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ABSTRACT
Explaining the predictions of AI models is paramount in safety-critical applications, such as in
legal or medical domains. One form of explanation for a prediction is an extractive rationale,
i.e., a subset of features of an instance that lead the model to give its prediction on that instance.
For example, the subphrase “he stole the mobile phone” can be an extractive rationale for the
prediction of “Theft”. Previous works on generating extractive rationales usually employ a two-
phase model: a selector that selects the most important features (i.e., the rationale) followed by a
predictor that makes the prediction based exclusively on the selected features. One disadvantage
of these works is that the main signal for learning to select features comes from the comparison
of the answers given by the predictor to the ground-truth answers. In this work, we propose
to squeeze more information from the predictor via an information calibration method. More
precisely, we train two models jointly: one is a typical neural model that solves the task at hand
in an accurate but black-box manner, and the other is a selector-predictor model that additionally
produces a rationale for its prediction. The first model is used as a guide for the secondmodel. We
use an adversarial technique to calibrate the information extracted by the two models such that
the difference between them is an indicator of the missed or over-selected features. In addition,
for natural language tasks, we propose a language-model-based regularizer to encourage the
extraction of fluent rationales. Experimental results on a sentiment analysis task, a hate speech
recognition task as well as on three tasks from the legal domain show the effectiveness of our
approach to rationale extraction.

1. Introduction
Although deep neural networks have recently been contributing to state-of-the-art advances in various areas [70,

49, 128], such models are often black-box, and therefore may not be deemed appropriate in situations where safety
needs to be guaranteed, such as legal judgment prediction and medical diagnosis. Interpretable deep neural networks
are a promising way to increase the reliability of neural models [105]. To this end, extractive rationales, i.e., subsets of
features of instances on which models rely for their predictions on the instances, can be used as evidence for humans
to decide whether to trust a prediction and more generally a model.

There are many different methods to explain a deep neural model, such as probing internal representations [47,
24, 93, 135, 21, 133], adding interpretability to deep neural models [41, 105, 40, 1, 19, 113], and looking for global
decision rules [52, 22, 77, 11, 139, 37]. Extracting rationales belongs to the second category.

Previous works use selector-predictor types of neural models to provide extractive rationales. More precisely, such
models are composed of two modules: (i) a selector that selects a subset of features of each input, and (ii) a predictor
that makes a prediction based solely on the selected features. For example, Yoon et al. (2018) and Lei et al. (2016) use
a selector network to calculate a selection probability for each token in a sequence, then sample a set of tokens that is
the only input of the predictor. Supervision is typically given only on the final prediction and not on the rationales.
Paranjape et al. (2020) also uses information bottleneck to find a better trade-off between the sparsity and the final task
performance. Note that gold rationale labels are required for semi-supervised training in Paranjape et al. (2020).

1This article is a substantially revised and extended version a preliminary paper at AAAI 2021 [111].
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The defendant Zhang XX lives in the dormitory 
of an electric company. When the victim left the 
dormitory, he stole a VIVO X9 mobile phone 
of the victim (valued at RMB 2198) in a black 
bag on the balcony and placed it on the left 
side of the room’s entrance. At 7 o'clock the 
next day, the defendant concealed the stolen 
goods in his locker on the third floor of the 
company. 

The defendant Zhang XX lives in the dormitory of an electric company. When the victim left the dormitory, he stole a VIVO X9 
mobile phone of the victim (valued at RMB 2198) in a black bag on the balcony and placed it on the left side of the room’s entrance. 
At 7 o'clock the next day, the defendant concealed the stolen goods in his locker on the third floor of the company. 

Selector

Predictor

P(Crime of theft)=0.99

The defendant Zhang XX lives in the dormitory 
of an electric company. When the victim left the 
dormitory, he stole a VIVO X9 mobile phone of 
the victim (valued at RMB 2198) in a black 
bag on the balcony and placed it on the left 
side of the room’s entrance. At 7 o'clock the 
next day, the defendant concealed the stolen 
goods in his locker on the third floor of the 
company. 

P(Crime of theft)=0.64

Predictor

Sample 1 Sample 2

Figure 1: Examples of rationales in legal judgement prediction. The human-provided rationale is shown in bold in Sample 1.
In Sample 2, the selector missed the key information “he stole a VIVO X9”, but the predictor only tells the selector that
the whole extracted rationale (in bold) is not so informative, by producing a low probability of the correct crime.

An additional typical desideratum in natural language processing (NLP) tasks is that the selected tokens form a
semantically fluent rationale. To achieve this, Lei et al. (2016) added a non-differential regularizer that encourages
any two adjacent tokens to be simultaneously selected or unselected. The selector and predictor are jointly trained in
a REINFORCE-style manner [137] because the sampling process and the regularizer are not differentiable. Bastings
et al. (2019) further improved the quality of the rationales by using a HardKuma regularizer that also encourages any
two adjacent tokens to be selected or unselected together, which is differentiable and no need to use REINFORCE any
more.

One drawback of previous works is that the learning signal for both the selector and the predictor comes mainly
from comparing the prediction of the selector-predictor model with the ground-truth answer. Therefore, the explo-
ration space to get to the correct rationale is large, decreasing the chances of converging to the optimal rationales and
predictions. Moreover, in NLP applications, the regularizers commonly used for achieving fluency of rationales treat
all adjacent token pairs in the same way. This often leads to the selection of unnecessary tokens due to their adjacency
to informative ones.

In this work, we first propose an alternative method to rationalize the predictions of a neural model. Our method
aims to squeeze more information from the predictor in order to guide the selector in selecting the rationales. Our
method trains two models jointly: a “guider” model that solves the task at hand in an accurate but black-box manner,
and a selector-predictor model that solves the task while also providing rationales. We use an adversarial-based training
procedure to encourage the final information vectors generated by the two models to encode the same information. We
use an information bottleneck technique in two places: (i) to encourage the features selected by the selector to be
the least-but-enough features, and (ii) to encourage the final information vector of the guider model to also contain
the least-but-enough information for the prediction. Secondly, we propose using language models as regularizers for
rationales in natural language understanding tasks. A language model (LM) regularizer encourages rationales to be
fluent subphrases, whichmeans that the rationales are formed by consecutive tokens while avoiding unnecessary tokens
to be selected simply due to their adjacency to informative tokens. The effectiveness of our LM-based regularizer is
proved both by a mathematical derivation and experiments.

The contributions of this article are briefly summarized as follows:

Lei Sha et al.: Preprint submitted to Elsevier Page 2 of 30



Rationalizing Predictions by Adversarial Information Calibration

• We introduce a novel model that generates extractive rationales for its predictions. The model is based on an
adversarial approach that calibrates the information between a guider and a selector-predictor model, such that
the selector-predictor model learns to mimic a typical neural model while additionally providing rationales.

• We propose a language-model-based regularizer to encourage the sampled tokens to form fluent rationales.
Usually, this regularizer will encourage fewer fragment of subsequences and avoid strange start and end of the
sequences. This regularizer also gives priority to important adjacent token pairs, which benefits the extraction
of informative features.

• We experimentally evaluate our method on a sentiment analysis dataset and a hate speech detection dataset, both
containing ground-truth rationale annotations for the ground-truth labels, as well as on three tasks of a legal
judgement prediction dataset, for which we conducted human evaluations of the extracted rationales. The results
show that our method improves over the previous state-of-the-art models in precision and recall of rationale
extraction without sacrificing the prediction performance.

The rest of this paper is organized as follows. In Section 3, we introduce our proposed approach, including the
selector-predictor module (Section 3.1), the guider module (Section 3.1.3), the information calibrating method (Sec-
tion 3.2), and the language model-based rationale regularizer (Section 3.3). In Section 4, we report the experimental
results on the three datasets: a beer review dataset (Section 4.2), a legal judgment prediction dataset (Section 4.3),
and a hate speech detection dataset (Section 4.4). Section 2 reviews the related works of this paper. In Section 5, we
provide a summary and an outlook on future research.

2. Related Work
Explainability is currently a key bottleneck of deep-learning-based approaches [5, 61]. A summarization of related

works is shown in Table 1, where we have listed the representative works in each branch of interpretable models. As
is shown, previous works on explainable neural models include self-explanatory models and post-hoc explainers. The
model proposed in this work belongs to the class of self-explanatory models, which contain an explainable structure in
the model architecture, thus providing explanations / rationales for their predictions. Self-explanatory models can use
different types of explanations / rationales, such as feature-based explanations which is usually conducted by selector-
predictors [75, 142, 17, 144, 14] and natural language explanations [46, 13, 91, 65]. Our model uses feature-based
explanations.
2.1. Self-explanatory models for interpretability.

Self-explanatory models with feature-based explanations can be further divided into two branches. The first branch
is disentanglement-based approaches, which map specific features into latent spaces and then use the latent variables
to control the outcomes of the model, such as disentangling methods [19, 113], information bottleneck methods [130],
and constrained generation [110]. The second branch consists of architecture-interpretable models, such as attention-
based models [147, 112, 114, 116, 80], Neural Turing Machines [23, 138, 115], capsule networks [105], and energy-
based models [40]. Among them, attention-based models have an important extension, that of sparse feature learning,
which implies learning to extract a subset of features that are most informative for each example. Most of the sparse
feature learning methods use a selector-predictor architecture. Among them, L2X [17] and INVASE [142] make use
of information theories for feature selection, while CAR [16] extracts useful features in a game-theoretic approach.

In addition, rationale extraction for NLP usually raises one desideratum for the extracted subset of tokens: rationales
need to be fluent subphrases instead of separate tokens. To this end, Lei et al. (2016) proposed a non-differentiable reg-
ularizer to encourage selected tokens to be consecutive, which can be optimized by REINFORCE-style methods [137].
Bastings et al. (2019) proposed a differentiable regularizer using the Hard Kumaraswamy distribution; however, this
still does not consider the difference in the importance of different adjacent token pairs. Paranjape et al. (2020) pro-
posed a very similar information bottleneck method to our InfoCal method. However, they did not use any calibration
method to encourage the completeness of the extracted rationale.

Our method belongs to the class of self-explanatory methods. Different from previous sparse feature learningmeth-
ods, we use an adversarial information calibrating mechanism to hint to the selector about missing important features
or over-selected features. Moreover, our proposed LM regularizer is differentiable and can be directly optimized by
gradient descent. This regularizer also encourages important adjacent token pairs to be simultaneously selected, which
benefits the extraction of useful features.
Lei Sha et al.: Preprint submitted to Elsevier Page 3 of 30
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Representative Methods Controllable Provide
important
features

Provide
important
examples

Provide
NL expla-
nations

Provide
rules

Self-
explanatory
methods

Disentangle-
ment

Implicit �-VAE [48], �-TCVAE [18] Yes

Explicit InfoGAN [19], MTDNA [113] Yes Yes

Architecture

Attention-based
Rocktäschel et al. (2015), Vaswani
et al. (2017), OrderGen [114]

Yes

Read-Write Memory

Neural Turing Machines [23, 115],
Progressive Memory [104, 138], Dif-
ferentiable neural computer [42],
Neural RAM [60], Neural GPU [72]

Yes

Capsule-based Capsule [105] Yes

Energy-based

Grathwohl et al. (2019), Hop-
field Network [97], Boltzmann Ma-
chine [85], Predictive Coding [122]

Yes

Rationalization
Selector-predictor [75, 8, 142, 17],
natural language explanations [46,
13]

Yes Yes

Post-hoc
explainer

Local

Perturbation-based SHAP [82], Shapley Values [117] Yes

Surrogate-based Anchors [101], LIME [100] Yes Yes

Saliency Maps
Input gradient [6, 119, 118], Smooth-
Grad [121, 109], Integrated Gradi-
ents [127], Guided Backprop [123]

Yes

Prototypes/Example
Based

Influence Functions [25, 67], Repre-
senter Points [141], TracIn [94]

Yes

Counterfactuals
Wachter et al. (2017), Mahajan
et al. (2019), Karimi et al. (2020)

Yes Yes

Global

Collection of Local Ex-
planations

SP-LIME [100], Summaries of Coun-
terfactuals [98]

Yes

Model Distillation
Tree Distillation [7], Decision set dis-
tillation [73], Generalized Additive
Models [129]

Yes Yes

Representation based Network Dissection [9], TCAV [64] Yes

Table 1
The branches of related works.

2.2. Post-hoc explainers for interpretability
Post-hoc explainers analyze the effect of each feature in the prediction of an already trained and fixed model.

Post-hoc explainers can be divided into two types: local explainers and global explainers. Local explainers can be
further split into five categories: (a) perturbation-based: change the values of some features to see their effect on the
outcome [35, 53, 36, 31, 43, 149, 38, 56, 4]. Some famous perturbation-based post-hoc explainer methods include
Shapley values [117, 125, 126, 57, 124] and SHAP method [82, 81, 120], (b) surrogate-based: train an explainable
model, such as linear regression or decision trees, to approximate the predictions of a black-box model [63, 3, 101,
120], for example, LIME [100]. (c) saliency maps: use gradient information to show what parts of the input are
most relevant for the model’s prediction, including input gradient [6, 119, 118], SmoothGrad [121, 109], integrated
gradients [127], guided backprop [123], class activation mapping [151], meaningful perturbation [33], RISE [92],
extremal perturbations [32], DeepLift [118], expected gradients [30], excitation backprop [147], GradCAM [108],
occlusion [146], prediction difference analysis [44], and internal influence [76]. (d) prototype / example based: find
which training example affects the model prediction the most. Usually, this is conducted by influence functions [25].
(e) counterfactual explanations: detect what features need to be changed to flip the model’s prediction [136, 84, 62].
On the other hand, some of the global explainers are collections of local explanations (e.g., SP-LIME [100], and
summaries of counterfactuals [98]). Also, distillation methods provide explainable rules by distilling the information
from deepmodels to tree models [7] or decision set models [73]. There are also somemethods (Network Dissection [9],
TCAV [64]) derives model understanding by analyzing intermediate representations of a deep black-box model.
2.3. Information bottleneck

The information bottleneck (IB) theory is an important basic theory of neural networks [130]. It originated in
information theory and has been widely used as a theoretical framework in analyzing deep neural networks [131]. For
example, Li and Eisner (2019) used IB to compress word embeddings in order to make them contain only specialized

Lei Sha et al.: Preprint submitted to Elsevier Page 4 of 30
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information, which leads to a much better performance in parsing tasks.
2.4. Adversarial methods

Adversarial methods, which had been widely applied in image generation [19] and text generation [143], usually
have a discriminator and a generator. The discriminator receives pairs of instances from the real distribution and from
the distribution generated by the generator, and it is trained to differentiate between the two. The generator is trained
to fool the discriminator [39]. Our information calibration method generates a dense feature vector using selected
symbolic features, and the discriminator is used for measuring the calibration extent.

