisimple. Thus Proposition 3.5 is true
for any positive definite even lattice.

We now consider the fusion rules for the vertex operator algebra V +
L . For

any λ ∈ L◦ and a central character χ of L̂/K , let χ(λ) be the central character

defined by χ(λ)(a) = (−1)(a,λ)χ(a). We set T
(λ)
χ = Tχ(λ). We call a triple (λ, µ, ν)

for λ, µ, ν ∈ L◦ an admissible triple modulo L, if pλ + qµ + rν ∈ L for some
p, q, r ∈ {±1}.

The following result on part of fusion rules for the vertex operator algebra V +
L

when L is of rank one comes from [A1]. This result will be used in Section 5 to
deal with the rationality of V +

L when L has an orthogonal base.

Theorem 3.7. Let L = Zα be a positive definite even lattice and L◦/L =
{λ0, λ1, λ2, · · · , λk} such that λ0 = 0 and λk = α/2. Let W i, i = 1, 2, 3 be ir-
reducible V +

L -modules. Then

(1) the fusion rule of type

(
W 3

W 1 W 2

)
is either 0 or 1.

(2) the fusion rule of type

(
W 3

W 1 W 2

)
is non-zero if and only if W i(i =

1, 2, 3) satisfy one of the following cases:
(i) W 1 = V +

L and W 2 ∼= W 3.

11



(ii) W 1 = V −
L and the pair (W 2,W 3) is one of the following pairs

(V ±
L , V ∓

L ), (V ±
α/2+L, V

∓
α/2+L), (V T1,±

L , V T1,∓
L ), (V T2,±

L , V T2,∓
L ), (Vλi+L, Vλi+L),

for i = 1, 2, · · · , k − 1.

The fusion rules for V +
L for any L was obtained in [ADL] and will be exploited

in Section 6. Recall the number πλ,µ for λ, µ ∈ L◦ from [ADL].

Theorem 3.8. Let L be a positive definite even lattice , for any irreducible V +
L -

modules M i (i = 1, 2, 3), the fusion rule of type

(
M3

M1 M2

)
is either 0 or 1.

Furthermore, the fusion rule of type

(
M3

M1 M2

)
with M1 being one of Vλ+L

for (2λ /∈ L) , V +
λ+L for (2λ ∈ L) , V −

λ+L for (2λ ∈ L) is 1 if and only if M i

(i = 1, 2, 3) satisfy one of the following conditions:
(1) M1 = Vλ+L for λ ∈ L◦ such that 2λ /∈ L and M2,M3is one of the following

pairs:
(Vµ+L, Vν+L) for µ, ν ∈ L◦ such that 2µ, 2ν /∈ L and (λ, µ, ν) is an admissible

triple modulo L.
(V ±

µ+L, Vν+L), ((Vν+L)
′, (V ±

µ+L)
′) for µ, ν ∈ L◦ such that 2µ ∈ L, 2ν /∈ L and

(λ, µ, ν) is an admissible triple modulo L.

(V
Tχ,±
L , V

T
(λ)
χ ,±

L ), (V
Tχ,±
L , V

T
(λ)
χ ,∓

L ) for any irreducible L̂/K-module Tχ.
(2) M1 = V +

λ+L for λ ∈ L◦ such that 2λ ∈ L and M2,M3is one of the following
pairs:
(Vµ+L, Vν+L) for µ, ν ∈ L◦ such that 2µ, 2ν /∈ L and (λ, µ, ν) is an admissible
triple modulo L.

(V ±
µ+L, V

±
ν+L) for µ, ν ∈ L◦ such that 2µ, 2ν ∈ L, πλ,2µ = 1 and (λ, µ, ν) is an

admissible triple modulo L.
(V ±

µ+L, V
∓
ν+L) for µ, ν ∈ L◦ such that 2µ, 2ν ∈ L, πλ,2µ = −1 and (λ, µ, ν) is an

admissible triple modulo L.

(V
Tχ,±
L , V

T
(λ)
χ ,±

L ), ((V
T

(λ)
χ ,±

L )′, (V
Tχ,±
L )′) for any irreducible L̂/K-module Tχ such

that cχ(λ) = 1.

(V
Tχ,±
L , V

T
(λ)
χ ,∓

L ), ((V
T

(λ)
χ ,±

L )′, (V
Tχ,∓
L )′) for any irreducible L̂/K-module Tχ such

that cχ(λ) = −1.
(3) M1 = V −

λ+L for λ ∈ L◦ such that 2λ ∈ L and M2,M3is one of the following
pairs:

(Vµ+L, Vν+L) for µ, ν ∈ L◦ such that 2µ, 2ν /∈ L and (λ, µ, ν) is an admissible
triple modulo L.

(V ±
µ+L, V

±
ν+L) for µ, ν ∈ L◦ such that 2µ, 2ν ∈ L, πλ,2µ = −1 and (λ, µ, ν) is an

admissible triple modulo L.
(V ±

µ+L, V
∓
ν+L) for µ, ν ∈ L◦ such that 2µ, 2ν ∈ L, πλ,2µ = 1 and (λ, µ, ν) is an

admissible triple modulo L such that cχ(λ) = 1.
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(V
Tχ,±
L , V

T
(λ)
χ ,±

L ), ((V
T

(λ)
χ ,±

L )′, (V
Tχ,±
L )′) for any irreducible L̂/K-module Tχ such

that cχ(λ) = −1.

(V
Tχ,±
L , V

T
(λ)
χ ,∓

L ), ((V
T

(λ)
χ ,±

L )′, (V
Tχ,∓
L )′) for any irreducible L̂/K-module Tχ such

that cχ(λ) = 1.

Next we identify the contragredient modules of the irreducible V +
L -modules

[ADL]:

Proposition 3.9. The irreducible V +
L -modules V ±

L and Vλ+L for λ ∈ L◦ with
2λ /∈ L are self dual. For λ ∈ L◦ with 2λ ∈ L, V ±

λ+L are self dual if 2(λ, λ) is

even, and (V ±
λ+L)

′ ∼= V ∓
λ+L if 2(λ, λ) is odd. Let χ be a central character of L̂/K

such that χ(κ) = −1, then the irreducible modules (V
Tχ,±
L )′ are isomorphic to

(V
T ′
χ,±

L )′ respectively, where χ′ is a central character of L̂/K defined by χ′(a) =

(−1)
(a,a)

2 χ(a) for any a ∈ Z(L̂/K).

4 Semisimplicity of A(V +
L )

Motivated by Proposition 3.5, we prove the semisimplicity of A(V +
L ) for any

positive definite even lattice L in this section. In the case that the rank of L is 1,
this result has previously been obtained in [DN2]. The semisimplicity of A(V +

L )
enables us to establish that if the two VL-modules have the same lowest weight
then the extension of one module by the other is always trivial.

