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ABSTRACT
Lattice thermal conductivity (κL) is one of the most fundamental properties of solids.The
acoustic–elastic-wave assumption, proposed by Debye (Debye P. Ann Phys 1912; 344: 789–839), has led to
linear phonon dispersion being the most common approximation for understanding phonon transport over
the past century. Such an assumption does not take into account the effect of a periodic boundary condition
on the phonon dispersion, originating from the nature of periodicity on atomic arrangements. Driven by
modern demands on the thermal functionality of materials, with κL ranging from ultra-low to ultra-high,
any deviation from the Debye approximation in real materials becomes more and more significant.This
work takes into account the periodic boundary condition, and therefore rationalizes the phonon dispersion
to be more realistic.This significantly improves the precision for quickly predicting κL without any fitting
parameters, as demonstrated in hundreds of materials, and offers a theoretical basis rationalizing κL to be
lower than the minimum currently accepted based on the Debye dispersion.This work paves the way for
designing solids with expected κL and particularly inspires the advancement of low-κL materials for thermal
energy applications.
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INTRODUCTION
Lattice thermal conductivity (κL) strongly affects
the applications of materials related to thermal func-
tionality, such as thermal management [1], thermal
barrier coatings [2] and thermoelectrics [3–5]. κL is
determined by the specific heat (cV), phonon group
velocity (vg) and phonon relaxation time (τ), which
are all strongly linked to the dispersion of phonons.
By manipulating these physical parameters, many
differentmaterials either with ultra-low or ultra-high
κL have been successfully made [6–8].

In cases of applications that require a lowκL, such
as thermoelectrics, complex crystal structures are
usually focused on.This is because an increase of the
number of atoms in a primitive cell folds the high-
frequencyportionof phonons back into the first Bril-
louin zone as optical ones with significantly reduced
groupvelocities.This reduces the fractionof acoustic
phonons, which is equivalent to the effect of reduc-
ing the acoustic specific heat for κL-reduction, since
acoustic phonons are the dominant contributors to
κL because of their high group velocities [8–12].

Alternatively, both introducing defects with differ-
ent dimensionalities (0D point defects [13–17], 1D
dislocations [18–21] and2D interfaces [22,23]) and
utilizing the strong lattice anharmonicity [24–27]
help to shorten the overall phonon relaxation time
(τ). In addition, a weak bonding force in materials
with heavy elements leads to a small slope of phonon
frequency versuswave vector,meaning a small group
velocity (vg) for phonons [28,29].

In cases of applications that require a high κL,
carbon materials such as 3D diamond [30], 2D
graphene [31] and 1D carbyne in the form of cu-
mulene [32] have strong C–C chemical bonds, light
atomic mass and small primitive cells and therefore
show the highest κL among known solids.

In order to understand the lattice thermal con-
ductivitymore quantitatively and in a time- and cost-
effective way, many researchers devoted their ef-
forts to it and developed a few physical models us-
ing approximated phonon dispersions over the past
century [33–45] (see the supplementary section
entitled ‘Development of modeling lattice thermal

C©TheAuthor(s) 2018. Published by Oxford University Press on behalf of China Science Publishing &Media Ltd. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/5/6/888/5104387 by guest on 20 August 2022

mailto:cld@mail.sic.ac.cn
mailto:yanzhong@tongji.edu.cn
mailto:journals.permissions@oup.com


RESEARCH ARTICLE Chen et al. 889

conductivity’).Most [33–40,45]of thesemodels use
a linear phonon dispersion, as proposed byDebye in
1912 based on an acoustic–elastic-wave assumption
[46], while other models either involve mathemat-
ical fitting parameters on phonon dispersion [41–
43] or lack detailed equations for phonon transport
properties [44].The linear phonondispersionofDe-
bye offersmany simplifications on phonon transport
properties, and was the most common approxima-
tion in the past. The Debye dispersion successfully
predicts a T3 dependence of the heat capacity (CV)
at low temperatures andCV approaches theDulong–
Petit limit at high temperatures.