Our adversarial calibration method is inspired by distilling methods [50]. Distilling methods are usually applied
to compress large models into small models while keeping a comparable performance. For example, TinyBERT [58]
is a distillation of BERT [28]. Our method is different from distilling methods, because we calibrate the final feature
vector instead of the softmax prediction. Also, to our best knowledge, we are the first to apply information calibration
for rationale extraction.

3. Approach
Our approach is composed of a selector-predictor architecture, in whichwe use the information bottleneck technique

to restrict the number of selected features, and a guider model, for which we again use the information bottleneck
technique to restrict the information in the final feature vector. Then, we use an adversarial method to make the
guider model guide the selector into selecting the least-but-enough features. Finally, we use a language model (LM)
regularizer to obtain semantically fluent rationales.
3.1. InfoCal: Selector-Predictor-Guider with Information Bottleneck

The Selector-Predictor-Guider architecture contains two parallel architectures, one is a selector-predictor model,
which selects the rationale and judges whether it can make a correct prediction; the other is a guider model, which is a
dense “black-box” neural network trying to learn the feature vector required for the task. The information calibration
is used to calibrate the dense feature vector learned by the guider model and the information contained in the rationales
extracted by the selector-predictor model. The high-level architecture of our model, called InfoCal, is shown in Fig. 2.
Below, we detail each of its components.
3.1.1. Selector

For a given instance (x, y), x is the input with n features x = (x1, x2,… , xn), and y is the ground-truth correspondinglabel. The selector network Sel(z̃sym|x) takes x as input and outputs p(z̃sym|x), a sequence of probabilities (pi)i=1,…,nrepresenting the probability of choosing each feature xi as part of the rationale.Given the sampling probabilities, a subset of features is sampled using the Gumbel softmax [55], which provides
a differentiable sampling process:

ui ∼ U (0, 1), gi = − log(− log(ui)) (1)
mi =

exp((log(pi) + gi)∕�)
∑

j exp((log(pj) + gj)∕�)
, (2)

where U (0, 1) represents the uniform distribution between 0 and 1, and � is a temperature hyperparameter. Hence, we
obtain the sampled mask mi for each feature xi, and the vector symbolizing the rationale z̃sym = (m1x1,… , mnxn).Thus, z̃sym is the sequence of discrete selected symbolic features forming the rationale.
3.1.2. Predictor

The predictor takes as input the rationale z̃sym given by the selector, and outputs the prediction ŷsp. In the selector-predictor part of InfoCal, the input to the predictor is the multiplication of each feature xi with the sampled mask mi.The predictor first calculates a dense feature vector z̃nero,1 then uses one feed-forward layer and a softmax layer to
calculate the probability distribution over the possible predictions:

z̃nero = Pred(z̃sym) (3)
1Here, “nero” stands for neural feature (i.e., a neural vector representation) as opposed to a symbolic input feature.

Lei Sha et al.: Preprint submitted to Elsevier Page 5 of 30
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p(ŷsp|z̃sym) = Softmax(Wpz̃nero + bp). (4)
As the input is masked by mi, the prediction ŷsp is exclusively based on the features selected by the selector. The loss
of the selector-predictor model is the cross-entropy loss:

Lsp = − 1
K

∑

k
log p(y(k)sp |x

(k))

= − 1
K

∑

k
logESel(z̃(k)sym|x(k))

p(y(k)sp |z̃
(k)
sym)

≤ − 1
K

∑

k
ESel(z̃(k)sym|x(k))

log p(y(k)sp |z̃
(k)
sym),

(5)

where K represents the size of the training set, the superscript (k) denotes the k-th instance in the training set, and the
inequality follows from Jensen’s inequality.
3.1.3. Guider

To guide the rationale selection of the selector-predictor model, we train a guider model, denoted PredG, whichreceives the full original input x and transforms it into a dense feature vector znero, using the same predictor architecture
as the selector-predictor module, but different weights, as shown in Fig. 2. We generate the dense feature vector in a
variational way, which means that we first generate a Gaussian distribution according to the input x, from which we
sample a vector znero:

ℎ = PredG(x), � = Wmℎ + bm, � = Wsℎ + bs (6)
u ∼  (0, 1), znero = u� + � (7)
p(ŷguide|znero) = Softmax(Wpznero + bp). (8)

We use the reparameterization trick of Gaussian distributions to make the sampling process differentiable [66]. We
share the parametersWp and bp with those in Eq. 4.The guider model’s loss Lguide is as follows:

Lguide = − 1
K

∑

k
log p(y(k)guide|x

(k))

≤ − 1
K

∑

k
Ep(znero|x(k)) log p(y

(k)
guide|z

(k)
nero),

(9)

where the inequality again follows from Jensen’s inequality. The guider and the selector-predictor are trained jointly.
3.1.4. Information Bottleneck

To guide the model to select the least-but-enough information, we employ an information bottleneck technique
[78]. We aim to minimize I(x, z̃sym) − I(z̃sym, y)2, where the former term encourages the selection of few features,
and the latter term encourages the selection of the necessary features. As I(z̃sym, y) is implemented by Lsp (the proofis given in Appendix A.1), we only need to minimize the mutual information I(x, z̃sym):

I(x, z̃sym) = Ex,z̃sym

[

log
p(z̃sym|x)
p(z̃sym)

]

. (10)

However, there is a time-consuming term p(z̃sym) =
∑

x p(z̃sym|x)p(x), which needs to be calculated by a loop
over all the instances x in the training set. Inspired by Li and Eisner (2019), we replace this term with a variational
distribution r�(z) and obtain an upper bound of Eq. 10: I(x, z̃sym) ≤ Ex,z̃sym

[

log
p(z̃sym|x)
r�(z)

]

. Since z̃sym is a sequence of
binary-selected features, we sum up the mutual information term of each element of z̃sym as the information bottleneck
loss:

Lib =
∑

i

∑

z̃i

p(z̃i|x) log
p(z̃i|x)
r�(zi)

, (11)

2I(a, b) = ∫a ∫b p(a, b) log
p(a,b)
p(a)p(b) =Ea,b[

p(a|b)
p(a) ] denotes the mutual information between the variables a and b.
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Selector

Predictor

znero

<latexit sha1_base64="Huh+ZZ68k0i6Tc6X58PnkJN17Gs=">AAAB/3icbZBNS8NAEIY3ftb6FRW8eAkVwVNJpGp6K+jBo4JVoS1ls53o4mYTdidijT34VzzoQRGvHvwHnrz5b9ymUvx6YeHhnRl25g0SwTW67oc1Mjo2PjFZmCpOz8zOzdsLi0c6ThWDOotFrE4CqkFwCXXkKOAkUUCjQMBxcL7Trx9fgNI8lofYTaAV0VPJQ84oGqttLzcRLjEIs6teO8dMgop7bXvVLbu5nL/gfcFqrfD2urh7V9pv2+/NTszSCCQyQbVueG6CrYwq5ExAr9hMNSSUndNTaBiUNALdyvL9e86acTpOGCvzJDq5+30io5HW3SgwnRHFM/271jf/qzVSDP1WxmWSIkg2+ChMhYOx0w/D6XAFDEXXAGWKm10ddkYVZWgiK+YhVKsVf9M3t1f9Ld/bGN4+hKONslcpVw9MGhUyUIGskBJZJx7ZJjWyR/ZJnTByTW7JA3m0bqx768l6HrSOWF8zS+SHrJdPmICaQg==</latexit>

x1

<latexit sha1_base64="9ompWPVGlSa+s2YZ6SrKf4jaOc8=">AAAB6nicbVDLSgMxFL1TX7W+al26CS2CqzJTqs7sCrpwWdE+oA4lk6ZtaOZBkhHL0E9w40IRt+Jf+Aeu3Pk3ptNSfB0IHM65l9xzvIgzqUzz08gsLa+srmXXcxubW9s7+d1CU4axILRBQh6Ktocl5SygDcUUp+1IUOx7nLa80enUb91QIVkYXKlxRF0fDwLWZwQrLV3edq1uvmSWzRToL7HmpFTLvr8Vzl6L9W7+47oXktingSIcS9mxzEi5CRaKEU4nuetY0giTER7QjqYB9ql0k/TUCTrQSg/1Q6FfoFCqft9IsC/l2Pf0pI/VUP72puJ/XidWfdtNWBDFigZk9lE/5kiFaJob9ZigRPGxJpgIpm9FZIgFJkq3k0tLcJyqfWTr7I59bFuVRfYFaVbKVrXsXOg2qjBDFvahCIdgwQnU4Bzq0AACA7iDB3g0uHFvPBnPs9GMMd/Zgx8wXr4AHpyQ1A==</latexit>

x2

<latexit sha1_base64="lR3Wlm5T8bdeOpniUwbUWMaABj4=">AAAB63icbVDLSsNAFJ3UV62vWpduhhbBVUlK1WRX0IXLCvYBbSiT6aQdOpOEmYlYQn/BjQtF3Opf+Aeu3Pk3TppSfB0YOJxzL3PP8SJGpTLNTyO3srq2vpHfLGxt7+zuFfdLbRnGApMWDlkouh6ShNGAtBRVjHQjQRD3GOl4k/PU79wQIWkYXKtpRFyORgH1KUYqlW4HtcKgWDGr5hzwL7EWpNLIv7+VLl7LzUHxoz8MccxJoDBDUvYsM1JugoSimJFZoR9LEiE8QSPS0zRAnEg3md86g0daGUI/FPoFCs7V7xsJ4lJOuacnOVJj+dtLxf+8Xqx8201oEMWKBDj7yI8ZVCFMg8MhFQQrNtUEYUH1rRCPkUBY6XqyEhynbp/YOrtjn9pWbZl9Sdq1qlWvOle6jTrIkAeHoAyOgQXOQANcgiZoAQzG4A48gEeDG/fGk/GcjeaMxc4B+AHj5QtVOZDp</latexit>

xn

<latexit sha1_base64="LN2HJ1p4acz8HScG5s4WfZVO0nQ=">AAAB63icbVDLSsNAFJ3UV62vWpduQovgqiSlarIr6MJlBfuANpTJdNIOnZmEmYlYQn/BjQtF3Opf+Aeu3Pk3TppSfB0YOJxzL3PP8SNKpLKsTyO3srq2vpHfLGxt7+zuFfdLbRnGAuEWCmkouj6UmBKOW4ooiruRwJD5FHf8yXnqd26wkCTk12oaYY/BEScBQVCl0u2AFwbFilW15jD/EntBKo38+1vp4rXcHBQ/+sMQxQxzhSiUsmdbkfISKBRBFM8K/VjiCKIJHOGephwyLL1kfuvMPNLK0AxCoR9X5lz9vpFAJuWU+XqSQTWWv71U/M/rxSpwvITwKFaYo+yjIKamCs00uDkkAiNFp5pAJIi+1URjKCBSup6sBNetOyeOzu46p45dW2Zfknatater7pVuow4y5MEhKINjYIMz0ACXoAlaAIExuAMP4NFgxr3xZDxnozljsXMAfsB4+QKwZZEl</latexit>

x3

<latexit sha1_base64="UuOtN3+hQkQEFR4kVWfZbeliAdU=">AAAB63icbVDLSsNAFJ3UV62vWpduhhbBVUlq1WRX0IXLCvYBbSiT6aQdOpmEmYlYQn/BjQtF3Opf+Aeu3Pk3Thopvg4MHM65l7nneBGjUpnmh5FbWl5ZXcuvFzY2t7Z3irultgxjgUkLhywUXQ9JwignLUUVI91IEBR4jHS8yVnqd66JkDTkV2oaETdAI059ipFKpZvBUWFQrJhVcw74l1hfpNLIv72Wzl/KzUHxvT8McRwQrjBDUvYsM1JugoSimJFZoR9LEiE8QSPS05SjgEg3md86gwdaGUI/FPpxBefq940EBVJOA09PBkiN5W8vFf/zerHybTehPIoV4Tj7yI8ZVCFMg8MhFQQrNtUEYUH1rRCPkUBY6XqyEhynbh/bOrtjn9hWbZF9Qdq1qlWvOpe6jTrIkAf7oAwOgQVOQQNcgCZoAQzG4BbcgwcjMO6MR+MpG80ZXzt74AeM509WvpDq</latexit>

...