First recall that the irreducible A(V +
L )-modules are the top levels W (0) of

irreducible admissible V +
L -modules W . So by Theorem 3.2 (also see [DN2]), we

have

Lemma 4.1. The irreducible A(V +
L )-modules are given as follows:

V +
L (0) = C1, V −

L (0) = h(−1)
⊕

(
⊕

α∈L2
C(eα − e−α)),

Vλi+L(0) =
⊕

α∈∆(λi)
Ceλi+α (2λi /∈ L),

V ±
λi+L(0) =

∑
α∈∆(λi)

C(eλi+α ± θeλi+α) (2λi ∈ L),

V
Tχ,+
L (0) = Tχ, V

Tχ,−
L (0) = h(−1/2)⊗ Tχ,

where L2 = {α ∈ L|(α, α) = 2}, h(−1) = {h(−1)1|h ∈ h} ⊂ M(1) and
h(−1/2) = {h(−1/2)1|h ∈ h} ⊂ M(1)(θ).

Let {h1, · · · , hd} be an orthonormal basis of h. Recall from [DN2] and [AD]
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the following vectors in V +
L for a, b = 1, · · · , d and α ∈ L

Sab(m,n) = ha(−m)hb(−n),

Eu
ab = 5Sab(1, 2) + 25Sab(1, 3) + 36Sab(1, 4) + 16Sab(1, 5) (a 6= b),

Ēu
ba = Sab(1, 1) + 14Sab(1, 2) + 41Sab(1, 3) + 44Sab(1, 4) + 16Sab(1, 5) (a 6= b),

Eu
aa = Eu

abE
u
ba,

Et
ab = −16(3Sab(1, 2) + 14Sab(1, 3) + 19Sab(1, 4) + 8Sab(1, 5)) (a 6= b),

Ēt
ba = −16(5Sab(1, 2) + 18Sab(1, 3) + 21Sab(1, 4) + 8Sab(1, 5)) (a 6= b),

Et
aa = Et

abE
t
ba,

Λab = 45Sab(1, 2) + 190Sab(1, 3) + 240Sab(1, 4) + 96Sab(1, 5),

Eα = eα + e−α.

For v ∈ V +
L , we denote v + O(V +

L ) by [v]. Let Au and At be the linear subspace
of A(M(1)+) spanned by Eu

ab +O(M(1)+) and Et
ab + O(M(1)+) respectively for

1 ≤ a, b ≤ d. Then At and Au are two sided ideals of A(M(1)+). Note that the
natural algebra homomorphism from A(M(1)+) to A(V +

L ) gives embedding of Au

and At into A(V +
L ). We should remark that the Au and At are independent of

the choice of the orthonormal basis {h1, · · · , hd}.
By Lemma 7.3 of [AD] we know that

V −
L (0) = h(−1)

⊕
(
∑

α∈L2

C[Eα]α(−1)),

where L2 = {α ∈ L|(α, α) = 2}. Let L2 = {±α1, · · · ,±αr,±αr+1, · · · ,±αr+l}
be such that {α1, · · · , αr} are linearly independent and {αr+1, · · · , αr+l} ⊆⊕r

i=1 Z+αi. We can choose the orthonormal basis {hi| i = 1, · · · , d} so that
hi ∈ Cα1 + · · ·+ Cαi, for i = 1, · · · , r. Then we have

αi(−1) = ai1h1(−1) + · · ·+ aiihi(−1), i = 1, · · · , r,

αj(−1) = aj1h1(−1) + · · ·+ ajrhr(−1), j = r + 1, · · · , r + l,

where aii 6= 0, i = 1, · · · , r. For i ∈ {1, 2, · · · , l}, let ki be such that

ar+i,ki 6= 0, ar+i,ki+1 = · · · = ar+i,r = 0.

We know from [AD] that ei = hi(−1) for i = 1, · · · , d and ed+j = [Eαj ]αj(−1)
for j = 1, · · · , r+ l form a basis of V −

L (0). We first construct a two-sided ideal of
A(V +

L ) isomorphic to End(V −
L (0)). Recall Eu

ij for i, j = 1, · · · , d. We now extend
the definition of Eu

ij to all i, j = 1, · · · , d + r + l and the linear span of Eu
ij

will be the ideal of A(V +
L ) isomorphic to EndV −

L (0) (with respect to the basis
{e1, · · · , ed+r+l} ).

For the notational convenience, we also write Eu
i,j for E

u
ij from now on. Define

[Eu
j,d+i] =

1

4ǫ(αi, αi)aii
[Eu

ji ∗ E
αi ], i = 1, · · · , r, j = 1, · · · , d,
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[Eu
j,d+r+i] =

1

4ǫ(αr+i, αr+i)ar+i,ki

[Eu
j,ki

∗ Eαr+i], i = 1, · · · , l, j = 1, · · · , d.

Define

[Eu
d+i,j ] =

r∑

k=1

aik[E
αi ] ∗ [Eu

kj], i = 1, · · · , r + l, j = 1, · · · , d,

where aij = 0, for 1 ≤ i < j ≤ r. Recall from [DN2] and [AD] that [Eu
ab]hc(−1) =

δc,bha(−1) for a, b, c = 1, · · · , d.

Lemma 4.2. The following holds:

[Eu
ij ]e

k = δk,je
i, [Eu

st]e
k = δt,ke

s

for i, t = 1, · · · , d, j, s = d+ 1, · · · , d+ r + l and k = 1, · · · , d+ r + l.

Proof: Let h ∈ h such that (h, h) 6= 0. Then ωh = 1
2(h,h)

h(−1)2 is a Virasoro

element with central charge 1. Note that ωhβ(−1) = (β,h)4

2(h,h)
h(−1) for any β ∈ h.

For α ∈ L2 then [Eα] ∗ [Eα] = 4ǫ(α, α)[ωα] in A(V +
L ) by Proposition 4.9 of [AD].

Then for i = 1, · · · , d, j = 1, · · · , r, we have

[Eu
i,d+j ]e

d+j = [Eu
i,d+j]([E

αj ]αj(−1))

=
1

4ǫ(αj , αj)ajj
([Eu

ij ] ∗ [E
αj ] ∗ [Eαj ])αj(−1)

=
1

ajj
[Eu

ij ]αj(−1) = hi(−1).

Let k ∈ {1, · · · , r + l} such that k 6= j. Then

[Eu
i,d+j]e

d+k = [Eu
i,d+j]([E

αk ]αk(−1))

=
1

4ǫ(αj, αj)ajj
([Eu

ij ] ∗ [E
αj ] ∗ [Eαk ])αk(−1).

By Proposition 5.4 of [AD], we have

[Eαj ] ∗ [Eαk ] =
∑

p

[vp] ∗ [Eαj+αk ] ∗ [wp] +
∑

q

[xq] ∗ [Eαj−αk ] ∗ [yq],

where vp, wp, xq, yq ∈ M(1)+. Since Au is an ideal of A(M(1)+), we have [Eu
ji] ∗

[vp], [Eu
ji] ∗ [xq] ∈ Au. By the proof of Proposition 7.2 of [AD], we know that

Au[Eα]α(−1) = 0, for any α ∈ L2. So by Lemma 7.1 and Proposition 7.2 of
[AD], we have

[Eu
i,d+j]e

d+k = 0, i = 1, · · · , d, j = 1, · · · , r, k = 1, · · · , r + l, j 6= k.
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It follows from the proof of Proposition 7.2 of [AD] that

Eu
i,j+de

s = [Eu
ij ] ∗ [E

αj ]hs(−1) = 0

for s = 1, · · · , d as [Eαj ]hs(−1) ∈
∑r+l

p=1C[e
αp − e−αp ]. This completes the proof

for Eu
i,j+d for i = 1, · · · , d, j = 1, · · · , r. The other cases can be done similarly.