However, the nature of periodicity on atomic ar-
rangements leads to a periodic boundary condition
for lattice vibrations in solids, which actually creates
lattice standing waves at Brillouin boundaries. This
does not satisfy the acoustic–elastic-wave assump-
tion of Debye, as proposed by Born and von Kar-
man (BvK) in 1912 [47]—the same year that De-
bye proposed the linear dispersion [46].This results
in a significant deviation of Debye dispersion for pe-
riodic crystallinematerials when phonons with wave
vectors are close to the Brillouin boundaries (high-
frequency phonons; see the supplementary section
entitled ‘Detailed deduction on phonon transport
properties’). When these phonons are involved for
phonon transport (i.e. at not extremely low tem-
peratures), Debye dispersion leads to an overesti-
mation of lattice thermal conductivity because of
the overestimation of the group velocity for these
high-frequency phonons, as observed in materials
with known measured κL and necessary details for
a time- and cost-effective model prediction to our
best knowledge (Fig. 1g and h show amean absolute
deviation of +40% and 35%). In addition, Debye
dispersion overestimates the theoretically available
lower bound of lattice thermal conductivity (κL,min)
as well, leading the violations of the measured κL
to be even lower than the κL, min predicted (Debye–
Cahill model) [48] to be observed in tens of materi-
als (Fig. 2).

This work takes into account the BvK bound-
ary condition [47], and reveals that the product of
acoustic and optical dispersions yields a sine func-
tion (see the supplementary section entitled ‘De-
tailed deduction on phonon transport properties’).
In the case in which themass (or the force constant)
contrast between atoms is large, the acoustic disper-
sion tends to be a sine-function (Fig. S1). This sine-
type dispersion indeed exists in both the simplest
[32] and the most complex materials [49] (see the
supplementary section entitled ‘Detailed deduction
on phonon transport properties’). Approximating
the acoustic dispersion to be sine, the BvK bound-
ary condition subsequently reduces the remaining

optical branches to a series of localized modes with
a series of constant frequencies. It should be noted
that, with the development of computation technol-
ogy, first-principles calculations could enable amore
detailed phonon dispersion. However, this is usu-
ally time-consuming and computationally expen-
sive, particularly for materials with imperfections. It
is therefore still significant nowadays if a rationalized
phonon dispersion is developed for a time- and cost-
effective prediction of phonon transport.

This work utilizes the above-mentioned rational-
ization of phonon dispersion, which enables both
contributions to κL of acoustic and optical phonons
to be included.This improvement in phonon disper-
sions significantly improves the accuracy of a time-
and cost-effective prediction on κL of solids (Fig. 1c,
showing a mean absolute deviation of only -2.5%),
and therefore offers a more precise design of solids
with expected κL. Furthermore, this work success-
fully removes the contradiction of the measured κL
being even lower than the minimum (κL, min, pre-
dicted based on a Debye dispersion, Fig. 2). This
would provide the theoretical possibility of rational-
izing κL to be lower than is currently thought, open-
ing further opportunities for advancing thermally
resistive materials for applications, such as thermo-
electrics.

RESULTS AND DISCUSSION
The similarity between the linear dispersion pro-
posed by Debye and the one developed in this
work lies in the region of acoustic phonons hav-
ing low frequencies (wave vectors close to the Bril-
louin zone center, the � point). This leads both dis-
persions to predict a T3 dependence of heat capac-
ity (CV) at low temperatures (Fig. S3). The over-
all phonon frequency from a linear dispersion is
higher than that from the dispersion developed in
this work, which reduces the probability of phonons
being excited and therefore leads to a lower CV,
particularly at mid-temperatures (Fig. S3). In the
high-temperature limit, available phonons of any
dispersions are completely excited, leading the en-
ergy carried by each atom to be 3kBT (known as the
Dulong–Petit law, Fig. S3) in bulk solids [50] ex-
cluding those with liquid-like species [51,52].

The most successful models without any fitting
parameters for a time- and cost-effective predic-
tion of the intrinsic κL (with Umklapp scattering
only) of crystalline solids are those developed by
Slack in 1973 [53], with improvements by Klemens
[54], and by Snyder in 2011 [45]. Both models
are based on a linear phonon dispersion of De-
bye for acoustic phonons, and are therefore called
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Figure 1. Comparison of phonon dispersion (a, b and c), measured lattice thermal conductivity versus prediction (d, e and f) and the corresponding error
analyses (g, h and i) for the Debye–Slack model (a, d and g), the Debye–Snyder model (b, e and h) and the one developed in this work considering the
periodic boundary condition (c, f and i) for crystalline solids. Details of the materials involved are given in Table S1.

in this work the Debye–Slack and Debye–Snyder
models, respectively.Thedifference between them is
that Slack only considers the contribution of acous-
tic phonons (Fig. 1a) while Snyder assumes that
all optical phonons have the cut-off frequency of
the acoustic branch (Fig. 1b). The phonon dis-
persion developed in this work, taking into ac-
count the periodic boundary condition, is shown
in Fig. 1c.