<latexit sha1_base64="xQDuihAxwvrcApG7vxrvsNy5e+g=">AAAB7XicbVDLSsNAFJ3UV62vqks3g0VwVZJSNVlZcOOygn1AG8pkMmnHTjJhZiKU0H9w46JF3PoN/oY7/8ZJWoqvAxcO59zLved6MaNSmeanUVhb39jcKm6Xdnb39g/Kh0dtyROBSQtzxkXXQ5IwGpGWooqRbiwICj1GOt74JvM7j0RIyqN7NYmJG6JhRAOKkdJSu898ruSgXDGrZg74l1hLUrl+n2WYNwflj77PcRKSSGGGpOxZZqzcFAlFMSPTUj+RJEZ4jIakp2mEQiLdNL92Cs+04sOAC12Rgrn6fSJFoZST0NOdIVIj+dvLxP+8XqIC201pFCeKRHixKEgYVBxm0aFPBcGKTTRBWFB9K8QjJBBW+kGl/AmOU7cvbJ3dsS9tq7bKviLtWtWqV507s9KogwWK4AScgnNggSvQALegCVoAgwfwBGZgbnDj2XgxXhetBWM5cwx+wHj7Av4LlAw=</latexit>

�D�

�E�

x1

<latexit sha1_base64="9ompWPVGlSa+s2YZ6SrKf4jaOc8=">AAAB6nicbVDLSgMxFL1TX7W+al26CS2CqzJTqs7sCrpwWdE+oA4lk6ZtaOZBkhHL0E9w40IRt+Jf+Aeu3Pk3ptNSfB0IHM65l9xzvIgzqUzz08gsLa+srmXXcxubW9s7+d1CU4axILRBQh6Ktocl5SygDcUUp+1IUOx7nLa80enUb91QIVkYXKlxRF0fDwLWZwQrLV3edq1uvmSWzRToL7HmpFTLvr8Vzl6L9W7+47oXktingSIcS9mxzEi5CRaKEU4nuetY0giTER7QjqYB9ql0k/TUCTrQSg/1Q6FfoFCqft9IsC/l2Pf0pI/VUP72puJ/XidWfdtNWBDFigZk9lE/5kiFaJob9ZigRPGxJpgIpm9FZIgFJkq3k0tLcJyqfWTr7I59bFuVRfYFaVbKVrXsXOg2qjBDFvahCIdgwQnU4Bzq0AACA7iDB3g0uHFvPBnPs9GMMd/Zgx8wXr4AHpyQ1A==</latexit>

x2

<latexit sha1_base64="lR3Wlm5T8bdeOpniUwbUWMaABj4=">AAAB63icbVDLSsNAFJ3UV62vWpduhhbBVUlK1WRX0IXLCvYBbSiT6aQdOpOEmYlYQn/BjQtF3Opf+Aeu3Pk3TppSfB0YOJxzL3PP8SJGpTLNTyO3srq2vpHfLGxt7+zuFfdLbRnGApMWDlkouh6ShNGAtBRVjHQjQRD3GOl4k/PU79wQIWkYXKtpRFyORgH1KUYqlW4HtcKgWDGr5hzwL7EWpNLIv7+VLl7LzUHxoz8MccxJoDBDUvYsM1JugoSimJFZoR9LEiE8QSPS0zRAnEg3md86g0daGUI/FPoFCs7V7xsJ4lJOuacnOVJj+dtLxf+8Xqx8201oEMWKBDj7yI8ZVCFMg8MhFQQrNtUEYUH1rRCPkUBY6XqyEhynbp/YOrtjn9pWbZl9Sdq1qlWvOle6jTrIkAeHoAyOgQXOQANcgiZoAQzG4A48gEeDG/fGk/GcjeaMxc4B+AHj5QtVOZDp</latexit>

xn

<latexit sha1_base64="LN2HJ1p4acz8HScG5s4WfZVO0nQ=">AAAB63icbVDLSsNAFJ3UV62vWpduQovgqiSlarIr6MJlBfuANpTJdNIOnZmEmYlYQn/BjQtF3Opf+Aeu3Pk3TppSfB0YOJxzL3PP8SNKpLKsTyO3srq2vpHfLGxt7+zuFfdLbRnGAuEWCmkouj6UmBKOW4ooiruRwJD5FHf8yXnqd26wkCTk12oaYY/BEScBQVCl0u2AFwbFilW15jD/EntBKo38+1vp4rXcHBQ/+sMQxQxzhSiUsmdbkfISKBRBFM8K/VjiCKIJHOGephwyLL1kfuvMPNLK0AxCoR9X5lz9vpFAJuWU+XqSQTWWv71U/M/rxSpwvITwKFaYo+yjIKamCs00uDkkAiNFp5pAJIi+1URjKCBSup6sBNetOyeOzu46p45dW2Zfknatater7pVuow4y5MEhKINjYIMz0ACXoAlaAIExuAMP4NFgxr3xZDxnozljsXMAfsB4+QKwZZEl</latexit>

x3

<latexit sha1_base64="UuOtN3+hQkQEFR4kVWfZbeliAdU=">AAAB63icbVDLSsNAFJ3UV62vWpduhhbBVUlq1WRX0IXLCvYBbSiT6aQdOpmEmYlYQn/BjQtF3Opf+Aeu3Pk3Thopvg4MHM65l7nneBGjUpnmh5FbWl5ZXcuvFzY2t7Z3irultgxjgUkLhywUXQ9JwignLUUVI91IEBR4jHS8yVnqd66JkDTkV2oaETdAI059ipFKpZvBUWFQrJhVcw74l1hfpNLIv72Wzl/KzUHxvT8McRwQrjBDUvYsM1JugoSimJFZoR9LEiE8QSPS05SjgEg3md86gwdaGUI/FPpxBefq940EBVJOA09PBkiN5W8vFf/zerHybTehPIoV4Tj7yI8ZVCFMg8MhFQQrNtUEYUH1rRCPkUBY6XqyEhynbh/bOrtjn9hWbZF9Qdq1qlWvOpe6jTrIkAf7oAwOgQVOQQNcgCZoAQzG4BbcgwcjMO6MR+MpG80ZXzt74AeM509WvpDq</latexit>

...

<latexit sha1_base64="xQDuihAxwvrcApG7vxrvsNy5e+g=">AAAB7XicbVDLSsNAFJ3UV62vqks3g0VwVZJSNVlZcOOygn1AG8pkMmnHTjJhZiKU0H9w46JF3PoN/oY7/8ZJWoqvAxcO59zLved6MaNSmeanUVhb39jcKm6Xdnb39g/Kh0dtyROBSQtzxkXXQ5IwGpGWooqRbiwICj1GOt74JvM7j0RIyqN7NYmJG6JhRAOKkdJSu898ruSgXDGrZg74l1hLUrl+n2WYNwflj77PcRKSSGGGpOxZZqzcFAlFMSPTUj+RJEZ4jIakp2mEQiLdNL92Cs+04sOAC12Rgrn6fSJFoZST0NOdIVIj+dvLxP+8XqIC201pFCeKRHixKEgYVBxm0aFPBcGKTTRBWFB9K8QjJBBW+kGl/AmOU7cvbJ3dsS9tq7bKviLtWtWqV507s9KogwWK4AScgnNggSvQALegCVoAgwfwBGZgbnDj2XgxXhetBWM5cwx+wHj7Av4LlAw=</latexit>

z̃sym

<latexit sha1_base64="Q912KnOEmf8uLYGgTwQ7rj/DUdM="></latexit>

FFL
+

Softmax

z̃nero

<latexit sha1_base64="W9BSB/g0kGWcto7PcER6bTHbdSs="></latexit>

ŷsp

<latexit sha1_base64="qsXl6BgECFXusyJyggvspvwlQSY=">AAAB+XicbVDJSgNBEO2JW4zbqAcPXhqD4CnMSNSZW8CL3iKYBZIh9nQ6SZOehe6aYBjyJ148KOLVg//hzR/w6DfYWQhuDwoe71VRVc+PBVdgWe9GZmFxaXklu5pbW9/Y3DK3d6oqSiRlFRqJSNZ9opjgIasAB8HqsWQk8AWr+f3zsV8bMKl4FF7DMGZeQLoh73BKQEst02z2COBhqwnsFlIVj1pm3ipYE+C/xJ6RfGnv8uPzNXNTbplvzXZEk4CFQAVRqmFbMXgpkcCpYKNcM1EsJrRPuqyhaUgCprx0cvkIH2qljTuR1BUCnqjfJ1ISKDUMfN0ZEOip395Y/M9rJNBxvJSHcQIspNNFnURgiPA4BtzmklEQQ00IlVzfimmPSEJBh5WbhOC6RefE0b+7zqljH89/n5PqccEuFtwrnUYRTZFF++gAHSEbnaESukBlVEEUDdAdekCPRmrcG0/G87Q1Y8xmdtEPGC9f1bSXqg==</latexit>

ŷguide

<latexit sha1_base64="DrGy1z7gh3E1uhqqsK5CyDGWlbQ=">AAAB/HicbVDJSgNBEO2Je9yiOXjw0iiCpzAjUSc3wYveIpgFkhB7OpWksWehu0YchvgrXjwo4lX/w5s/4NFvsJNIcHtQ8Hiviqp6XiSFRtt+szJT0zOzc/ML2cWl5ZXV3Np6VYex4lDhoQxV3WMapAigggIl1CMFzPck1LzL46FfuwKlRRicYxJBy2e9QHQFZ2ikdi7f7DOkSbuJcI1pLxYdGLRz23bBHoH+Jc4X2T7aOH3/eMlclNu512Yn5LEPAXLJtG44doStlCkUXMIg24w1RIxfsh40DA2YD7qVjo4f0B2jdGg3VKYCpCP1+0TKfK0T3zOdPsO+/u0Nxf+8Roxdt5WKIIoRAj5e1I0lxZAOk6AdoYCjTAxhXAlzK+V9phhHk1d2FEKpVHT3XfN7yT1wnb3J7xNS3Ss4xULpzKRRJGPMk02yRXaJQw7JETkhZVIhnCTkltyTB+vGurMeradxa8b6msmTH7CePwEe5pjz</latexit>

...

<latexit sha1_base64="S3X1U+/HnM7OFIr0mAZnAuysV3o=">AAAB7XicbVDLSsNAFJ3UV62vqks3g1VwVZJSNVlZcOOygn1AG8pkMm3HTjJhZlIoof/gxkWLuBV/x51/4yQtxdeBC4dz7uXec72IUalM89PIra1vbG7ltws7u3v7B8XDo6bkscCkgTnjou0hSRgNSUNRxUg7EgQFHiMtb3Sb+q0xEZLy8EFNIuIGaBDSPsVIaanZHftcyV6xZJbNDPAvsZakdPM+SzGv94ofXZ/jOCChwgxJ2bHMSLkJEopiRqaFbixJhPAIDUhH0xAFRLpJdu0UnmvFh30udIUKZur3iQQFUk4CT3cGSA3lby8V//M6serbbkLDKFYkxItF/ZhBxWEaHfpUEKzYRBOEBdW3QjxEAmGlH1TInuA4VfvS1tkd+8q2KqvsK9KslK1q2bk3S7UzsEAenIBTcAEscA1q4A7UQQNg8AiewAzMDW48Gy/G66I1ZyxnjsEPGG9f8tuT9g==</latexit>

...

<latexit sha1_base64="S3X1U+/HnM7OFIr0mAZnAuysV3o=">AAAB7XicbVDLSsNAFJ3UV62vqks3g1VwVZJSNVlZcOOygn1AG8pkMm3HTjJhZlIoof/gxkWLuBV/x51/4yQtxdeBC4dz7uXec72IUalM89PIra1vbG7ltws7u3v7B8XDo6bkscCkgTnjou0hSRgNSUNRxUg7EgQFHiMtb3Sb+q0xEZLy8EFNIuIGaBDSPsVIaanZHftcyV6xZJbNDPAvsZakdPM+SzGv94ofXZ/jOCChwgxJ2bHMSLkJEopiRqaFbixJhPAIDUhH0xAFRLpJdu0UnmvFh30udIUKZur3iQQFUk4CT3cGSA3lby8V//M6serbbkLDKFYkxItF/ZhBxWEaHfpUEKzYRBOEBdW3QjxEAmGlH1TInuA4VfvS1tkd+8q2KqvsK9KslK1q2bk3S7UzsEAenIBTcAEscA1q4A7UQQNg8AiewAzMDW48Gy/G66I1ZyxnjsEPGG9f8tuT9g==</latexit>

x

<latexit sha1_base64="4UjMiIXiC9XuWlcvHHqukfcMbrM=">AAAB8XicbVDLSsNAFJ3UV62vqks3wSK4Kkmpmq4suHFZwT6wDWUynbRDJ5MwcyMtoX/hpoIibv0Cf8Odf+OkLcXXgQuHc+7l3nO9iDMFlvVpZFZW19Y3spu5re2d3b38/kFDhbEktE5CHsqWhxXlTNA6MOC0FUmKA4/Tpje8Sv3mPZWKheIWxhF1A9wXzGcEg5buOkBH4PnJaNLNF6yiNYP5l9gLUrh8n6Z4rHXzH51eSOKACiAcK9W2rQjcBEtghNNJrhMrGmEyxH3a1lTggCo3mV08MU+00jP9UOoSYM7U7xMJDpQaB57uDDAM1G8vFf/z2jH4jpswEcVABZkv8mNuQmim8c0ek5QAH2uCiWT6VpMMsMQE9JNysydUKmXnzNHZK865Y5eW2ZekUSra5WLlxipUy2iOLDpCx+gU2egCVdE1qqE6IkigB/SEng1lTI0X43XemjEWM4foB4y3L2jIlgs=</latexit>

x

<latexit sha1_base64="4UjMiIXiC9XuWlcvHHqukfcMbrM=">AAAB8XicbVDLSsNAFJ3UV62vqks3wSK4Kkmpmq4suHFZwT6wDWUynbRDJ5MwcyMtoX/hpoIibv0Cf8Odf+OkLcXXgQuHc+7l3nO9iDMFlvVpZFZW19Y3spu5re2d3b38/kFDhbEktE5CHsqWhxXlTNA6MOC0FUmKA4/Tpje8Sv3mPZWKheIWxhF1A9wXzGcEg5buOkBH4PnJaNLNF6yiNYP5l9gLUrh8n6Z4rHXzH51eSOKACiAcK9W2rQjcBEtghNNJrhMrGmEyxH3a1lTggCo3mV08MU+00jP9UOoSYM7U7xMJDpQaB57uDDAM1G8vFf/z2jH4jpswEcVABZkv8mNuQmim8c0ek5QAH2uCiWT6VpMMsMQE9JNysydUKmXnzNHZK865Y5eW2ZekUSra5WLlxipUy2iOLDpCx+gU2egCVdE1qqE6IkigB/SEng1lTI0X43XemjEWM4foB4y3L2jIlgs=</latexit>

Lsp

<latexit sha1_base64="dpBfst408jvV4fZlyjakXvWWN60=">AAAB8nicbVDLSsNAFJ3UV62vqgsXboJFcFUSqZrsCm4UXFSwD0hDnUwn7dDJg5kbsYR+hhsXirh173+48wdc+g1O01J8HRg4nHMvc8/xYs4kGMa7lpubX1hcyi8XVlbX1jeKm1sNGSWC0DqJeCRaHpaUs5DWgQGnrVhQHHicNr3B6dhv3lAhWRRewTCmboB7IfMZwaAk56LTBnoLqYxHnWLJKBsZ9L/EnJJSdef84/M1d13rFN/a3YgkAQ2BcCylYxoxuCkWwAino0I7kTTGZIB71FE0xAGVbpqdPNL3ldLV/UioF4Keqd83UhxIOQw8NRlg6Mvf3lj8z3MS8C03ZWGcAA3J5CM/4TpE+ji/3mWCEuBDRTARTN2qkz4WmIBqqZCVYNsV68hS2W3r2DIPZ9lnpHFYNitl+1K1UUET5NEu2kMHyEQnqIrOUA3VEUERukMP6FED7V570p4nozlturONfkB7+QKrjZVh</latexit>