Recall Ha and ωa = ωha
for a = 1, · · · , d from [DN2] and [AD]. The following

lemma collects some formulas from Propositions 4.5, 4.6, 4.8 and 4.9 of [AD].

Lemma 4.3. For any indices a, b, c, d,

[ωa] ∗ [E
u
bc] = δab[E

u
bc], (4.1)

[Eu
bc] ∗ [ωa] = δac[E

u
bc]. (4.2)

[Eu
ab] ∗ [E

t
cd] = [Et

cd] ∗ [E
u
ab] = 0, (4.3)

[Λab] ∗ [E
u
cd] = [Λab] ∗ [E

t
cd] = [Eu

cd] ∗ [Λab] = [Et
cd] ∗ [Λab] = 0 (a 6= b). (4.4)

For distinct a, b, c,
(
70[Ha] + 1188[ωa]

2 − 585[ωa] + 27
)
∗ [Ha] = 0, (4.5)

([ωa]− 1) ∗

(
[ωa]−

1

16

)
∗

(
[ωa]−

9

16

)
∗ [Ha] = 0, (4.6)

−
2

9
[Ha] +

2

9
[Hb] = 2[Eu

aa]− 2[Eu
bb] +

1

4
[Et

aa]−
1

4
[Et

bb], (4.7)

−
4

135
(2[ωa] + 13) ∗ [Ha] +

4

135
(2[ωb] + 13) ∗ [Hb]

= 4([Eu
aa]− [Eu

bb]) +
15

32
([Et

aa]− [Et
bb]),

(4.8)

[ωb] ∗ [Ha] = −
2

15
([ωa]− 1) ∗ [Ha] +

1

15
([ωb]− 1) ∗ [Hb], (4.9)

[Λab]
2 = 4[ωa] ∗ [ωb]−

1

9
([Ha] + [Hb])− ([Eu

aa] + [Eu
bb])−

1

4
([Et

aa] + [Et
bb]), (4.10)

[Λab] ∗ [Λbc] = 2[ωb] ∗ [Λac]. (4.11)

For α ∈ L such that (α, α) = 2k 6= 2,

[Hα] ∗ [E
α] =

18(8k − 3)

(4k − 1)(4k − 9)

(
[ωα]−

k

4

)(
[ωα]−

3(k − 1)

4(8k − 3)

)
[Eα], (4.12)

(
[ωα]−

k

4

)(
[ωα]−

1

16

)(
[ωα]−

9

16

)
[Eα] = 0. (4.13)

If α ∈ L2,

[Eα] ∗ [Eα] = 4ǫ(α, α)[ωα], (4.14)

[Hα] ∗ [E
α] + [Eα] ∗ [Hα] = −12[ωα] ∗

(
[ωα]−

1

4

)
∗ [Eα], (4.15)

([ωα]− 1) ∗

(
[ωα]−

1

4

)
∗

(
[ωα]−

1

16

)
∗

(
[ωα]−

9

16

)
∗ [Eα] = 0. (4.16)
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For any α ∈ L,

I t ∗ [Eα] = [Eα] ∗ I t, (4.17)

where I t is the identity of the simple algebra At.

Lemma 4.4. For any α ∈ L2, we have

Au ∗ [Eα] ∗ Au = 0.

Proof: Let α ∈ L2 and {h1, · · · , hd} be an orthonormal basis of h such that
h1 ∈ Cα. (Au is independent of the choice of orthonormal basis.) By (4.1)-(4.2)
and (4.16), we have [Eα] = f([ωα]) ∗ [E

α] = [Eα] ∗ f([ωα]) for some polynomial
f(x) with f(0) = 0. Note that ωα = ω1. By (4.1)-(4.2), we only need to prove
that

[Eu
i1] ∗ [E

α] ∗ [Eu
1s] = 0, i, s = 1, 2, · · · , d.

Let a = 1, b 6= 1 in (4.9). Multiplying (4.9) by [Eu
i1] on left and using (4.2) and

(4.3), we have
[Eu

i1] ∗ [Hb] = 0, b 6= 1.

Then setting a = 1, b 6= 1 in (4.7) and multiplying (4.7) by [Eu
i1] on left yields

[Eu
i1] ∗ [H1] = −9[Eu

i1].

Let a = 1, b 6= 1 in (4.10). Multiplying (4.10) by [Eu
1s] on right and using (4.1)

and (4.4), we have

−
1

9
[H1] ∗ [E

u
1s]−

1

9
[Hb] ∗ [E

u
1s] = [Eu

1s].

On the other hand, multiplying (4.7) by [Eu
1s] on right yields

−
1

9
[H1] ∗ [E

u
1s] +

1

9
[Hb] ∗ [E

u
1s] = [Eu

1s].

Comparing the above two formulas, we have

[H1] ∗ [E
u
1s] = −9[Eu

1s], [Ha] ∗ [E
u
1s] = 0, a 6= 1.

So

[Eu
i1] ∗ [H1] ∗ [E

α] ∗ [Eu
1s] + [Eu

i1] ∗ [E
α] ∗ [H1] ∗ [E

u
1s] = −18[Eu

i1] ∗ [E
α] ∗ [Eu

1s].

But by (4.1)-(4.2) and (4.15) we have

[Eu
i1] ∗ [H1] ∗ [E

α] ∗ [Eu
1s] + [Eu

i1] ∗ [E
α] ∗ [H1] ∗ [E

u
1s] = −9[Eu

i1] ∗ [E
α] ∗ [Eu

1s].

This implies that [Eu
i1] ∗ [E

α] ∗ [Eu
1s] = 0, as required.
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We now define Eu
i,j for all i, j = 1, · · · , d+ r + l. Set

[Eu
d+i,d+j ] = [Eu

d+i,1] ∗ [E
u
1,d+j ], i, j = 1, · · · , r + l.

It is easy to see that [Eu
d+i,1] ∗ [E

u
1,d+j ] = [Eu

d+i,k] ∗ [E
u
k,d+j], k = 2, · · · , d.

Denote by Au
L the subalgebra of A(V +

L ) generated by

{[Eu
ij ], [E

u
d+p,j], [E

u
i,d+p]|i, j = 1, · · · , d, p = 1, · · · , r + l}.

From Lemma 4.4, (4.14) and the definition of [Eu
ij], i, j = 1, · · · , d+ r+ l, we can

easily deduce the following result.

Lemma 4.5. Au
L is a matrix algebra over C with basis {[Eu

ij ]|i, j = 1, · · · , d+r+l}
such that

[Eu
ij ] ∗ [E

u
ks] = δj,k[E

u
is], [Eu

ij ]e
k = δj,ke

i, i, j, k, s = 1, 2, · · · , d+ r + l.

Lemma 4.6. Let α ∈ L be such that α /∈ L2, then

[Eα] ∗ Au = 0.

Proof: Let {h1, · · · , hd} be an orthonormal basis of h such that h1 ∈ Cα. If
|α|2 = 2k and k 6= 4, the lemma follows from (4.1)-(4.2) and (4.13).