In order to better evaluate the accuracy of
each time- and cost-effective model prediction to
the best of our ability, a total of ∼450 mea-
sured room-temperature lattice thermal conductiv-
ities from ∼300 different materials are collected for
comparison (similar results for other temperatures

can be expected since they strictly follow a T−1

dependence due to Umklapp scattering; see the
supplementary section entitled ‘Comparison on
κL predicted by a Debye-Snyder model and the
one developed in this work’). In the case of a linear
dispersion, both the Debye–Slack (Fig. 1d) and
Debye–Snyder (Fig. 1e) models statistically overes-
timate κL (by∼37%, Fig. 1).This work successfully
enables a removal of such a κL-overestimation
(Fig. 1f). This can largely be understood by the
overestimated acoustic phonon group velocity
(particularly at high frequencies; see the supple-
mentary sections entitled ‘Comparison on κL
predicted by a Debye-Snyder model and the one
developed in this work’ and ‘Discussion on κL,min-
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Figure 2. Comparison of measured minimal lattice thermal conductivity (κ L,min) and
predictions based on a dispersion developed according to the periodic boundary condi-
tion or on a linear dispersion of Debye (Debye–Cahill model). Details of the materials
involved are given in Table S1.

prediction’) in the Debye–Slack and Debye–Snyder
models, since acoustic phonons are the main
contributors to κL [8,55].

In statistics (see the supplementary section en-
titled ‘Comparison on κL predicted by a Debye-
Snyder model and the one developed in this work’),
based on a linear dispersion of Debye and fur-
ther including the contribution of optical phonons
(Fig. 1b), Snyder’s model reduces both the mean
absolute deviation (MAD) and the standard devia-
tion (SD) by 5% statistically, as compared to Slack’s
(Fig. 1g and 1h).This improvement indicates a weak
contribution from optical phonons in general. This
work successfully reduces MAD to be about zero
(-2.5%, Fig. 1i), indicating that the phonon disper-
sion developed here indeed takes the major respon-
sibility forκL-prediction. Such a significant improve-
ment mostly comes from the development of the
dispersion of acoustic phonons (sine versus linear),
since all the models use the same scattering param-
eter (Grüneisen parameter, Table S1) and predict
nearly the same heat capacity at high temperatures
(Fig. S3).

The remaining SD of ∼27% (reduced from
∼48%) in thiswork can be understood largely by the
uncertainty of the Grüneisen parameter (γ ), mea-
suring the strength of inherent Umklapp scattering.
Its estimation can showa variation of 100%or higher
from different sources even for a givenmaterial (Ta-
ble S1),meaning a possible error as high as a factor of

4 or more for κL-prediction. This opens to the field
the importance of the accuracy of γ -determination
[24].This work includes all available γ to the best of
our knowledge from the literature on κL-prediction
(Figs 1 and S4). However, if γ is unavailable, it is
assumed to be 1.5, which is a statically averaged γ

for known materials (Fig. S4). Note that usage of
only the measured Grüneisen parameters from the
available literature indeed enables a better predic-
tion (Fig. S4 in the supplementary section entitled
‘Detailed deduction on phonon transport proper-
ties’).

In addition to inherent Umklapp scattering
in solids, electron–phonon scattering resulting
from a high carrier concentration (particularly in
metal/semi-metals and extremely heavily doped
semiconductors) as well as resonant scattering (in
e.g. filled skutterudites and clathrates) can lead to
a significant reduction in κL. Once the phonon
relaxation time of this type of scattering is known,
κL of these materials could be reasonably predicted
as well, according to the model developed in this
work.

As an extreme case of super-large n, typically
meaning a super-big primitive cell, κL is expected to
be extremely low [8,9], which is similar to the case
of amorphous solids [48,56]. It should be noted that
amorphous solids may show a reduced sound veloc-
ity and an enhanced phonon scattering for a lower
κL as compared to those of crystalline ones, which
can be understood by the existence of a distribu-
tion in interaction force resulting from the random
atomic distance (see the supplementary section en-
titled ‘Sound velocity of amorphous solids’).

Based on the phonon theory, when the scattering
probability of phonons reaches its maximum, the
relaxation time is minimized as half of the period of
each phonon [57], leading to a minimal lattice ther-
mal conductivity (κL, min). In1989Cahill [48]devel-
oped a model for predicting κL, min based on a linear
dispersion of Debye (the Debye–Cahill model),
which is the most common model for a time- and
cost-effective κL, min-prediction. Due to a similar
reason of an overestimation of the phonon group
velocity (particularly at high frequencies in a linear
dispersion), tens of materials contradictorily show
a measured temperature κL being even lower
than κL, min predicted by this model (Fig. 2; its
n-dependence is discussed in the supplementary
section entitled ‘Detailed deduction on phonon
transport properties’). It should be noted that
vs and V are respectively the sound velocity
and average atomic volume, and the product
vs

∗V
−2/3

is the key parameter determining
κL, min (see the supplementary section entitled
‘Collective equations and mathematic code for
κL-prediction in this work’) [48]. With the phonon
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dispersion developed here, this work nicely elimi-
nates the above contradiction.