Lguide

<latexit sha1_base64="EtyqxrUewPhWWfyTZsnTFkS3yYo=">AAAB9XicbVDJSgNBEO2JW4xb1IMHL4NB8BRmJOrkFvCi4CGCWSCJsadTSZr0LHTXqGHIf3jxoIhXj/6HN3/Ao99gZyG4PSh4vFdFVT03FFyhZb0biZnZufmF5GJqaXlldS29vlFWQSQZlFggAll1qQLBfSghRwHVUAL1XAEVt3c89CvXIBUP/Avsh9DwaMfnbc4oaunyrFlHuMW4E/EWDJrpjJW1RjD/EntCMoWt04/P18RVsZl+q7cCFnngIxNUqZpthdiIqUTOBAxS9UhBSFmPdqCmqU89UI14dPXA3NVKy2wHUpeP5kj9PhFTT6m+5+pOj2JX/faG4n9eLcK204i5H0YIPhsvakfCxMAcRmC2uASGoq8JZZLrW03WpZIy1EGlRiHk8znnwNG/551Dx96f/j4l5f2sncvmz3UaOTJGkmyTHbJHbHJECuSEFEmJMCLJHXkgj8aNcW88Gc/j1oQxmdkkP2C8fAHug5aq</latexit>

Lib

<latexit sha1_base64="sisSPqcaHQb/oDzS+Ax1vtYfj4w=">AAAB8nicbVDLSsNAFJ34rPVV69JNaBFclaRUTXYFXbhwUcE+IA1lMp20QycPZm7EEvoZblwoIrjyF/wDV+78G6dpKb4ODBzOuZe553gxZxIM41NbWl5ZXVvPbeQ3t7Z3dgt7xZaMEkFok0Q8Eh0PS8pZSJvAgNNOLCgOPE7b3uhs6rdvqJAsCq9hHFM3wIOQ+YxgUJJz2esCvYWUeZNeoWxUjAz6X2LOSbmee38rnr+UGr3CR7cfkSSgIRCOpXRMIwY3xQIY4XSS7yaSxpiM8IA6ioY4oNJNs5Mn+qFS+rofCfVC0DP1+0aKAynHgacmAwxD+dubiv95TgK+5aYsjBOgIZl95Cdch0if5tf7TFACfKwIJoKpW3UyxAITUC3lsxJsu2YdWyq7bZ1YZnWRfUFa1YpZq9hXqo0amiGHDlAJHSETnaI6ukAN1EQERegOPaBHDbR77Ul7no0uafOdffQD2usXs0GUqw==</latexit>

Lmi

<latexit sha1_base64="b4wMWZiIyHmclownugznzZPI8sQ=">AAAB8nicbVDLSsNAFJ34rPVV69JNaBFclaRUTXYFXbhwUcE+IA1lMp20QycPZm7EEvoZblwoIrjyF/wDV+78G6dpKb4ODBzOuZe553gxZxIM41NbWl5ZXVvPbeQ3t7Z3dgt7xZaMEkFok0Q8Eh0PS8pZSJvAgNNOLCgOPE7b3uhs6rdvqJAsCq9hHFM3wIOQ+YxgUJJz2esCvYU0YJNeoWxUjAz6X2LOSbmee38rnr+UGr3CR7cfkSSgIRCOpXRMIwY3xQIY4XSS7yaSxpiM8IA6ioY4oNJNs5Mn+qFS+rofCfVC0DP1+0aKAynHgacmAwxD+dubiv95TgK+5aYsjBOgIZl95Cdch0if5tf7TFACfKwIJoKpW3UyxAITUC3lsxJsu2YdWyq7bZ1YZnWRfUFa1YpZq9hXqo0amiGHDlAJHSETnaI6ukAN1EQERegOPaBHDbR77Ul7no0uafOdffQD2usXw/yUtg==</latexit>

Lg

<latexit sha1_base64="lu7z8pgPIuuD9K4Zu2HaWhp34Ww=">AAAB6nicbVDLSsNAFJ3UV62vqgsXbgaL4KokUjXZFdwouKhoH9CGOplO0qGTSZiZCCX0E9y4UMSt/+B/uPMHXPoNTtNSfB0YOJxzL3PP8WJGpTLNdyM3N7+wuJRfLqysrq1vFDe3GjJKBCZ1HLFItDwkCaOc1BVVjLRiQVDoMdL0Bqdjv3lLhKQRv1bDmLghCjj1KUZKS1cX3aBbLJllMwP8S6wpKVV3zj8+X3M3tW7xrdOLcBISrjBDUrYtM1ZuioSimJFRoZNIEiM8QAFpa8pRSKSbZqeO4L5WetCPhH5cwUz9vpGiUMph6OnJEKm+/O2Nxf+8dqJ8200pjxNFOJ585CcMqgiOc8MeFQQrNtQEYUH1rRD3kUBY6XYKWQmOU7GPbJ3dsY9t63CWfUYah2WrUnYudRsVMEEe7II9cAAscAKq4AzUQB1gEIA78AAeDWbcG0/G82Q0Z0x3tsEPGC9fATaRfA==</latexit>

Ld

<latexit sha1_base64="jjdGGDn2p9xuAHie4B4hMxj2g24=">AAAB6nicbVDLSsNAFJ34rPVV69LN0CK4KkmpmuwKunDhoqJ9QBvKZDJph04mYWYilNBPcONCEbfiX/gHrtz5N07TUnwdGDiccy9zz/FiRqUyzU9jaXlldW09t5Hf3Nre2S3sFVsySgQmTRyxSHQ8JAmjnDQVVYx0YkFQ6DHS9kZnU799S4SkEb9R45i4IRpwGlCMlJauL/t+v1A2K2YG+JdYc1Ku597fiuevpUa/8NHzI5yEhCvMkJRdy4yVmyKhKGZkku8lksQIj9CAdDXlKCTSTbNTJ/BQKz4MIqEfVzBTv2+kKJRyHHp6MkRqKH97U/E/r5uowHZTyuNEEY5nHwUJgyqC09zQp4JgxcaaICyovhXiIRIIK91OPivBcWr2sa2zO/aJbVUX2RekVa1YtYpzpduogRly4ACUwBGwwCmogwvQAE2AwQDcgQfwaDDj3ngynmejS8Z8Zx/8gPHyBSjgkNs=</latexit>

Llm

<latexit sha1_base64="bXXvKGkJn1qBemFRdUUyDTE/COY=">AAAB8nicbVDLSsNAFJ34rPVV69JNaBFclaRUTXYFXbhwUcE+IA1lMp20QycPZm7EEvoZblwoIrjyF/wDV+78G6dpKb4ODBzOuZe553gxZxIM41NbWl5ZXVvPbeQ3t7Z3dgt7xZaMEkFok0Q8Eh0PS8pZSJvAgNNOLCgOPE7b3uhs6rdvqJAsCq9hHFM3wIOQ+YxgUJJz2esCvYWUB5NeoWxUjAz6X2LOSbmee38rnr+UGr3CR7cfkSSgIRCOpXRMIwY3xQIY4XSS7yaSxpiM8IA6ioY4oNJNs5Mn+qFS+rofCfVC0DP1+0aKAynHgacmAwxD+dubiv95TgK+5aYsjBOgIZl95Cdch0if5tf7TFACfKwIJoKpW3UyxAITUC3lsxJsu2YdWyq7bZ1YZnWRfUFa1YpZq9hXqo0amiGHDlAJHSETnaI6ukAN1EQERegOPaBHDbR77Ul7no0uafOdffQD2usXyIqUuQ==</latexit>

Discriminator

Figure 2: Architecture of InfoCal: the grey round boxes stand for the losses, and the red arrows indicate the data required
for the calculation of the losses. FFL is an abbreviation for feed-forward layer.

where z̃i represents whether to select the i-th feature: 1 for selected, 0 for not selected.
To encourage znero to contain the least-but-enough information in the guider model, we again use the information

bottleneck technique. Here, we minimize I(x, znero) − I(znero, y). Again, I(znero, y) can be implemented by Lguide.Due to the fact that znero is sampled from a Gaussian distribution, the mutual information has a closed-form upper
bound:

Lmi = I(x, znero) ≤ Eznero

[

log
p(znero|x)
p(znero)

]

= 0.5(�2 + �2 − 1 − 2 log �). (12)

The derivation is in Appendix A.2.
3.2. Calibrating Key Features via Adversarial Training

Our goal is to inform the selector what kind of information is still missing or has been wrongly selected. Since we
already use the information bottleneck principal to encourage znero to encode the information from the least-but-enough
features, if we also require z̃nero and znero to encode the same information, then we would encourage the selector to
select the least-but-enough discrete features. To achieve this, we use an adversarial-based training method. Thus, we
employ an additional discriminator neural module, calledD, which takes as input either z̃nero or znero and outputs label“0” or label “1”, respectively. The discriminator can be any differentiable neural network. The generator in our model
is formed by the selector-predictor that outputs z̃nero. The losses associated with the generator and discriminator are:

Ld = − logD(znero) + logD(z̃nero) (13)
Lg = − logD(z̃nero). (14)

Yoon et al. [142] also attempted to use guidance from a so-called “base" model to a selector-predictor model.
Nevertheless, their “base” model can only provide valid information calibration in actor-critic reinforcement learning,
which is difficult to provide in POMDP problems [59]. In comparison, the discriminator in our method is more flexible
in providing valid information calibration.
3.3. Regularizing Rationales with Language Models

For NLP tasks, it is often desirable that a rationale is formed of fluent subphrases [75]. To this end, previous works
propose regularizers that bind the adjacent tokens to make them be simultaneously sampled or not. For example,
Lei et al. (2016) proposed a non-differentiable regularizer trained using REINFORCE [137]. To make the method
differentiable, Bastings et al. (2019) used the Kumaraswamy-distribution for the regularizer. However, they treat all
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pairs of adjacent tokens in the same way, even though some adjacent tokens have more priority to be bound than others,
such as “He stole” or “the victim” rather than “. He” or “) in” in Fig. 1.

We propose a novel differentiable regularizer for extractive rationales that is based on a pre-trained language model,
thus encouraging both the consecutiveness and the fluency of the tokens in the extracted rationale. The LM-based
regularizer is implemented as follows:

Llm = −
∑

i
mi−1 log plm(mixi|x<i), (15)

where the mi’s are the masks obtained in Eq. 2. Note that non-selected tokens are masked instead of deleted in this
regularizer. The language model can have any architecture.

First, we note that Llm is differentiable. Second, the following theorem guarantees that Llm encourages consecu-
tiveness of selected tokens.
Theorem 1. If the following is satisfied for all i, j:

• m′
i < � ≪ 1 − � < mi, 0 < � < 1, and

• |

|

|

p(m′
ixi|x<i) − p(m

′
jxj|x<j)

|

|

|

< �,

then the following two inequalities hold:
(1) Llm(… , mk,… , m′

n) < Llm(… , m′
k,… , mn).

(2) Llm(m1,… , m′
k,…) > Llm(m′

1,… , mk,…).

The theorem says that for the same number of selected tokens, if they are consecutive, then they will get a lower
Llm value. Its proof is given in Appendix A.3.
3.3.1. Language Model in Continuous Form

Conventional language models are in discrete-form, which usually generate a multinomial distribution for each
token, and minimize the Negative Log-likelihood (NLL) loss. The probability of the expected token is computed as
follows:

p(xi|x<i) =
exp (ℎ⊤i ei)

∑

j∈ exp (ℎ⊤i ej)
, (16)

where ℎi is the hidden vector corresponding to xi, ei is a trainable parameter which represents the output vector of
xi, and  is the vocabulary. In language model literature [71, 10], xi is a symbolic token, and each token in  has
a corresponding trainable output vector. Eqn. 16 is a Softmax operation which normalizes throughout the whole
vocabulary.

Note that in Eq. 15, the target sequence of the language model P (mixi|x<i) is formed of vectors instead of symbolic
tokens. Since mixi is not symbolic token, it do not have a corresponding trainable output vector so that we cannot use
a Softmax-like operation to normalize throughout the whole vocabulary. To tackle this, we require a continuous-form
language model. Therefore, we make some small changes in the pre-training of the language model. When we are
modeling the language model in vector form, we only use a bilinear layer to directly calculate the probability in Eq. 16:

p(xi|x<i) = �(ℎ⊤i Mei), (17)
where � stands for sigmoid, andM is a trainable parameter matrix. The sigmoid operation ensures the result lies in
[0, 1], which is a probability value. Then the probability value of P (mixi|x<i) is computed by:

p(mixi|x<i) = �(ℎ⊤i M(miei)). (18)
However, without normalization operations like Softmax, what Eqn. 17 computes is a quasi-probability value

which relates to only one token. To solve this issue, we use negative sampling [89] in the training procedure. Therefore,
the language model is pretrained using the following loss:

Lpre = −
∑

i

[

log �(ℎ⊤i Mei) − Ej∼p(xj ) log �(ℎ
⊤
i Mej)

]

, (19)

where p(xj) is the occurring probability (in the training dataset) of token xj .
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3.4. Training and Inference
The total loss function of our model, which takes the generator’s role in adversarial training, is shown in Eq. 21.

The adversarial-related losses are denoted by Ladv. The discriminator is trained by Ld from Eq. 13.
Ladv = �gLg + Lguide + �miLmi (20)
Jtotal = Lsp + �ibLib + Ladv + �lmLlm, (21)

where �ib, �g , �mi, and �lm are hyperparameters.
At training time, we optimize the generator loss Jtotal and discriminator loss Ld alternately until convergence. At

inference time, we run the selector-predictor model to obtain the prediction and the rationale z̃sym.The whole training process is illustrated in Algorithm 1.

Algorithm 1: Training process of InfoCal.
Random initialization;
Pre-train language model by Eq. 19;
for each iteration i = 1, 2,… do

for each batch do
Calculate the loss Jtotal for the sampler-predictor model and the guider model by Eq. 21;
Calculate the loss LD for the discriminator by Eq. 13;
Update the parameters of selector-predictor model and the guider model;
Update the parameters of the discriminator;

end
end

4. Experiments
Weperformed experiments on three NLP applications: multi-aspect sentiment analysis, legal judgement prediction,

and hate speech detection. For multi-aspect sentiment analysis and hate speech detection, we have rationale annotations
in the dataset. So, we can directly use automatic evaluation metrics to evaluate the quality of extracted rationales.
For legal judgement prediction, there is no rationale annotation, so we conduct human evaluation for the extracted
rationales.
4.1. Evaluation Metrics for Rationales.

With the annotations of rationales in the multi-aspect sentiment analysis and hate speech detection datasets, we
would like to evaluate the explainability of our model. For better comparison, we use the same evaluation metrics with
previous works [29, 87], which contains 5 metrics as listed below.