If |α|2 = 8, by (4.1)-(4.2) and (4.13) we have

[Eu
ab] ∗ [E

α] = [Eα] ∗ [Eu
ba] = 0,

for all 1 ≤ a, b ≤ d and b 6= 1. By (4.1) and (4.12), we have

[Eu
a1] ∗ [H1] ∗ [E

α] = 0. (4.18)

On the other hand, for a 6= 1, by (4.7)-(4.8) and (4.3), we have

−
2

9
[Eu

a1] ∗ ([Ha]− [H1]) ∗ [E
α] = −2[Eu

a1] ∗ [E
α],

4

135
[Eu

a1] ∗ (−13[Ha] + 15[H1]) ∗ [E
α] = −4[Eu

a1] ∗ [E
α].

Therefore by (4.18), we have

1

9
[Eu

a1] ∗ [Ha] ∗ [E
α] = [Eu

a1] ∗ [E
α], a 6= 1,

13

135
[Eu

a1] ∗ [Ha] ∗ [E
α] = [Eu

a1] ∗ [E
α], a 6= 1.

This means that
[Eu

a1] ∗ [E
α] = 0.

Since [Hα] ∗ [E
α] = [Eα] ∗ [Hα], we similarly have

[Eα] ∗ [Eu
1a] = 0.

This completes the proof.
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Lemma 4.7. Au
L is an ideal of A(V +

L ).

Proof: By Proposition 5.4 of [AD], (4.3), (4.17) and Lemmas 4.4-4.6, it is enough
to prove that [Eαi ] ∗ [Eu

jk], [E
u
jk] ∗ [E

αi ] ∈ Au
L, j, k = 1, · · · , d, i = 1, · · · , r + l.

Let α ∈ L2. For convenience, let aij = 0, for 1 ≤ i < j ≤ r and ki = i for

1 ≤ i ≤ r. Since αi(−1) =
d∑

k=1

aikhk(−1), we have

ωαi
=

1

4

d∑

k=1

a2ikhk(−1)2 +
1

4

∑

p 6=q

aipaiqhp(−1)hq(−1).

Recall from [AD] that

[Sab(1, 1)] = [Eu
ab] + [Eu

ba] + [Λab] +
1

2
[Et

ab] +
1

2
[Et

ba], a 6= b.

So from (4.3) and (4.4) we have

[Eu
jk] ∗ [ωαi

] =
1

2
a2ik[E

u
jk] +

1

2

∑

p 6=k

aikaip[E
u
jp], j, k = 1, · · · , d, i = 1, · · · , r + l.

Then it can easily be deduced that

(aik[E
u
jki

]− aiki[E
u
jk]) ∗ [ωαi

] = 0, j, k = 1, · · · , d, i = 1, · · · , r + l.

Then by (4.16), we have

(aik[E
u
jki

]− aiki[E
u
jk]) ∗ [E

αi ] = 0, j, k = 1, · · · , d, i = 1, · · · , r + l.

So [Eu
jk] ∗ [E

αi ] ∈ Au
L, for all j, k = 1, · · · , d, i = 1, · · · , r + l. Similarly, we have

[Eαi ] ∗ [Eu
jk] = 0, k = 1, · · · , d, i = 1, · · · , r + l, j = r + 1, · · · , d,

[Eαi ] ∗ [

r∑

b=1

akbE
u
bj ] =

(αi, αk)

2
[Eαi] ∗ [

r∑

b=1

aibE
u
bj ],

for j = 1, · · · , d, k = 1, · · · , r, i = 1, · · · , r + l. Since both {α1, · · · , αr} and
{h1, · · · , hr} are linearly independent, it follows that for each i = 1, · · · , r, j =
1, · · · , d, [Eu

ij] is a linear combination of a11[E
u
1j ], [a21E1j + a22E

u
2j ], · · · , [ar1E

u
1j +

· · ·+ arrE
u
rj ]. Therefore [Eαi ] ∗ [Eu

jk] ∈ Au
L, j, k = 1, · · · , d, i = 1, · · · , r + l.

For 0 6= α ∈ L, let {h1, · · · , hd} be an orthonormal basis of h such that
h1 ∈ Cα. Define

[Bα] = 2|α|
2−1([I t] ∗ [Eα]−

2|α|2

2|α|2 − 1
[Et

11] ∗ [E
α]),

and [B0] = [I t] (see formula (6.5) of [AD]).
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Lemma 4.8. For α ∈ L, [Et
ij ] ∈ At, [Bα] ∗ [E

t
ij] = [Et

ij ] ∗ [Bα].

Proof: It is enough to prove that

[Bα] ∗ [E
t
ij ] = [Et

ij ] ∗ [Bα],

for i = 1 or j = 1. By the definition of [Et
ab] and the fact that

[I t] ∗ [Eα] = [Eα] ∗ [I t]

and
[I t] ∗ [Λab] = [I t] ∗ [Eu

ab] = 0, a 6= b,

we have
[Bα] ∗ [E

t
ab] = [Bα] ∗ (−[Sab(1, 1)]− 2[Sab(1, 2)]),

[Et
ab] ∗ [Bα] = (−[Sab(1, 1)]− 2[Sab(1, 2)]) ∗ [Bα].

Let b 6= 1. Similar to the proof of Lemma 7.5 of [AD], we have

(2|α|2 − 1)([Et
1b] + 3[Eu

1b] + [Λ1b]) ∗ [E
α] + [Eα] ∗ ([Et

1b] + 3[Eu
1b] + [Λ1b])

= −([Et
b1]− [Eu

1b] + [Λ1b]) ∗ [E
α]− (2|α|2 − 1)[Eα] ∗ ([Et

b1]− [Eu
1b] + [Λ1b])

(2|α|2 − 1)(
1

16
[Et

1b] ∗ [E
α] + [ωb] ∗ [Λ1b] ∗ [E

α])

+
1

16
[Eα] ∗ [Et

1b] + [Eα] ∗ [ωb] ∗ [Λ1b]

=
9

16
[Et

b1] ∗ [E
α]+[ωb] ∗ [Λ1b] ∗ [E

α]

−(2|α|2 − 1)(
9

16
[Eα] ∗ [Et

b1] + [Eα] ∗ [ωb] ∗ [Λ1b]).

So we have
(2|α|2 − 1)[Et

1b] ∗ [E
α] = −[Eα] ∗ [Et

1b] + x,

where x ∈ Au
L+C[Λ1b]∗[E

α]+C[Eα]∗[Λ1b]+C[ωb]∗[Λ1b]∗[E
α]+C[Eα]∗[Λ1b]∗[ωb].

Since y ∗ x = 0 for any y ∈ At, we have

[Bα] ∗ [E
t
1b]

= 2|α|
2−1

(
−(2|α|2 − 1)[Et

1b] ∗ [E
α] + 2|α|2[Et

11] ∗ [E
t
1b] ∗ [E

α]
)

= 2|α|
2−1[Et

1b] ∗ [E
α] = [Et

1b] ∗ [Bα].