CONCLUSION
Taking into account the periodic boundary condi-
tion, a phonon dispersion and thus a time- and cost-
effective phonon transport model are developed in
this work, which significantly improves the accuracy
for quickly predicting the lattice thermal conductiv-
ity (κL) of solids. This offers an effective design for
thermal functional solids. It further provides the the-
oretical possibility of κL being lower in many mate-
rials than is currently thought, validating further po-
tential for advancing the thermal functionalities and
thermal energy applications of solid materials.

METHODS
Here we show brief deductions on phonon disper-
sion and transport properties taking into account
the periodic boundary condition [47] (more de-
tails are given in the supplementary sections en-
titled ‘Detailed deduction on phonon transport
properties’ and ‘Comparison on κL predicted by a
Debye-Snyder model and the one developed in this
work’). Considering the nearest-neighboring inter-
actions, the phonon dispersion of a 1D single-atom
chain is strictly a sine function (Equation S1a).Once
the number of atoms in a primitive cell (n) and
the dimensionality of the material (d) increase, the
product of acoustic and optical dispersions yields a
sine function (Equation S1b).This leads the disper-
sion of the acoustic branch to quickly approach a
sine function when the mass and/or force contrast
is large.

It is therefore reasonable to approximate the
acoustic dispersion (frequency of ωa,j versus wave
vector k) for a material with a sound velocity of vs, j
(Equation S4) as

ωa, j (k) = 2
π

vs, j kc sin
(

π

2
k
kc

)
, (1)

where j defines the polarizations of lattice vibrations
(longitudinal or transverse) and kc is the cut-off
wave vector. In the case of n = 1, there is no optical
branch, and the acoustic branch strictly has a
dispersion of sine [47] (Fig. 1c). This means that
the phonon group velocity (vg, the slope of phonon
frequency versus wave vector) is strongly frequency-
dependent, which is further related to the sound
velocity (vs) via Equation 1 (see the supplementary
section entitled ‘Detailed deduction on phonon
transport properties’). For simplicity the force
constant and atomic mass are both averaged in

this work (see the supplementary section entitled
‘Detailed deduction on phonon transport proper-
ties’). This leads the phonon dispersion (frequency
of ωo,i,j versus wave vector k) of each optical
branch to have a series of constant frequencies
when n>1 (Fig. 1c). Both ωo , i , j and the effective
group velocity (veff , i) are believed to be the ones
at the median of wave vectors in the ith extended
Brillouin zone for n = 1, since the case of n =
∞ is the quantization of n = 1 (Fig. 1c and the
supplementary section entitled ‘Detailed deduction
on phonon transport properties’). Note that a better
understanding of phonon transport can be expected
if the detailed dispersions on optical phonons are
known (such as by first-principles calculations or
inelastic neutron scattering measurements). The
resulting equations for specific heat are given in the
supplementary material (see the supplementary
section entitled ‘Detailed deduction on phonon
transport properties’).

At room temperature or above, the scattering
of phonons is known to be dominated by inherent
Umklapp processes due to the lattice anharmonic-
ity inmost solids. Considering this type of scattering
only, the resulting relaxation time (τU; see the sup-
plementary section entitled ‘Detailed deduction on
phonon transport properties’) enables a determina-
tion of lattice thermal conductivity due to acoustic
phonons via

kL,a = 1
d
cV,av

2
g τU. (2)

A constant frequency (i.e. flat dispersion) for
each optical branch validates the approximation as
the Einstein mode [57], leading the relaxation time
to be half of the period (τmin) of each phonon
(see the supplementary section entitled ‘Detailed
deductiononphonon transport properties’).This re-
sults in an optical lattice thermal conductivity (κL, o)
of

kL,o =
n∑

i=2

1
d
cV,o,i v

2
eff,i τmin,o,i (3)

and a total lattice thermal conductivity (κL) of κL =
κL,a + κL,o

When the scattering of acoustic phonons is max-
imized, the relaxation time is minimized to be half
of the period of each phonon as well. This enables
a prediction of minimal lattice thermal conductivity
(κL, min).

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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