• IOU F1: This metric is defined upon a token-level partial match score Intersection-Over-Union (IOU). For two
spans a and b, IOU is the quotient of the number of their overlapped tokens and the number of their union
tokens: IOU = |a∩b|

|a∪b| . If the IOU value between a rationale prediction and a ground truth rationale is above 0.5,
we consider this prediction as correct. Then, the F1 score is calculated accordingly as the IOU F1.

• Token P , Token R, Token F1: For two spans, prediction rationale span a and ground-truth rationale span b,
token-level precision is the quotient of the number of their overlapped tokens and the number of tokens in the
prediction rationale span: Ptoken = |a∩b|

|a| . The token-level recall is the quotient of the number of their overlapped
tokens and the number of tokens in the ground-truth rationale span: RToken =

|a∩b|
|b| . Then, token F1 is calculated

as 2PtokenRToken
Ptoken+RToken

.
• AUPRC: This metric is the area under the precision (Ptoken)-recall (RToken) curve. The calculate method is

sweeping the threshold over the token-level scores.
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• Comprehensiveness (Comp.): This metric means to judge whether the selected rationale is complete. To calcu-
late this, we create a contrast example for each example by removing the rationale zsym from the original input
x, denoted by x∕zsym. After removing the rationales, the model should become less confident to the original
predicted class y. We then measure comprehensiveness as follows: Comp. = p(y|x) − p(y|x∕zsym). A high
comprehensiveness score suggest that the extracted rationale is indeed complete for the prediction.

• Sufficiency (Suff.): This metric means to judge whether the selected rationale is useful. Similar to the compre-
hensiveness score, we calculate the sufficiency score as: Suff. = p(y|x) − p(y|zsym). If the extracted rationale isindeed useful, then the sufficiency score should be very small.

Among them, Token P , Token R, Token F1, IOU F1, and AUPRC requires the gold rationale annotations, so we
just calculate these metrics in the beer review task and the hate speech explaination task. Comp. and Suff. only fit for
classification problems, so we just apply these metrics to legal judgment prediction task and hate speech explaination
task.
4.2. Beer Reviews
4.2.1. Data.

To provide a quantitative analysis for the extracted rationales, we use the BeerAdvocate3 dataset [88]. This dataset
contains instances of human-written multi-aspect reviews on beers. Similarly to Lei et al. [75], we consider the fol-
lowing three aspects: appearance, smell, and palate. McAuley et al. (2012) provide manually annotated rationales for
994 reviews for all aspects, which we use as test set.

The training set of BeerAdvocate contains 220,000 beer reviews, with human ratings for each aspect. Each rating
is on a scale of 0 to 5 stars, and it can be fractional (e.g., 4.5 stars), Lei et al. (2016) have normalized the scores to [0, 1],
and picked “less correlated” examples to make a de-correlated subset.4 For each aspect, there are 80k–90k reviews for
training and 10k reviews for validation.
4.2.2. Model details.

Because our task is a regression, we make some modifications to our model. First, we replace the softmax in Eq. 4
by the sigmoid function, and replace the cross-entropy loss in Eq. 5 by a mean-squared error (MSE) loss. Second, for a
fair comparison, similar to Lei et al. (2016) and Bastings et al. (2019), we set all the architectures of selector, predictor,
and guider as bidirectional Recurrent Convolution Neural Network (RCNN) Lei et al. (2016), which performs similarly
to an LSTM [51] but with 50% fewer parameters.

We search the hyperparameters in the following scopes: �ib ∈ (0.000, 0.001]with step 0.0001, �g ∈ [0.2, 2.0]with
step 0.2, �mi ∈ [0.0, 1.0] with step 0.1, and �lm ∈ [0.000, 0.010] with step 0.001.

The best hyperparameters were found as follows: �ib = 0.0003, �g = 1, �mi = 0.1, and �lm = 0.005.
We set r�(zi) to r�(zi = 0) = 0.999 and r�(zi = 1) = 0.001.

4.2.3. Evaluation Metrics and Baselines.
For the evaluation of the selected tokens as rationales, we use precision, recall, and F1-score. Typically, precision is

defined as the percentage of selected tokens that also belong to the human-annotated rationale. Recall is the percentage
of human-annotated rationale tokens that are selected by our model. The predictions made by the selected rationale
tokens are evaluated using the mean-square error (MSE).

We compare our method with the following baselines:
• Attention [75]: This method calculates attention scores over the tokens and selects top-k percent tokens as the

rationale.
• Bernoulli [75]: This method uses a selector network to calculate a Bernoulli distribution for each token, and then

samples the tokens from the distributions as the rationale. The basic architecture is RCNN Lei et al. (2016).
• HardKuma [8]: This method replaces the Bernoulli distribution by a Kuma distribution to facilitate differentia-

bility. The basic architecture is also RCNN Lei et al. (2016).
3https://www.beeradvocate.com/
4http://people.csail.mit.edu/taolei/beer/
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Figure 3: MSE of all aspects of BeerAdvocate. The blue dashed line represents the full-text baseline (all tokens are
selected).

Method Appearance
P R F IOU F1 % selected AUPRC

Attention 80.6 35.6 49.4 32.8 13 0.613
Bernoulli 96.3 56.5 71.2 55.3 14 0.785
HardKuma 98.1 65.1 78.3 64.3 13 0.833
FRESH 96.5 53.2 68.6 52.2 13 0.772
Sparse IB 91.3 54.6 68.3 51.9 13 0.752
InfoCal 98.5 73.2 84.0 72.4 13 0.871

Method Smell
P R F IOU F1 % selected AUPRC

Attention 88.4 20.6 33.4 20.1 7 0.584
Bernoulli 95.1 38.2 54.5 37.5 7 0.697
HardKuma 96.8 31.5 47.5 31.2 7 0.675
FRESH 90.4 32.3 47.6 31.2 7 0.647
Sparse IB 90.8 34.5 50.0 33.3 7 0.659
InfoCal 95.6 45.6 61.7 44.7 7 0.733

Method Palate
P R F IOU F1 % selected AUPRC

Attention 65.3 35.8 46.2 30.1 7 0.537
Bernoulli 80.2 53.6 64.3 47.3 7 0.692
HardKuma 89.8 48.6 63.1 46.1 7 0.718
FRESH 78.4 50.2 61.2 44.1 7 0.668
Sparse IB 84.3 49.2 62.1 45.1 7 0.692
InfoCal 89.6 59.8 71.7 55.9 7 0.767

Table 2
Token-level precision (P), recall (R), F1-score (F), IOU F1, and AUPRC of selected rationales for the three aspects of
BeerAdvocate. In bold, the best performance. “% selected” means the average percentage of tokens selected out of the
total number of tokens per instance.

• FRESH [54]: This method breaks the selector-predictor model into three sub-components: a support model
which calculates the importance of each input token, a rationale extractor model which extracts the rationale
snippets according to the output of the support model, a classifier model which make prediction according to the
extracted rationale.

• Sparse IB [90]: This method also uses information bottleneck to control the number of tokens selected by the
rationale. But it did not use any information calibration methods or any regularizers to extract more complete
and fluent rationales.

4.2.4. Results.
The rationale extraction performances are shown in Table 2. The precision values for the baselines are directly

taken from [8]. We use their source code for the Bernoulli5 and HardKuma6 baselines.
We trained these baseline for 50 epochs and selected the models with the best recall on the dev set when the

precision was equal or larger than the reported dev precision. For fair comparison, we used the same stopping criteria
for InfoCal (for which we fixed a threshold for the precision at 2% lower than the previous state-of-the-art).

5https://github.com/taolei87/rcnn
6https://github.com/bastings/interpretable_predictions
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Method Appearance Smell Palate
P R F P R F P R F

InfoCal (HardKuma reg) 97.9 71.7 82.8 94.8 42.3 58.5 89.4 56.9 69.5
InfoCal (INVASE reg) 96.8 53.5 68.9 93.2 35.7 51.6 85.7 39.5 54.1
InfoCal−Ladv 97.3 67.8 79.9 94.3 34.5 50.5 89.6 51.2 65.2
InfoCal−Llm 79.8 54.9 65.0 87.1 32.3 47.1 83.1 47.4 60.4
InfoCal 98.5 73.2 84.0 95.6 45.6 61.7 89.6 59.8 71.7

Table 3
The ablation tests. All the listed methods are tuned to select 13% words in “Appearence”, 7% in “Smell” and “Palate” to
make them comparable with InfoCal. The best performances are bolded.

Gold

clear , burnished copper-brown topped by a large beige head that displays impressive persistance and leaves a
small to moderate amount of lace in sheets when it eventually departs the nose is sweet and spicy and the flavor
is malty sweet , accented nicely by honey and by abundant caramel/toffee notes . there ...... alcohol . the
mouthfeel is exemplary ; full and rich , very creamy . mouthfilling with some mouthcoating as well . drinkability
is high ......

Bernoulli

clear , burnished copper-brown topped by a large beige head that displays impressive persistance and leaves a
small to moderate amount of lace in sheets when it eventually departs the nose is sweet and spicy and the flavor
is malty sweet , accented nicely by honey and by abundant caramel/toffee notes . there ...... alcohol . the
mouthfeel is exemplary ; full and rich , very creamy . mouthfilling with some mouthcoating as well . drinkability
is high ......

HardKuma

clear , burnished copper-brown topped by a large beige head that displays impressive persistance and leaves a
small to moderate amount of lace in sheets when it eventually departs the nose is sweet and spicy and the flavor
is malty sweet , accented nicely by honey and by abundant caramel/toffee notes . there ...... alcohol . the
mouthfeel is exemplary ; full and rich , very creamy . mouthfilling with some mouthcoating as well . drinkability
is high ......

InfoCal

clear , burnished copper-brown topped by a large beige head that displays impressive persistance and leaves a
small to moderate amount of lace in sheets when it eventually departs the nose is sweet and spicy and the flavor
is malty sweet , accented nicely by honey and by abundant caramel/toffee notes . there ...... alcohol . the
mouthfeel is exemplary ; full and rich , very creamy . mouthfilling with some mouthcoating as well . drinkability
is high ......

InfoCal−Ladv

clear , burnished copper-brown topped by a large beige head that displays impressive persistance and leaves a
small to moderate amount of lace in sheets when it eventually departs the nose is sweet and spicy and the flavor
is malty sweet , accented nicely by honey and by abundant caramel/toffee notes . there ...... alcohol . the
mouthfeel is exemplary ; full and rich , very creamy . mouthfilling with some mouthcoating as well . drinkability
is high ......

InfoCal−Llm

clear , burnished copper-brown topped by a large beige head that displays impressive persistance and leaves a
small to moderate amount of lace in sheets when it eventually departs the nose is sweet and spicy and the flavor
is malty sweet , accented nicely by honey and by abundant caramel/toffee notes . there ...... alcohol . the
mouthfeel is exemplary ; full and rich , very creamy . mouthfilling with some mouthcoating as well . drinkability
is high ......

Table 4
One example of extracted rationales by different methods. Different colors correspond to different aspects: red: appearance,
green: smell, and blue: palate.

Wealso conducted ablation studies: (1) we removed the adversarial loss and report the results in the line InfoCal−Ladv,and (2) we removed the LM regularizer and report the results in the line InfoCal−Llm.In Table 2, we see that, although Bernoulli, HardKuma, FRESH, and Sparse IB achieve very high precisions, their
recall scores are significantly low. The reason is that these four methods only focus on making the extracted rationale
enough for a correct prediction, so the rationale is not necessary to be competent and many details would lost. In
comparison, our InfoCal method use a dense neural network as a guider, which provided many detailed information.
Therefore, the selector is able to extract more complete rationales.

In comparison, our method InfoCal significantly outperforms the previous methods in the recall scores for all the
three aspects of the BeerAdvocate dataset (we performed Student’s t-test, p < 0.01). Also, all the three F-scores of
InfoCal are a new state-of-the-art performance.

In the ablation studies in Table 3, we see that when we remove the adversarial information calibrating structure,
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Figure 4: The precision (left) and recall (right) for rationales on the smell aspect of the BeerAdvocate valid set.

namely, for InfoCal−Ladv, the recall scores decrease significantly in all the three aspects. This shows that our guider
model is critical for the increased performance. Moreover, when we remove the LM regularizer, we find a significant
drop in both precision and recall, in the line InfoCal−Llm. This highlights the importance of semantical fluency of
rationales, which are encouraged by our LM regularizer.

We also apply another kind of calibration, which was applied in Yoon et al. (2018). This calibration method is very
similar to the “base” model in actor-critic models [68]. Their difference with our InfoCal is that Yoon et al. (2018)
minimizes the difference between the cross entropy values of the selector-predictor model and the base model. We
apply their method to our model and listed the results in the InfoCal (INVASE reg) line in Table 3. We found that
the recall score decreases a lot compared to InfoCal, which shows that our information calibration method is better for
improving the recall of rationale extraction.

We also replace the LM regularizer with the regularizer used in the HardKuma method with all the other parts of
the model unchanged, denoted InfoCal(HardKuma reg) in Table 3. We found that the recall and F-score of InfoCal
outperforms InfoCal(HardKuma reg), which shows the effectiveness of our LM regularizer.

We further show the relation between a model’s performance on predicting the final answer and the rationale
selection percentage (which is determined by the model) in Fig. 3, as well as the relation between precision/recall and
training epochs in Fig. 4. The rationale selection percentage is influenced by �ib. According to Fig. 3, our method
InfoCal achieves a similar prediction performance compared to previousworks, and does slightly better thanHardKuma
for some selection percentages. Fig. 4 shows the changes in precision and recall with training epochs. We can see that
our model achieves a similar precision after several training epochs, while significantly outperforming the previous
methods in recall, which proves the effectiveness of our proposed method.

Table 4 shows an example of rationale extraction. Compared to the rationales extracted by Bernoulli and Hard-
Kuma, our method provides more fluent rationales for each aspect. For example, unimportant tokens like “and” (after
“persistance”, in the Bernoulli method), and “with” (after “mouthful”, in the HardKuma method) were selected just
because they are adjacent to important ones.
4.3. Legal Judgement Prediction
4.3.1. Datasets and Preprocessing.

We use the CAIL2018 dataset7 [150] for three tasks on legal judgment prediction. The dataset consists of criminal
cases published by the Supreme People’s Court of China.8 To be consistent with previous works, we used two versions
of CAIL2018, namely, CAIL-small (the exercise stage data) and CAIL-big (the first stage data). The statistics of
CAIL2018 dataset are shown in Table 6.