Similarly,
[Bα] ∗ [E

t
b1] = [Et

b1] ∗ [Bα],

completing the proof.
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Lemma 4.9. At
L is an ideal of A(V +

L ) and At
L
∼= At⊗CC[L̂/K]/J , where C[L̂/K]

is the group algebra of L̂/K and J is the ideal of C[L̂/K] generated by κK + 1.

Proof: By Proposition 5.4 of [AD] and Lemmas 4.7-4.8, it is easy to check that
At

L is an ideal of A(V +
L ). Similar to the proof of Proposition 7.6 of [AD], we have

[Bα] ∗ [Bβ] = ǫ(α, β)[Bα+β],

for α, β ∈ L where ǫ(α, β) is understood to be ±1 by identifying κ with −1. Then
the lemma follows from Proposition 7.6 of [AD] and Lemma 4.8.

It is clear that Au
L ∩At

L = 0. Let

Ā(V +
L ) = A(V +

L )/(Au
L ⊕ At

L),

and for x ∈ A(V +
L ), we still denote the image of x in Ā(V +

L ) by x.

Lemma 4.10. In Ā(V +
L ), we have

[Ha] = [Hb], 1 ≤ a, b ≤ d, (4.19)

([ωa]−
1

16
) ∗ [Ha] = 0, 1 ≤ a ≤ d, (4.20)

128

9
[Ha] ∗

128

9
[Ha] =

128

9
[Ha], 1 ≤ a ≤ d, (4.21)

[Λab] ∗ [Hc] = 0, 1 ≤ a, b, c ≤ d, a 6= b. (4.22)

Proof: (4.19) follows from (4.7) and (4.20) follows from (4.8) and (4.9). Then
from (4.5) we can get (4.21). By (4.10), we have

[Λab]
2 ∗ [Hc] = 0, a 6= b.

If d ≥ 3, then by (4.19) we can let c 6= a, c 6= b. So by (4.11) and (4.20),

[Λab] ∗ [Hc] = 16[Λab] ∗ [ωc] ∗ [Hc]

= 8[Λac] ∗ [Λcb] ∗ [Hc] = 128[Λac] ∗ [Λcb] ∗ [ωa] ∗ [Ha]

= 64[Λac] ∗ [Λca] ∗ [Λab] ∗ [Ha] = 0.

If d = 2. Notice that [Λab] = [Sab(1, 1)]. By Remark 4.1.1 of [DN2] and the fact
that [ωa ∗ Sab(m,n)] = [Sab(m,n) ∗ ωa] in Ā(V +

L ) for m,n ≥ 1, we have

[Sab(m+ 1, n)] + [Sab(m,n)] = 0. (4.23)

By the proof of Lemma 6.1.2 of [DN2], we know that

[Ha] = −9[Saa(1, 3)]−
17

2
[Saa(1, 2)] +

1

2
[Saa(1, 1)]. (4.24)
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Direct calculation yields

[Sab(1, 1)] ∗ [Saa(1, 3)] = hb(−1)ha(−3)ha(−1)2,

[Sab(1, 1)] ∗ [Saa(1, 2)] = hb(−1)ha(−2)ha(−1)2,

[Sab(1, 1)] ∗ [Saa(1, 1)] = hb(−1)ha(−1)ha(−1)2.

Here we have used (4.23). Then (4.22) immediately follows from Lemma 4.2.1 of
[DN2], (4.23) and (4.24). The proof is complete.

For 0 6= α ∈ L, let {h1, · · · , hd} be an orthonormal basis of h such that
h1 ∈ Cα. Define

[B̄α] = 2|α|
2−1 128

9
[H1] ∗ [E

α].

We also set [B̄0] =
128
9
[H1].

Lemma 4.11. The subalgebra AH of Ā(V +
L ) spanned by [B̄α], α ∈ L is an ideal

of Ā(V +
L ) isomorphic to C[L̂/K]/J .

Let
Â(V +

L ) = Ā(V +
L )/AH .

Lemma 4.12. Any Â(V +
L )-module is completely reducible. That is, Â(V +

L ) is a
semisimple associative algebra.

Proof: Let M be an Â(V +
L )-module. For α ∈ L, by [DN2] M is a direct sum of

irreducible A(V +
Zα)-modules. Following the proof of Lemma 6.1 of [AD] one can

prove that the image of any vector from M(1)+ in Â(V +
L ) is semisimple on M .

By Table 1 of [AD], we can assume that

M =
⊕

λ∈h/(±1)

Mλ,

where Mλ = {w ∈ M | [1
2
h(−1)21]w = 1

2
(λ, h)2w, h ∈ h}. So ωaw = 1

2
(λ, ha)

2w,
for w ∈ Mλ. By (4.10) and (4.11), we have

Λabw = (λ, ha)(λ, hb)w,

for a 6= b, w ∈ Mλ. For any u ∈ Mλ, λ 6= 0, set M(u) =
∑
α∈L

C[Eα]u. By (4.12)-

(4.13) and (4.15)-(4.17), if [Eα]u 6= 0, then α ∈ ∆(λ) or −α ∈ ∆(λ), where
∆(λ) = {α ∈ L| |λ+ α|2 = |λ|2}. So

M(u) =
⊕

α∈∆(λ)

C[Eα]u.

Since L is positive-definite, there are finitely many α ∈ L which belong to ∆(λ).
Thus M(u) is finite-dimensional. Similar to the proof of Lemma 6.4 of [AD],
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we can deduce that ΛabM(u) ⊆ M(u), ωaM(u) ⊆ M(u). By Proposition 5.4 of
[AD], [Eα] ∗ [Eβ] = [x] ∗ [Eα+β] for some x ∈ M(1)+. We deduce that M(u)

is an Â(V +
L )-submodule of M . Suppose [Eα]u 6= 0, for some α ∈ ∆(λ). If

(α, α) = 2, then by (4.14), we have 0 6= [Eα][Eα]u ∈ Cu. If (α, α) = 2k 6= 2.
Let {h1, · · · , hd} be an orthonormal basis of h such that h1 ∈ Cα. By the fact
that [H1] = [J1] + [ω1]− 4[ω2

1] = 0 and (4.13) we know that [ω1]u = k
4
u. Then by

Lemma 5.5 of [DN2], we have

[Eα][Eα]u =
2k2

(2k)!
(k2 − 1)(k2 − 22) · · · (k2 − (k − 1)2)u 6= 0.

Therefore M(u) is irreducible. We prove that M is a direct sum of finite-

dimensional irreducible Â(V +
L )-modules.

Theorem 4.13. A(V +
L ) is a finite dimensional semisimple associative algebra.

Proof: Clearly A(V +
L ) is finite dimensional. By Lemmas 4.5, 4.7, 4.9 we know

that Au
L⊕At

L is a semisimple ideal of A(V +
L ). Thus A(V +

L ) is semisimple if and only
if Ā(V +

L ) = A(V +
L )/(Au

L⊕At
L) is semisimple. By Lemma 4.11, AH is a semisimple

ideal of Ā(V +
L ). So Ā(V +

L ) is semisimple if and only if Â(V +
L ) = Ā(V +

L )/AH is
semisimple. The result now follows from Lemma 4.12.