7https://cail.oss-cn-qingdao.aliyuncs.com/CAIL2018_ALL_DATA.zip
8http://cail.cipsc.org.cn/index.html
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Small Tasks Law Articles Charges Terms of Penalty

Metrics Acc MP MR F1 %S Acc MP MR F1 %S Acc MP MR F1 %S

Single

Bernoulli (w/o) 0.812 0.726 0.765 0.756 100 0.810 0.788 0.760 0.777 100 0.331 0.323 0.297 0.306 100
Bernoulli 0.755 0.701 0.737 0.728 14 0.761 0.753 0.739 0.754 14 0.323 0.308 0.265 0.278 30
HardKuma (w/o) 0.807 0.704 0.757 0.739 100 0.811 0.776 0.763 0.776 100 0.345 0.355 0.307 0.319 100
HardKuma 0.783 0.706 0.735 0.729 14 0.778 0.757 0.714 0.736 14 0.340 0.328 0.296 0.309 30
FRESH 0.801 0.714 0.761 0.743 14 0.790 0.766 0.725 0.745 14 0.344 0.332 0.308 0.312 30
Sparse IB 0.773 0.692 0.734 0.712 14 0.769 0.758 0.742 0.750 14 0.336 0.324 0.280 0.300 30
InfoCal−Ladv 0.826 0.739 0.774 0.777 14 0.845 0.804 0.781 0.797 14 0.351 0.374 0.329 0.330 30
InfoCal−Ladv−Lib (w/o) 0.841 0.759 0.785 0.793 100 0.850 0.820 0.801 0.814 100 0.368 0.378 0.341 0.346 100
InfoCal−Llm 0.822 0.723 0.768 0.773 14 0.843 0.796 0.770 0.772 14 0.347 0.361 0.318 0.320 30
InfoCal 0.834 0.744 0.776 0.786 14 0.849 0.817 0.798 0.813 14 0.358 0.372 0.335 0.337 30

Multi
FLA 0.803 0.724 0.720 0.714 − 0.767 0.758 0.738 0.732 − 0.371 0.310 0.300 0.299 −
TOPJUDGE 0.872 0.819 0.808 0.800 − 0.871 0.864 0.851 0.846 − 0.380 0.350 0.353 0.346 −
MPBFN-WCA 0.883 0.832 0.824 0.822 − 0.887 0.875 0.857 0.859 − 0.414 0.406 0.369 0.392 −

Big Tasks Law Articles Charges Terms of Penalty

Metrics Acc MP MR F1 %S Acc MP MR F1 %S Acc MP MR F1 %S

Single

Bernoulli (w/o) 0.876 0.636 0.388 0.625 100 0.857 0.643 0.410 0.569 100 0.509 0.511 0.304 0.312 100
Bernoulli 0.857 0.632 0.374 0.621 14 0.848 0.635 0.402 0.543 14 0.496 0.505 0.289 0.306 30
HardKuma (w/o) 0.907 0.664 0.397 0.627 100 0.907 0.689 0.438 0.608 100 0.555 0.547 0.335 0.356 100
HardKuma 0.876 0.645 0.384 0.609 14 0.892 0.676 0.425 0.587 14 0.534 0.535 0.310 0.334 30
FRESH 0.902 0.698 0.675 0.682 14 0.902 0.695 0.632 0.653 14 0.532 0.539 0.343 0.387 30
Sparse IB 0.863 0.634 0.372 0.624 14 0.852 0.638 0.401 0.545 14 0.501 0.510 0.286 0.302 30
InfoCal−Ladv 0.953 0.844 0.711 0.782 20 0.954 0.857 0.772 0.806 20 0.552 0.490 0.353 0.356 30
InfoCal−Ladv−Lib (w/o) 0.959 0.862 0.751 0.791 100 0.957 0.878 0.776 0.807 100 0.584 0.519 0.411 0.427 30
InfoCal−Llm 0.953 0.851 0.730 0.775 20 0.950 0.857 0.756 0.789 20 0.563 0.486 0.374 0.367 30
InfoCal 0.956 0.852 0.742 0.805 20 0.955 0.868 0.788 0.820 20 0.556 0.519 0.362 0.372 30

Multi
FLA 0.942 0.763 0.695 0.746 − 0.931 0.798 0.747 0.780 − 0.531 0.437 0.331 0.370 −
TOPJUDGE 0.963 0.870 0.778 0.802 − 0.960 0.906 0.824 0.853 − 0.569 0.480 0.398 0.426 −
MPBFN-WCA 0.978 0.872 0.789 0.820 − 0.977 0.914 0.836 0.867 − 0.604 0.534 0.430 0.464 −

Table 5
The overall performance on the CAIL2018 dataset (Small and Big). The results from previous works are directly quoted
from Yang et al. (2019), because we share the same experimental settings, and hence we can make direct comparisons.
%S represents the selection percentage (which is determined by the model). “Single” represents single-task models, “Multi”
represents multi-task models. The best performance is in bold. The red numbers mean that they are less than the best
performance by no more than 0.01. The underlined numbers are the state-of-the-art performances, all of which are obtained
by multi-task models. (w/o) represents that the corresponding model is a dense model without extracting rationales.

CAIL-small CAIL-big

Cases 113,536 1,594,291
Law Articles 105 183
Charges 122 202
Term of Penalty 11 11

Table 6
Statistics of the CAIL2018 dataset.

The instances in CAIL2018 consist of a fact description and three kinds of annotations: applicable law arti-
cles, charges, and the penalty terms. Therefore, our three tasks on this dataset consist of predicting (1) law articles,
(2) charges, and (3) terms of penalty according to the given fact description.

In the dataset, there are also many cases with multiple applicable law articles andmultiple charges. To be consistent
with previous works on legal judgement prediction [150, 140], we filter out these multi-label examples.

We also filter out instances where the charges and law articles occurred less than 100 times in the dataset (e.g.,
insulting the national flag and national emblem). For the term of penalty, we divide the terms into 11 non-overlapping
intervals. These preprocessing steps are the same as in Zhong et al. (2018) and Yang et al. (2019), making it fair to
compare our model with previous models.
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Law Articles Charges Terms of Penalty
Comp.↑ Suff.↓ Comp.↑ Suff.↓ Comp.↑ Suff.↓

Bernoulli 0.231 0.005 0.243 0.002 0.132 0.017
HardKuma 0.304 -0.021 0.312 -0.034 0.165 0.009
InfoCal 0.395 -0.056 0.425 -0.067 0.203 0.005

Table 7
The quantitative evaluation of rationales for legal judgment prediction. The “↑” means that a good result should have a
larger value, while “↓” means lower is better.

We use Jieba9 for token segmentation, because this dataset is in Chinese. The word embedding size is set to 100 and
is randomly initiated before training. The maximum sequence length is set to 1000. The architectures of the selector,
predictor, and guider are all bidirectional LSTMs. The LSTM’s hidden size is set to 100. r�(zi) is the sampling rate
for each token (0 for selected), which we set to r�(zi = 0) = 0.9.

We search the hyperparameters in the following scopes: �ib ∈ [0.00, 0.10] with step 0.01, �g ∈ [0.2, 2.0] with step
0.2, �mi ∈ [0.0, 1.0] with step 0.1, �lm ∈ [0.000, 0.010] with step 0.001. The best hyperparameters were found to be:
�ib = 0.05, �g = 1, �mi = 0.5, �lm = 0.005 for all the three tasks.
4.3.2. Overall Performance.

We again compare our method with the Bernoulli [75] and the HardKuma [8] methods on rationale extraction.
These two methods are both single-task models, which means that we train a model separately for each task. We also
compare our method with three multi-task methods listed as follows:

• FLA [83] uses an attention mechanism to capture the interaction between fact descriptions and applicable law
articles.

• TOPJUDGE [150] uses a topological architecture to link different legal prediction tasks together, including the
prediction of law articles, charges, and terms of penalty.

• MPBFN-WCA [140] uses a backward verification to verify upstream tasks given the results of downstream tasks.
The results are listed in Table 5.

On CAIL-small, we observe that it is more difficult for the single-task models to outperform multi-task methods.
This is likely due to the fact that the tasks are related, and learning them together can help a model to achieve better
performance on each task separately. After removing the restriction of the information bottleneck, InfoCal−Ladv−Libachieves the best performance in all tasks, however, it selects all the tokens in the review. When we restrict the number
of selected tokens to 14% (by tuning the hyperparameter �ib), InfoCal (in red) only slightly drops in all evaluation
metrics, and it already outperforms Bernoulli and HardKuma, even if they have used all tokens. This means that
the 14% selected tokens are very important to the predictions. We observe a similar phenomenon for CAIL-big.
Specifically, InfoCal outperforms InfoCal−Ladv−Lib in some evaluation metrics, such as the F1-score of law article
prediction and charge prediction tasks.
4.3.3. Rationales.

The CAIL2018 dataset does not contain annotations of rationales. So, we only use Comp. and Suff. for quantitative
evaluation since they do not require gold rationale annotations. The results are shown in Table 7. We can see that in
all the three subtasks of legal judgement prediction, our proposed method outperforms the previous methods.

We also conducted human evaluation for the extracted rationales. Due to limited budget and resources, we sampled
300 examples for each task. We randomly shuffled the rationales for each task and asked six undergraduate students
from Peking University to evaluate them. The human evaluation is based on three metrics: usefulness (U), complete-
ness (C), and fluency (F); each scored from 1 (lowest) to 5. The scoring standard for human annotators is given in
Appendix C in the extended paper.

The human evaluation results are shown in Table 8. We can see that our proposed method outperforms previous
methods in all metrics. Our inter-rater agreement is acceptable by Krippendorff’s rule (2004), which is shown in
Table 8.

9https://github.com/fxsjy/jieba
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Law Charges ToP
U C F U C F U C F

Bernoulli 4.71 2.46 3.45 3.67 2.35 3.45 3.35 2.76 3.55
HardKuma 4.65 3.21 3.78 4.01 3.26 3.44 3.84 2.97 3.76
InfoCal 4.72 3.78 4.02 4.65 3.89 4.23 4.21 3.43 3.97
� 0.81 0.79 0.83 0.92 0.85 0.87 0.82 0.83 0.94

Table 8
Human evaluation on the CAIL2018 dataset. “ToP" is the abbreviation of “Terms of Penalty". The metrics are: usefulness
(U), completeness (C), and fluency (F), each scored from 1 to 5. Best performance is in bold. � represents Krippendorff’s
alpha values. The basic architecture for the three methods are all RCNN Lei et al. (2016).

The People’s Procuratorate of Yongshun County alleged that on January 11, 2014, the 

defendant Li XX and Peng XX (a separate case dealt with) forcibly had sexual relaEons 

with the vicEm Zou XX in a room of Xindu Hotel in Yongshun County . In this regard, the 

public prosecuEon agency cited the following evidence: capture history, household 

registraEon cerEficate, call list, descripEon of the situaEon; idenEficaEon transcripts; on-

site inspecEon transcripts and on-site photos; physical evidence inspecEon reports and 

physical evidence idenEficaEon documents; witnesses Liu A, Liu B, TesEmony of Liu C, 

Zou XX, Du XX; confession and defense of defendant Li XX; audio-visual materials. The 

court held that the defendant Li XX used violence and verbal threats with others to 

forcibly have sexual relaEons with the vicEm Zou XX in the Xindu Hotel room in 

Yongshun County. His behavior has violated the Item (4) of the Criminal Law of the PRC, 

the facts of the crime are clear, and the evidence is reliable and sufficient, and the 

criminal responsibility should be invesEgated for the crime of × ×. In the joint crime, the 

defendant Li XX played the main role and was the principal offender…..

Figure 5: An example of extracted rationale for charge prediction. The correct charge is “Rape". The original fact
description is in Chinese, we have translated it to English. It is easy to see that the extracted rationales are very helpful
in making the charge prediction.

A sample case of extracted rationales in legal judgement is shown in Fig. 5. We observe that our method selects all
the useful information for the charge prediction task, and the selected rationales are formed of continuous and fluent
sub-phrases.
4.4. Hate Speech Explanation
4.4.1. Datasets and Preprocessing.

For evaluating the performance of our method on hate speech detection task. We use the HateXplain dataset10 [87].
This dataset contains 9,055 posts from Twitter [26, 34] and 11,093 posts from Gab [79, 86, 145]. There are three
different classes in this dataset: hateful, offensive, and normal. Apart from the class labels, this dataset also contains
rationale annotations for each example that is labelled as hateful or offensive. The training set, valid set, and test set
are already split as 8 ∶ 1 ∶ 1 in the dataset. More details of this dataset is shown in Table 9. This dataset is very noisy,
and it can test the robustness of our InfoCal method on noisy text information.

For classification performance, we have three metrics: Accuracy, Macro F1, and AUROC. These metrics are used
for evaluating the ability of distinguish among the three classes, i.e., hate speech, offensive speech, and normal. Among
them, AUROC is the area under the ROC curve.
4.4.2. Competing Methods.

We also compare our method with Bernoulli [75] and HardKuma [8] in this experiment. We also compare our
method with the following competing methods provided in Mathew et al. (2020b):

10https://github.com/punyajoy/HateXplain.git
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• CNN-GRU [148] has achieved state-of-the-art performance in multiple hate speech datasets. CNN-GRU first
use convolution neural network (CNN) [74] to capture the local features and then use recurrent neural network
(RNN) [103] with GRU unit [20] to capture the temporal information. Finally, this model max-pools GRU’s
hidden layers to a feature vector, and then use a fully connected layer to finally output the prediction results.

• BiRNN [107] first input the tokens into a sequential model with long-short term memory (LSTM) [51]. Then,
the last hidden state is passed through two feed-forward layers and then a fully connected layer for prediction.

• BiRNN-Attn adds an attention layer after the sequential layer of BiRNN model.
• BERT [28] is a large pretrained model constructed by a stack of transformer [134] encoder layers. A fully

connected layer is added to the output corresponding to the CLS token for the hate speech class prediction. We
used the bert-base-uncased model with 12-layer, 768- hidden, 12-heads, 110M parameters, this is the same
setting with previous work [86]. The model is fine-tuned using the HateXplain training set.

In all the above methods, the rationales are extracted by two methods: attention [102] and LIME [100]. When we are
using attention method, as is described in DeYoung et al. (2020), the tokens with top 5 attention values are selected
as rationale. The LIME method selects rationales by training a new explanation model to imitate the original deep
learning “black-box” model. Different from these methods, our model InfoCal as well as the other two competing
method Bernoulli and HardKuma are extracting rationales by the model itself without any external methods (like
attention selection or LIME selection) for rationale selection. So, it is much more challenging for them to achieve
similar explanability performance.