5 Rationality of V +
L when L has an orthogonal

base

In this section we assume that L has an orthogonal base {βi, 1 ≤ i ≤ d} in the
sense that (βi, βj) = 0, for i 6= j. Then we have L =

⊕d
i=1 Zβi and this induces

the relations
⊗d

i=1V
+
Zβi

⊆ (V⊕d
i=1 Zβi

)+ = V +
L

between vertex operator algebras. By Theorems 3.4 and 2.6, ⊗d
i=1V

+
Zβi

is a rational

vertex operator subalgebra of V +
L . This is a crucial fact in our discussion of

rationality of V +
L in this section.

The following lemma is trivial:

Lemma 5.1. The vertex operator algebras ⊗d
i=1VZβi

and V⊕d
i=1 Zβi

are isomorphic.

By Lemma 5.1, a V⊕d
i=1 Zβi

-module V⊕d
i=1 Zβi+ciβi

can be viewed as a ⊗d
i=1VZβi

-

module, and is isomorphic to ⊗d
i=1VZβi+ciβi

. On the other hand, by Theorem
2.6 and Theorem 3.4, ⊗d

i=1V
+
Zβi

is rational, then any admissible V +
L -module is

completely reducible as an admissible ⊗d
i=1V

+
Zβi

-module. Thus we may decompose

all the irreducible V +
L -modules as a direct sum of irreducible ⊗d

i=1V
+
Zβi

-modules.
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Lemma 5.2. The following are ⊗d
i=1V

+
Zβi

-module isomorphisms.

(1) V +
L is isomorphic to a direct sum of

V ǫ1
Zβ1

⊗ · · · ⊗ V ǫd
Zβd

with sign ǫi = {±}, 1 ≤ i ≤ d such that the number of i with ǫi = − is even.
(2) V −

L is isomorphic to a direct sum of

V ǫ1
Zβ1

⊗ · · · ⊗ V ǫd
Zβd

with sign ǫi = {±}, 1 ≤ i ≤ d such that the number of i with ǫi = − is odd.
(3) Vλj+L for λj = k1β1 + · · ·+ kdβd ∈ L◦/L, k1, · · · , kd ∈ C and 2λj /∈ L is

isomorphic to
VZβ1+k1β1 ⊗ · · · ⊗ VZβd+kdβd

,

where VZβi+kiβi
= V +

Zβi+kiβi

⊕
V −
Zβi+kiβi

for i such that 2kiβi ∈ Zβi.

(4) V +
λj+L for λj = k1β1 + · · ·+ kdβd ∈ L◦/L, k1, · · · , kd ∈ C and 2λj ∈ L is

isomorphic to a direct sum of

⊗d
i=1V

ǫi
Zβi+kiβi

with sign ǫi = {±}, 1 ≤ i ≤ d such that the number of i with ǫi = − is even.
(5) V −

λj+L for λj = k1β1+ · · ·+kdβd, k1, · · · , kd ∈ C and 2λj ∈ L is isomorphic
to a direct sum of

⊗d
i=1V

ǫi
Zβi+kiβi

with sign ǫi = {±}, 1 ≤ i ≤ d such that the number of i with ǫi = − is odd.

(6) (V
Tχ

L )+ is isomorphic to a direct sum of

(V
Tχ1
Zβ1

)ǫ1 ⊗ · · · ⊗ (V
Tχd

Zβd
)ǫd

with signs ǫi ∈ {±}, i = 1, · · · , d such that the number of i with ǫi = − is even.

(7) (V
Tχ

L )− is isomorphic to a direct sum of

(V
Tχ1

Zβ1
)ǫ1 ⊗ · · · ⊗ (V

Tχd

Zβd
)ǫd

with signs ǫi ∈ {±}, i = 1, · · · , d such that the number of i with ǫi = − is odd.

Proof: (1) By Lemma 5.1, we have VL
∼= ⊗d

i=1VZβi
and the corresponding θ is

changed to θ1 ⊗ · · · ⊗ θd, where θi is the restriction of θ to VZβi
, then V +

L is iso-
morphic to (⊗d

i=1VZβi
)+ as ⊗d

i=1V
+
Zβi

-modules. The decomposition of (⊗d
i=1VZβi

)+

into direct sum of irreducible ⊗d
i=1V

+
Zβi

-modules is now obvious.
The proof of (2) is similar to that of (1). (3) is obvious. For (4), note that

Vλj+L = VZβ1+k1β1 ⊗ · · · ⊗ VZβd+kdβd
.
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Since 2λj ∈ L and {β1, · · · , βd} is a basis of L, it follows that 2kiβi ∈ Zβi and
VZβi+kiβi

= VZβi−kiβi
, for i = 1, 2, · · · , d. The decomposition then follows easily.

The proof of (5) is similar.
Now we consider the last two cases. Note that (α, β) ∈ 2Z for all α, β ∈ L.

From the discussion given in Section 3 (before Theorem 3.1) we see that

V
Tχ

L = V
Tχ1
Zβ1

⊗ · · · ⊗ V
Tχd

Zβd
.

(6) and (7) follows immediately.
By Lemma 4.1 we have:

Lemma 5.3. The lowest weights of irreducible V +
L -modules are given by

V +
L V −

L Vλi+L V ±
µj+L (V

Tχi

L )+ (V
Tχj

L )−

0 1 〈λi,λi〉
2

〈µj ,µj〉

2
d
16

d+8
16

where 2λi /∈ L, 2µj ∈ L and µj 6= 0.

From Lemma 5.3, Theorem 3.3, Proposition 3.5 and Theorem 4.13, we get
the following result:

Lemma 5.4. Ext1
V +
L

(N,M) = 0 for the following irreducible V +
L -module pairs

(M,N):

(M,N) = (M,M) (i.e. M = N), (V ±
λj+L, V ∓

λj+L), λj 6= 0,

((V
Tχi

L )∓, (V
Tχj

L )±), ((V
Tχi

L )±, (V
Tχj

L )±).

Furthermore, we have:

Lemma 5.5. The extension groups Ext1
V +
L

(V ±
L , V ∓

L ) = 0.

Proof: By Theorem 2.9 and Proposition 3.9, we only need to prove

Ext1
V +
L

(V −
L , V +

L ) = 0.

We consider an exact sequence

0 → V −
L → M → V +

L → 0

for a weak V +
L -module M . By the rationality of ⊗d

i=1V
+
Zβi

, there exists a ⊗d
i=1V

+
Zβi

-

submodule M1 of M such that M1 ∼= V +
L as ⊗d

i=1V
+
Zβi

-modules. Since ⊗d
i=1V

+
Zβi

and V +
L have the same Virasoro element, then there is a vector u in M1 such

that L(−1)u = 0 and L(0)u = 0, this implies that u generates a V +
L -submodule

isomorphic to V +
L , then we have M ∼= V −

L

⊕
V +
L and Ext1

V +
L

(V −
L , V +

L ) = 0.