In Mathew et al. (2020b), the ground-truth rationale annotations were also used to train some models by adding an
external cross entropy loss on the attention layer. The rationale training is conducted on BiRNN and BERT models,
denoted as BiRNN-HateXplain and BERT-HateXplain, respectively.
4.4.3. Results.

The overall results are shown in Table 10. We can see that in the classification performance, the BERT models
achieved the highest score in all the three metrics (Accuracy, Macro F1, and AUROC) no matter whether the rationale
supervising is conducted. Also, our InfoCal model has outperformed all the other approaches except for BERT. This
makes sense because BERT has pretrained by a large amount of texts, and it has a much better understanding for
language than other models without pretraining.

In the explanability evaluations, our model InfoCal has achieved the state-of-the-art performance in three metrics:
IOU F1, AUPRC, and Sufficiency. Also, for the other two metrics (Token F1 and Comprehensiveness), the InfoCal
method is comparable with the state-of-the-art method (BERT [Attn]). Note that in our model, the rationales are
selected by the model itself instead of by selecting top 5 attention value or by LIME method externally. Therefore, this
experimental result show that our InfoCal model is a better model for explaining neural network predictions.

We also listed the performances of the BiRNNmodel and BERTmodel after supervised by rationale annotations in
Table 10. We can see that both the classification performance and the explanability performance improved a lot after
trained by rationale annotations. This also makes sense because the rationale annotation is the most direct training
signal of rationale selection. However, such kind of rationale annotation is very expensive to get in real-world appli-
cations. Therefore, the rationale extraction methods without rationale supervision is much proper to be applied in the
industry.
4.4.4. Case Study for Rationales.

In Table 11, we have listed some of the generated rationales in HateXplain dataset by our InfoCal method and the
two competing methods: Bernoulli and HardKuma. We can see that our InfoCal method has extracted nearly all of the
annotated rationales in the ground-truth. Compared to Bernoulli and HardKuma, our InfoCal method do not extract
nonsense rationales, such as “yeah i also” in the second line, and “precinct and campaign meetings” in the third line.
This again shows the effectiveness of the information calibration method.
4.5. Performance of the Pretrained Language Model for the rationale regularizer

In the InfoCal model, we need a pretrained language model (in Sec. 3.3) for the rationale regularizer. Our language
model described in Section 3.3.1 is different from previous language model because it has to compute probabilities for
token’s vector representations instead of token’s symbolic IDs. Therefore, the quality of the pretrained language model
Lei Sha et al.: Preprint submitted to Elsevier Page 17 of 30
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Twitter Gab Total

Hateful 708 5,227 5,935
Offensive 2,328 3,152 5,480
Normal 5,770 2,044 7,814

Undecided 249 670 919

Total 9,055 11,093 20,148

Table 9
The statistics of HateXplain dataset. “Undecided” means that in the annotation process, all the three annotators gave
different labels to the example. We omit this part of data in our experiments as is consistent with previous works.

Classification Performance Explanability

Acc ↑ Macro F1 ↑ AUROC ↑ IOU F1 ↑ Token F1 ↑ AUPRC ↑ Comp ↑ Suff ↓

W/o
rationale
supervising

CNN-GRU [LIME] 0.627 0.606 0.793 0.167 0.385 0.648 0.316 -0.082
BiRNN [LIME] 0.595 0.575 0.767 0.162 0.361 0.605 0.421 -0.051
BiRNN-Attn [Attn] 0.621 0.614 0.795 0.167 0.369 0.643 0.278 0.001
BiRNN-Attn [LIME] 0.621 0.614 0.795 0.162 0.386 0.650 0.308 -0.075
BERT [Attn] 0.690 0.674 0.843 0.130 0.497 0.778 0.447 0.057
BERT [LIME] 0.690 0.674 0.843 0.118 0.468 0.747 0.436 0.008

Bernoulli 0.597 0.568 0.765 0.138 0.482 0.668 0.324 0.003
HardKuma 0.594 0.570 0.772 0.152 0.485 0.672 0.406 -0.022
Sparse IB 0.602 0.572 0.768 0.145 0.486 0.670 0.389 0.001
InfoCal 0.630 0.614 0.792 0.206 0.493 0.680 0.436 -0.097

With
rationale
supervising

BiRNN-HateXplain [Attn] 0.629 0.629 0.805 0.222 0.506 0.841 0.281 0.039
BiRNN-HateXplain [LIME] 0.629 0.629 0.805 0.174 0.407 0.685 0.343 -0.075
BERT-HateXplain [Attn] 0.698 0.687 0.851 0.120 0.411 0.626 0.424 0.160
BERT-HateXplain [LIME] 0.698 0.687 0.851 0.112 0.452 0.722 0.500 0.004

Table 10
The overall performance on the HateXplain dataset. The results from previous work are directly quoted from Mathew
et al. (2020b), because we share identical train/valid/test data split, and hence we can make direct comparison. The
“↑” means that a good result should have a larger value, while “↓” means lower is better. The square bracket means the
method of extracting rationales. Note that except for Bernoulli, HardKuma, Sparse IB, and InfoCal, all the other methods
are extracting rationale by external methods ([Attn] or [LIME]). The basic architectures for Bernoulli, HardKuma, and
InfoCal are all RCNN.

is paramount to the InfoCal model. In Table 12, we listed the comparison of the perplexity between our language
model and two famous language models: Kenneth Heafield’s language model (KenLM) [45] and recurrent neural
network language model (RNNLM) [10, 132]. The training is conducted on the pure texts of the training data in the
three tasks, and the trained models are tested on the pure texts of the corresponding test sets. We can see that the
perplexity of our language model is comparable to RNNLM and even better than kenLM in some datasets. This shows
that the performance of our language model is acceptable to our experiments. We do not compare the perplexity with
Transformer-based models like GPT [95, 96, 12], because these models usually use subword vocabularies (like Byte
Pair Encoding (BPE) [96] and WordPiece [106, 28] ) which makes the perplexities not comparable with our work.

Also, from the comparison of perplexity score, we found that the perplexity of HateXplain dataset is obviously
higher than the other two datasets, this shows that HateXplain dataset is very noisy. The results in Table 10 proves that
our InfoCal model is able to extract sensitive rationales on noisy text data.

5. Summary and Outlook
In this work, we proposed a novelmethod to extract rationales for neural predictions. Ourmethod uses an adversarial-

based technique to make a selector-predictor model learn from a guider model. In addition, we proposed a novel regu-
larizer based on language models, which makes the extracted rationales semantically fluent. In this way, the “guider”
model tells the selector-predictor model what kind of information (token) remains unselected or over-selected. We
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Gold Bernoulli HardKuma InfoCal

jew faggot milo is king of the
alt right great it not the alt
right anymore

jew faggot milo is king of the
alt right great it not the alt
right anymore

jew faggot milo is king of the
alt right great it not the alt
right anymore

jew faggot milo is king of the
alt right great it not the alt
right anymore

yeah i also agree that the mid-
dle eastern ones are com-
ing mostly to hungary but
these other refugees away
from mudslimes are all schen-
gen regions why bother ap-
plying for refugee status when
you can just move it perfectly
legal

yeah i also agree that the
middle eastern ones are com-
ing mostly to hungary but
these other refugees away
from mudslimes are all schen-
gen regions why bother ap-
plying for refugee status when
you can just move it perfectly
legal

yeah i also agree that the mid-
dle eastern ones are com-
ing mostly to hungary but
these other refugees away
from mudslimes are all schen-
gen regions why bother ap-
plying for refugee status when
you can just move it perfectly
legal

yeah i also agree that the
middle eastern ones are com-
ing mostly to hungary but
these other refugees away
from mudslimes are all schen-
gen regions why bother ap-
plying for refugee status when
you can just move it perfectly
legal

precinct and campaign meet-
ings will confirm that it is only
whites who hold any ideals
about government non whites
want free govt cheese and
jews are crazy for power

precinct and campaign meet-
ings will confirm that it is only
whites who hold any ideals
about government non whites
want free govt cheese and
jews are crazy for power

precinct and campaign meet-
ings will confirm that it is only
whites who hold any ideals
about government non whites
want free govt cheese and
jews are crazy for power

precinct and campaign meet-
ings will confirm that it is only
whites who hold any ideals
about government non whites
want free govt cheese and
jews are crazy for power

the labour party has number
mps in prison for paedophilia
number mps and councillors
on the sex registry number
million white kids raped by
paki muslims all labour voters
covered up by labour councils
mps and a pm

the labour party has number
mps in prison for paedophilia
number mps and councillors
on the sex registry number
million white kids raped by
paki muslims all labour voters
covered up by labour councils
mps and a pm

the labour party has number
mps in prison for paedophilia
number mps and councillors
on the sex registry number
million white kids raped by
paki muslims all labour voters
covered up by labour councils
mps and a pm

the labour party has number
mps in prison for paedophilia
number mps and councillors
on the sex registry number
million white kids raped by
paki muslims all labour voters
covered up by labour councils
mps and a pm

Table 11
Example rationales extracted by three methods: Bermoulli, HardKuma, and InfoCal. Note that in these cases, many
phrases are offensive or hateful. Nevertheless, this cannot be avoided due to the nature of the work.

KenLM [45] RNNLM [10, 132] Our LM

Perplexity (Beer) 66 50 44

Perplexity (Legal Small) 32 20 29
Perplexity (Legal Big) 11 69 62

Perplexity (HateXplain) 413 146 165

Table 12
The comparison of perplexity between language models.

conducted experiments on a task of sentiment analysis, hate speech recognition and three tasks from the legal domain.
According to the comparison between the extracted rationales and the gold rationale annotations in sentiment analysis
task and hate speech recognition task, our InfoCal method improves the selection of rationales by a large margin. We
also conducted ablation tests for the evaluation of the LM regularizer’s contribution, which showed that our regularizer
is effective in refining the rationales.

As future work, the main architecture of our model can be directly applied to other domains, e.g., images or tabular
data. The image rationales can be applied in many read-world applications, such as medical image recognition [27] and
automatic driving [99]. Regularizers based on Manifold learning [15] is promising to be applied on image rationale
extraction. The tabular rationales are very useful in some tasks like automatic disease diagnose [2]. When designing
the regularizers for tabular rationales, a sensible method is to make use of the relations between different fields of the
tabular since different kinds of data are closely related in medical experiment reports and many of them are potentially
to contribute to the patients’ diagnose result.
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6. Ethical Statement
The paper does not present a new dataset. It also does not use demographic or identity characteristics information.

Furthermore, the paper does not report on experiments that involve a lot of computing time/power.
• Intended use. While the paper presents an NLP legal prediction application, our method is not yet ready to be

used in practice. Our work takes a step forward in the research direction of making legal prediction systems
explainable, which should uncover the systems’ potential biases and modes of failures, thus ultimately rendering
them more reliable. Thus, once it can be guaranteed a high likelihood of correctness and unbiasedness of the
predictions and the faithfulness of their explanations w.r.t. the inner-working of the model, legal prediction
systems may help to assist judges (and not replace them) in their decisions, so that they can process more cases,
and more people can perceive justice than nowadays is the case. (At present, only a very small portion of cases
is brought to court; especially poorer parts of the populations have essentially no access to the justice system,
due to its high costs.) In addition, legal prediction systems may be used as second opinion and help to uncover
mistakes or even biases of human judges. Currently, legal prediction systems are being heavily researched in the
literature without the explainability component that our paper is bringing. Hence, our approach is taking a step
forward in assessing the reliability of the systems, although we do not currently guarantee the faithfulness of the
provided explanations. Hence, our work is intended purely as a research advancement and not as a real-world
tool.

• Failure modes. Our model may fail to provide correct and unbiased predictions and explanations that are faith-
fully describing its decision-making process. Ensuring correct and unbiased predictions as well as faithful ex-
planations are very challenging open questions, and our work takes an important but far from final step forward
in this direction.

• Biases. If the training data contains biases, then a model may pick up on these biases, and hence it would not be
safe to use it in practice. Our explanations may help to detect biases and potentially give insights to researchers
on how to further develop models that avoid them. However, we do not currently guarantee the faithfulness of
the explanations to the decision-making of the model.

• Misuse potential. As our method is not currently suitable for production, the legal prediction model should not
be used in real-world legal judgement prediction tasks.

• Collecting data from users. We do not collect data from users, we only use an existing dataset.
• Potential harm to vulnerable populations. Since our model learns from datasets, if there are under-represented

groups in the datasets, then the model might not be able to learn correct predictions for these groups. However,
our model provides explanations for its predictions, which may uncover the potential incorrect reasons for its
predictions on under-represented groups. This could further unveil the under-representation of certain groups
and incentivize the collection of more instances for such groups. However, we highlight again that our model is
not yet ready to be used in practice and that it is currently a stepping stone in this important direction of research.
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Appendices
A. Proofs
A.1. Derivation of I(z̃sym, y)This proof is the basis for the information bottleneck equation in Section 3.1.4.
Theorem 2. Minimizing −I(z̃sym, y) is equivalent to minimizing Lsp.

Proof.

I(z̃sym, y) = Ez̃sym,y
[p(y|z̃sym)

p(y)

]

= Ez̃sym,yp(y|z̃sym) − Ez̃sym,yp(y). (22)

We omit Ez̃sym,yp(y), because it is a constant, therefore, minimizing Eq. 22 is equivalent to minimizing the following
term:

Ez̃sym,yp(y|z̃sym). (23)
As the training pair (x, y) is sampled from the training data, and z̃sym is sampled from Sel(z̃sym|x), we have that

Ez̃sym,yp(y|z̃sym) = Ex,yp(y|z̃sym)p(z̃sym|x) = Ex,yp(y|x). (24)
We can give each p(y|x) in Eq. 24 a − log to arrive to −I(z̃sym, y). Then, it is not difficult to see that −I(z̃sym, y) hasexactly the same form as Lsp.
A.2. Derivation of Equation 12

Equation 12 is the information bottleneck loss for the guider model, this loss encourages that the features extracted
by the guider model are least-but-enough.

Lmi = I(x, znero) = Ex,znero

[

log
p(znero|x)
p(znero)

]

(25)

= Eznerop(x)
[

log
p(znero|x)
p(znero)

]

(26)

≤ Eznero

[

log
p(znero|x)
p(znero)

]

(27)
= 0.5(�2 + �2 − 1 − 2 log �). (28)

A.3. Proof of Theorem 1
This theorem is the reason why our language model based regularizer encourages fewer segments of token se-

quences and decreases bad start or end tokens for each token subsequences, thus makes semantically fluent rationales.
The theorem content is restated as follows:
Theorem 1. If the following is satisfied for all i, j:

• m′
i < � ≪ 1 − � < mi, (0 < � < 1), and

• |

|

|

p(m′
ixi|x<i) − p(m

′
jxj|x<j)

|

|

|

< �,

then the following two inequalities hold:
(1) Llm(… , mk,… , m′

n) < Llm(… , m′
k,… , mn).