We next prove Ext1
V +
L

(M2,M1) = 0 for the remaining pairs (M1,M2).
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Lemma 5.6. The extension groups Ext1
V +
L

(M2,M1) = 0 for the following pairs

(M1,M2):

(M1,M2) = (Vλi+L, Vλj+L) λi 6= λj, (Vλi+L, V
±
λj+L), (V ±

λi+L, Vλj+L),

(V ±
λi+L, V

±
λj+L), (V ±

λi+L, V
∓
λj+L), λi 6= λj ,

((V
Tχ

L )±, V ±
λj+L), ((V

Tχ

L )∓, V ±
λj+L), (V ∓

λj+L, (V
Tχ

L )±), (V ±
λj+L, (V

Tχ

L )±),

(Vλi+L, (V
Tχ

L )±), ((V
Tχ

L )±, Vλi+L).

Proof: Let (M1,M2) be one of the following pairs

((V
Tχ

L )±, V ±
λj+L), ((V

Tχ

L )∓, V ±
λj+L), (V ∓

λj+L, (V
Tχ

L )±), (V ±
λj+L, (V

Tχ

L )±),

(Vλi+L, (V
Tχ

L )±), ((V
Tχ

L )±, Vλi+L).

Let U = ⊗d
i=1V

+
Zβi

. Then by Theorem 2.6 and Theorem 3.4, U is rational. It is
obvious that U has the same Virasoro element with V . Then by Lemma 2.11, it
is enough to show that

IU

(
N1

N N2

)
= 0

for any irreducible U -submodules N1, N,N2 of M1, V +
L ,M2, respectively. By (1)-

(2) and (6)-(7) of Lemma 5.2, we know that there is exactly one N i that has the
form

(V
Tχ1
Zβ1

)ǫ1 ⊗ · · · ⊗ (V
Tχd

Zβd
)ǫd.

Then by Theorem 3.7 (2) and Theorem 2.8, the fusion rule of type
(

N1

N N2

)

for the vertex operator algebra U = ⊗d
i=1V

+
Zβi

is zero. Thus Ext1
V +
L

(M2,M1) = 0.

Consider the pair (M1,M2) = (Vλi+L, Vλj+L), where λi = k1β1 + · · · + kdβd,
λj = l1β1 + · · · + ldβd such that λi 6= λj and 2λi, 2λj /∈ L. Without loss of
generality, we may assume that k1 6= l1. By (3) of Lemma 5.2, we have

Vλi+L = VZβ1+k1β1 ⊗ · · · ⊗ VZβd+kdβd
,

Vλj+L = VZβ1+l1β1 ⊗ · · · ⊗ VZβd+ldβd
.

Note that VZβr+nrβr
is an irreducible VZβr

-module if 2nrβr 6∈ Zβr and VZβr+nrβr
=

V +
Zβr+nrβr

⊕
V −
Zβr+nrβr

is a sum of two irreducible VZβr
-modules if 2nrβr ∈ Zβr.

Let N1, N,N2 be any irreducible U -submodules of M1, V +
L ,M2, respectively. It

follows immediately from Theorem 3.7 (2) and Theorem 2.8 that

IU

(
N1

N N2

)
= 0.
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So by Lemma 2.11, Ext1
V +
L

(M2,M1) = 0 in this case.

If (M1,M2) = (Vλi+L, V
±
λj+L), (V ±

λi+L, Vλj+L), where 2λi /∈ L, 2λj ∈ L, by

Proposition 3.9 and Theorem 2.9, we only need to consider the pairs (M1,M2) =
(V ±

λj+L, Vλi+L). Let λj = k1β1 + · · · + kdβd and λi = l1β1 + · · · + ldβd. Then

2kiβi ∈ Zβi, for i = 1, 2, · · · , d. Since 2λi /∈ L, it follows that there exists
1 ≤ s ≤ d such that 2lsβs /∈ Zβs. By (3)-(5) of Lemma 5.2,

Vλi+L = VZβ1+l1β1 ⊗ · · · ⊗ VZβd+ldβd
,

where VZβr+lrβr
= V +

Zβr+lrβr

⊕
V −
Zβr+liβr

if 2lrβr ∈ Zβr. Let N1, N,N2 be any

irreducible U -submodules of M1, V +
L ,M2, respectively. Then N1 has the form:

⊗d
i=1V

ǫi
Zβi+kiβi

.

We know from Theorem 3.7 (2) and Theorem 2.8 that

IU

(
N1

N N2

)
= 0.

Again by Lemma 2.11, we have Ext1
V +
L

(M2,M1) = 0.

Finally we deal with the pairs (M1,M2):

(V ±
λi+L, V

±
λj+L), (V ±

λi+L, V
∓
λj+L), λi 6= λj.

Since λi 6= λj , it follows that there exists 1 ≤ s ≤ d such that ks 6= ls. Let
λi = k1β1 + · · · + kdβd and λj = l1β1 + · · · + ldβd. Then 2kiβi, 2liβi ∈ Zβi, for
i = 1, 2, · · · , d. Let N1, N,N2 be any irreducible U -submodules of M1, V +

L ,M2,
respectively. By (3)-(4) of Lemma 5.2, N1 and N2 have the form:

V ǫi
Zβ1+k1β1

⊗ · · · ⊗ V ǫi
Zβd+kdβd

,

and
V ǫi
Zβ1+l1β1

⊗ · · · ⊗ V ǫi
Zβd+ldβd

respectively. By Theorem 3.7 (2) and Theorem 2.8,

IU

(
N1

N N2

)
= 0.

This implies that Ext1
V +
L

(M2,M1) = 0. The proof is complete.

We are now in a position to state the main result of this section.

Theorem 5.7. Let L be a positive definite even lattice with an orthogonal base,
then V +

L is rational.

Proof: The theorem follows from Lammas 5.4-5.6 and Theorem 2.10.
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6 Rationality of V +
L : general case

We are now in a position to deal with V +
L for any positive definite even lattice L

by using the rationality result obtained in Section 5.
Note that L has a sublattice L1 =

⊕d
i=1 Zβi of the same rank, where {βi, 1 ≤

i ≤ d} is an orthogonal subset in L in the sense that 〈βi, βj〉 = 0, i 6= j. This
induces an embedding

V +
L1

= (V⊕d
i=1 Zβi

)+ ⊂ V +
L

of vertex operator algebras. Let {γs} be a set of representatives of L/L1. In Sec-
tion 5, we prove that V +

L1
is rational. Then we can decompose all the irreducible

V +
L -modules as a direct sum of irreducible V +

L1
-modules. Specifically, we have

Lemma 6.1. (1) V +
L is isomorphic to a direct sum of

V +
γs+L1

, (2γs ∈ L1), Vγs+L1 , (2γs /∈ L1)

(one of the two irreducible modules may not exist in the direct sum).
(2) V −

L is isomorphic to a direct sum of

V −
γs+L1

, (2γs ∈ L1), Vγs+L1 , (2γs /∈ L1)

(one of the two irreducible modules may not exist in the direct sum).
(3) V +

λj+L for (2λj ∈ L) is isomorphic to a direct sum of

V +
λj+γs+L1

(2(λj + γs) ∈ L1), Vλj+γs+L1(2(λj + γs) /∈ L1)

(one of the two irreducible modules may not exist in the direct sum).
(4) V −

λj+L for (2λj ∈ L) is isomorphic to a direct sum of

V −
λj+γs+L1

(2(λj + γs) ∈ L1), Vλj+γs+L1 (2(λj + γs) /∈ L1)

(one of the two irreducible modules may not exist in the direct sum).
(5) Vλj+L for (2λj /∈ L) is isomorphic to a direct sum of

Vλj+γs+L1 .

(6) (V
Tχ

L )+ is isomorphic to a direct sum of irreducible V +
L1
-modules

(V
Tχi

L1
)+

for some irreducible L̂1/K1-module Tχi
with central character χi such that χi(κ) =

−1, where K1 = {θ(a)a−1|a ∈ L̂1} and L̂1 = {a ∈ L̂|a ∈ L1}.

(7) (V
Tχ

L )− is isomorphic to a direct sum of

(V
Tχi

L1
)−

for some irreducible L̂1/K1-module Tχi
with central character χi such that χi(κ) =

−1.
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Proof: (1)-(4) are obvious. (5) is immediate by noting that 2(λj + γs) /∈ L1 as

L1 is a sublattice of L. Now we prove (6)-(7). Let L̂1 = {a ∈ L̂|a ∈ L1} and

K1 = {θ(a)a−1|a ∈ L̂1}. Then L̂1 is an abelian group isomorphic to L1×〈κ〉 and

K1 is isomorphic to 2L1. As a result, L̂1/K1 is isomorphic to L1/2L1×〈κ〉. Since

L̂1/K1 is a subgroup of L̂/K1, Tχ is a direct sum of one-dimensional irreducible

L̂/K1-modules Tχi
such that κ acts as −1. Since h = C⊗Z L1 = C⊗Z L, we see

that
V

Tχ

L = M(1)(θ)⊗ Tχ =
⊕

i

M(1)(θ)⊗ Tχi
=

⊕

i

V
Tχi

L1
.

That is, V
Tχ

L is a direct sum of irreducible θ-twisted VL1-modules V
Tχi

L1
. (6)-(7)

are evident now.
By Lemma 5.3, Theorem 3.3, Proposition 3.5 and Theorem 4.13, we have the

following result similar to Lemma 5.4.

Lemma 6.2. The extension groups Ext1
V +
L

(N,M) = 0 for the following irre-

ducible V +
L -module pairs (M,N),

(M,M) (i.e M = N), (V ±
λj+L, V

∓
λj+L), λj 6= 0,

((V
Tχi

L )∓, (V
Tχj

L )±), ((V
Tχi

L )±, (V
Tχj

L )±).

Note that V +
L1

and V +
L have the same Virasoro element. An analogue of

Lemma 5.5 with the same proof is the following:

Lemma 6.3. The extension groups Ext1
V +
L

(V ±
L , V ∓

L ) = 0.

For the remaining pairs (M1,M2), we also have the following result:

Lemma 6.4. Ext1
V +
L

(M2,M1) = 0 for the following irreducible V +
L -module pairs

(M1,M2):

(M1,M2) = (Vλi+L, Vλj+L) λi 6= λj, (Vλi+L, V
±
λj+L), (V ±

λi+L, Vλj+L),

(V ±
λi+L, V

±
λj+L), (V ±

λi+L, V
∓
λj+L), λi 6= λj ,

((V
Tχ

L )±, V ±
λj+L), ((V

Tχ

L )∓, V ±
λj+L), (V ∓

λj+L, (V
Tχ

L )±), (V ±
λj+L, (V

Tχ

L )±),

(Vλi+L, (V
Tχ

L )±), ((V
Tχ

L )±, Vλi+L).

Proof: Let (M1,M2) be one of the following pairs:

((V
Tχ

L )±, V ±
λj+L), ((V

Tχ

L )∓, V ±
λj+L), (V ∓

λj+L, (V
Tχ

L )±), (V ±
λj+L, (V

Tχ

L )±),

(Vλi+L, (V
Tχ

L )±), ((V
Tχ

L )±, Vλi+L).
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By Theorem 5.7 and Lemma 2.11, it is enough to show that

IV +
L1

(
N1

N N2 ) = 0

for any irreducible V +
L1
-submodules N1, N,N2 of M1, V +

L ,M2, respectively. By
(6)-(7) of Lemma 6.1, there is exactly one N i which has the form

(V
Tχi

L1
)+ or (V

Tχi

L1
)−.

By Theorem 3.8, we have

IV +
L1

(
N1

N N2

)
= 0.

Now consider the pair (M1,M2) = (Vλi+L, Vλj+L) with 2λi /∈ L, 2λj /∈ L, λi 6=
λj. By the choice of {λk|k ∈ L◦/L} (see Section 3), we have L + λi 6= L + λj .
If L + λi = L− λj, then by Lemma 5.3 Vλi+L and V−λj+L have the same lowest
weight. By Proposition 3.5 and Theorem 4.13, Ext1

V +
L

(M2,M1) = 0. So we now

assume that L + λi 6= L± λj. Let N
1, N,N2 be any irreducible V +

L1
-submodules

of M1, V +
L ,M2, respectively. Then by (5) of Lemma 6.1,

N1 = Vλi+γs+L1 , N2 = Vλj+γr+L1 ,

for some γr, γs, where 2(λi+γs) /∈ L1, 2(λj+γr) /∈ L1. By (1) of Lemma 6.1, N is
of the form V +

γl+L1
(2γl ∈ L1) or Vγl+L1(2γl /∈ L1). We claim that (γl, λi+γs, λj+γr)

is not an admissible triple modulo L1. Otherwise, since γr, γl, γs ∈ L and L1 ⊆ L,
this forces λi + λj ∈ L or λi − λj ∈ L, a contradiction. Since (γl, λi + γs, λj + γr)
is not an admissible triple modulo L1, Theorem 3.8 asserts that

IV +
L1

(
N1

N N2

)
= 0.

For the pairs (M1,M2) = (Vλi+L, V ±
λj+L), (V

±
λj+L, Vλi+L), where 2λi /∈ L,

2λj ∈ L, by Proposition 3.9 and Theorem 2.9, we only need to consider the pairs
(M1,M2) = (V ±

λj+L, Vλi+L). Let N1, N,N2 be any irreducible U -submodules of

M1, V +
L ,M2, respectively. Then by (3)-(5) of Lemma 6.1, N2 = Vλi+γr+L1 , for

some γr and N1 is one of the following:

V ±
λj+γs+L1

(2(λj + γs) ∈ L1), Vλj+γs+L1 (2(λj + γs) /∈ L1).

By (1) of Lemma 6.1, N is of the form V +
γl+L1

(2γl ∈ L1) or Vγl+L1(2γl /∈ L1). Note
that (γl, λj + γs, λi+ γr) is not an admissible triple modulo L1. Otherwise, either
λi + λj or λi − λj ∈ L. In either case we conclude that 2λi ∈ L, a contradiction.
Again by Theorem 3.8,

IV +
L1

(
N1

N N2

)
= 0.
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The proof for the remaining pairs (M1,M2):

(V ±
λi+L, V

±
λj+L), (V ±

λi+L, V
∓
λj+L)

is quite similar. We omit it.

By Lemmas 6.2-6.4 and Theorem 2.10, together with Theorem 5.7, we have
the following main result of the paper.

Theorem 6.5. Let L be a positive definite even lattice. Then V +
L is rational.
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