(2) Llm(m1,… , m′
k,…) > Llm(m′

1,… , mk,…).

Proof. By Eq. 15, we have:

Llm(… , m′
k,… , mn) = −

[

∑

i≠k,k+1
mi−1 logP (mixi|x<i) + mk−1 logP (m′

kxk|x<k) + m
′
k logP (mk+1xk+1|x<k+1)

]

. (29)
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Therefore, we have the following equation:

Llm(… , m′
k,… , mn) − Llm(… , mk,… , m′

n)
= − mk−1 log p(m′

k) + mk−1 log p(mk) − m
′
k log p(mk+1) + mk log p(mk+1)

− mn−1 log p(mn) + mn−1 log p(m′
n) − mn log p(m

′
k+1) + m

′
n log p(m

′
n+1),

(30)

where, for simplicity, we use the abbreviation p(mk) to represent p(mkxk|x<k).We also have that:

−mn log p(m′
k+1) + mn−1 log p(m

′
n) = (mn−1 − mn) log p(m′

k+1) − mn−1 log
p(m′

k+1)
p(m′

n)
(31)

≥ � log p(m′
k+1) − � (32)

Since p(mk)k are expected to have large probability values in the languagemodel training process, we have that p(mk) >
�, and, therefore, −| log �| < log p(mk+1)

p(mn)
< | log �|.

Hence, we have that:

−mn−1 log p(mn) + mk log p(mk+1) = (mk − mn−1) log p(mk+1) + mn−1 log
p(mk+1)
p(mn)

(33)
≥ � log p(mk+1) − | log �| ≥ (� − 1)| log �|. (34)

Similarly, −m′
k log p(mk+1) + mk−1 log p(mk) ≥ (1 − 2�) log p(mk) + m′

k log
p(mk)
p(mk+1)

≥ (1 − 3�)| log �|.
Therefore, the lower bound of the expression in Eq. 30 is:

inf = −(1 − �) log p(m′
k) + � log p(m

′
n+1) + � log p(m

′
k+1) − 2�| log �| − �

≥ −(1 − 3�) log p(m′
k) − 4�| log �| − � > 0.

(35)

This proves the statement of the theorem.

B. More Results.
We list more examples of rationales extracted by our model for the BeerAdvocate dataset in Table 13.
More examples of rationales extracted by our model for the legal judgement tasks are shown in Table 6.

C. Human Evaluation Setup
Our annotators were asked the following questions, in order to assess the usefulness, completeness, and fluency of

the rationales provided by our model.
C.1. Usefulness of Rationales

Q: Do you think the selected tokens/rationale are useful to explain the ground-truth label?
Please choose a score according to the following description. Note that the score is not necessary an integer, you

can give intermediate scores, such as 3.2 or 4.9 if you deem appropriate.
• 5: Exactly. I can give the correct label only by seeing the given tokens.
• 4: Highly useful. Although most of the selected tokens lead to the correct label, there are still several tokens

that have no relation to the correct label.
• 3: Half of them are useful. About half of the tokens can give some hint for the correct label, the rest are nonsense

to the label.
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Gold InfoCal
dark black with nearly no light at all shining through on this one . rich tan
colored head of about two inches quickly settled down to about a half inch
of tan that thoroughly coated the inside of the glass . this was what the
style is all about the aroma was just loaded down with coffee . rich notes of
mocha mixes in with a rich , and sweet coffee note . a tiny bit of bitterness
and an earthy flare lying down underneath of it , but the majority of this
one was hands down , rich brewed coffee . the flavor was more of the same
. rich notes just rolled over the tongue in waves and thoroughly coated
the inside of the mouth . sweet with touches of chocolate and vanilla to
highlight the coffee notes

dark black with nearly no light at all shining through on this one . rich tan
colored head of about two inches quickly settled down to about a half inch
of tan that thoroughly coated the inside of the glass . this was what the
style is all about the aroma was just loaded down with coffee . rich notes of
mocha mixes in with a rich , and sweet coffee note . a tiny bit of bitterness
and an earthy flare lying down underneath of it , but the majority of this
one was hands down , rich brewed coffee . the flavor was more of the same
. rich notes just rolled over the tongue in waves and thoroughly coated
the inside of the mouth . sweet with touches of chocolate and vanilla to
highlight the coffee notes

clear copper colored brew , medium cream colored head . floral hop nose ,
caramel malt . caramel malt front dominated by a nice floral hop backround
. grapefruit tones . very tasty hops run the show with this brew .thin to
medium mouth . not a bad choice if you ’re looking for a nice hop treat .

clear copper colored brew , medium cream colored head . floral hop nose ,
caramel malt . caramel malt front dominated by a nice floral hop backround
. grapefruit tones . very tasty hops run the show with this brew .thin to
medium mouth . not a bad choice if you ’re looking for a nice hop treat .

12oz bottle into my pint glass . looks decent , a brown color ( imagine
that ! ) with a tan head . nothing bad , nothing extraordinary . smell is
nice , slight roast , some nuttiness , and hint of hops . pretty much to-style
. taste is good but a little underwhelming . toffee malt , some slight roast
gives chocolate impressions . hoppiness is mild and earthy . just a touch of
bitterness . pretty nondescript overall , but nothing offensive . mouthfeel
is good , medium body and light carb give a creamy finish . drinkability
was nice . i would try this again but wo n’t be seeking it out .

12oz bottle into my pint glass . looks decent , a brown color ( imagine
that ! ) with a tan head . nothing bad , nothing extraordinary . smell is
nice , slight roast , some nuttiness , and hint of hops . pretty much to-style
. taste is good but a little underwhelming . toffee malt , some slight roast
gives chocolate impressions . hoppiness is mild and earthy . just a touch of
bitterness . pretty nondescript overall , but nothing offensive . mouthfeel
is good , medium body and light carb give a creamy finish . drinkability
was nice . i would try this again but wo n’t be seeking it out .

Table 13
More instances from the BeerAdvocate dataset. In red the rationales for the appearance aspect, in green the rationales
for the smell aspect, and in blue the rationales for the palate aspect.

• 2: Almost useless. Almost all of the tokens are useless, but there are still several tokens that are useful.
• 1: No Use. I feel very confused about the selected tokens, I don’t know which law article/charge/term of penalty

the article belongs to.
C.2. Completeness of Rationales

Q: Do you think the selected tokens/rationale are enough to explain the ground-truth label?
Please choose a score according to the following description. Note that the score is not necessary an integer, you

can give intermediate scores, such as 3.2 or 4.9, if you deem appropriate.
• 5: Exactly. I can give the correct label only by the given tokens.
• 4: Highly complete. There are still several tokens in the fact description that have a relation to the correct label,

but they are not selected.
• 3: Half complete. There are still important tokens in the fact description, and they are in nearly the same number

as the selected tokens.
• 2: Somewhat complete. The selected tokens are not enough. There are still many important tokens in the fact

description not being selected.
• 1: Nonsense. All of the selected tokens are useless. None of the important tokens is selected.

C.3. Fluency
Q: How fluent do you think the selected rationale is? For example: “He stole an iPhone in the room” is very fluent,

which should have a high score. “stole iPhone room” is just separated tokens, which should have a low fluency score.
Please choose a score according to the following description. Note that the score is not necessary an integer, you

can give scores like 3.2 or 4.9 , if you deem appropriate.
• 5: Very fluent.
• 4: Highly fluent.
• 3: Partial fluent.
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࿞ᶲ݅�Ո࿆༄੊ᴺ�೰ഴ ҅ 2014 ଙ�1 ์�11 ෭�҅�ᤩޞՈ�๫�຤຤�Ө�୻�຤຤ҁݚໜ॒
ቘ҂ࣁ�࿞ᶲ݅�UNK “ ෛ�᮷�਽ḅ�” Ӟ�಄ᳵٖݸض� ୩ᤈ Ө ᤩਸ਼Ո ᮛ ຤຤ ݎኞ ௔ىᔮ ̶ 

੪ྌ�҅ل�ᦫ�๢ى�Ԉڊ�ԧ�ইӥ�ᦤഝ�ғಬ឴�ᕪᬦ�̵�ಁᔁ�ᦤก�̵�᭗ᦾ�Ⴔ̵�ܔ�ఘ٭�᧔
กҔᬙᦊ�ᒟ୯Ҕሿۨ�࣋ḵ�ᒟ୯�݊�ሿ࣋�ᆙᇆ�Ҕ�ᇔᦤ�༄ḵ�ಸ݊�ޞ�ᇔᦤ�ᰄਧԡҔᦤՈ�
�ᬚ޾�ᬿ׀�Ո�๫�຤຤�ጱޞ຤�Ӱ̵ᮛ�຤຤̵๱�຤຤�ጱ�ᦤ᥺Ҕᤩڝ຤�Ԛ̵ڝ຤�ከ̵ڝ
ᥴҔᥤލᩒා̶ᧆᴺᦊԅ҅ᤩޞՈ�๫�຤຤�վݶ՜Ո�ֵአู޾ ێ ᧍᥺ শᙢ ጱ ಋྦྷ ҅ ࣁ 

࿞ᶲ݅�UNK “ ෛ ᮷ ਽ḅ ” ಄ᳵٖ ڦړ ୩ᤈ Ө ᤩਸ਼Ո ᮛ ຤຤ ݎኞ௔ىᔮٌ҅�ᤈԅ�૪᥶
ᇨ�ԧ�̽�Ӿ܏Ո࿆ڙ�ࢵ޾وဩ�̾× × × × ᒫҁࢥ҂ᶱ�ԏ�ᥢਧ҅ᇨᗜ�Ԫਫ�Ⴔ༩҅ᦤഝ�Ꮯ
ਫ̵꧌҅ړଫ୮�զ�× × ᗜ�᭄ᑪ�ٌڙ�Ԫ�ᨱձ̶ݶو�ࣁ�ᇨᗜ�Ӿ҅ᤩޞՈ�๫�຤຤�᩸�Ԇ
ᥝ�֢አ҅ ᔮ�Ԇᇨ҅੒ٌ�ଫ�ᕮ̽ݳ�Ӿ܏Ո࿆ڙ�ࢵ޾وဩ�̾�× × × × ̵× × × × ̵�× × ԏ�
ᥢਧ҅Ԩզ�॒ᗖ�̶

The People’s Procuratorate of Yongshun County alleged that on January 11, 2014, the 
defendant Li XX and Peng XX (a separate case dealt with) forcibly had sexual relaHons 
with the vicHm Zou XX in a room of Xindu Hotel in Yongshun County . In this regard, 
the public prosecuHon agency cited the following evidence: capture history, 
household registraHon cerHficate, call list, descripHon of the situaHon; idenHficaHon 
transcripts; on-site inspecHon transcripts and on-site photos; physical evidence 
inspecHon reports and physical evidence idenHficaHon documents; witnesses Liu A, 
Liu B, TesHmony of Liu C, Zou XX, Du XX; confession and defense of defendant Li XX; 
audio-visual materials. The court held that the defendant Li XX used violence and 
verbal threats with others to forcibly have sexual relaHons with the vicHm Zou XX in 
the Xindu Hotel room in Yongshun County. His behavior has violated the Item (4) of 
the Criminal Law of the PRC, the facts of the crime are clear, and the evidence is 
reliable and sufficient, and the criminal responsibility should be invesHgated for the 
crime of × ×. In the joint crime, the defendant Li XX played the main role and was the 
principal offender…..

ᕪ ਭቘ ັก ҅2015 ଙ 9 ์ 5 ෭ 19 ෸ᦜ ҅ᤩޞՈ ᓌ຤ ࢩ ஽ወ ٌ ঀ݋ Ө ᮝ੷ Ἆ຤ ከ ํ 

ӧ ྋ୮ىᔮ ҅ ࣁ ܨ�๜ܖ�܄໫�UNK ᕁจ�304 ݩ�xxx ਰ ٌ ฮ֘ ॒ ᬰᤈ ᨶᳯ ҅ ᭺ ᤩਸ਼Ո 

Ἆ຤ ከ ጱ ވᦊ ̶ ᤩޞՈ ᓌ຤ ԅ အీ UNK ោڏ Ꮅօ ᤩਸ਼Ո Ἆ຤ ከ ҅ ᛘ ᤩਸ਼Ո ૢ ᙒ
᙮ṋ ṋರ ̶ ᕪ ᰄਧ ҅ ᤩਸ਼Ո Ἆ຤ ከ ጱ օ۠ ຅౮ ᫷օ ̶ ӤᬿԪਫ ҅ᤩޞՈ ࣁ ୏ꁿਭ
ቘ ᬦᑕ Ӿ Խ ෫୑ᦓ҅Ӭ ํ ᤩਸ਼Ո Ἆ຤ ከ ጱ ᴯᬿ҅ᦤՈ ᠧ຤ ຤ ̵ Ἆ຤ Ԛ ጱ ᦤ᥺ ҅ 

ᬙᦊ ᒟ୯ ҅ ܅ᴺ ༄ḵ ఘ٭ ᦕ୯ ҅ ॔෮य़਍ Ӥၹ܅਍ᴺ ݪဩᰄਧ Ӿஞ ٍڊ ጱ ݪဩᰄ
ਧ ఺ᥠԡ ҅ لਞ๢ٍڊ ى ጱ ໜݎ ᕪᬦ ̵ ૡ֢ ఘڙ ҅ ٭Ԫ ᴫଃ ࿆Ԫ ٬ڣԡ ᒵ ᦤഝ 

ᦤਫ ҅ ᪃զᦊਧ̶

A about 19:00 on September 5, 2015, the defendant, Jian, because he suspected that 
his girlfriend had an improper relaHonship with his neighbor Huang AA, he 
proceeded in his temporary residence in the xxx room, Hongxing 304, South Bridge, 
to quesHon him. The vicHm Huang AA denied. The defendant, Jian, vented his anger 
by using a kitchen knife to cut the vicHm Huang AA, causing the vicHm to fracture his 
leb scapula. Aber idenHficaHon, the injury of the vicHm Huang AA consHtuted a 
minor injury. The defendant had no objecHons to the above-menHoned facts during 
the trial, and there were statements by the vicHm Huang AA, the tesHmony of 
witnesses Cai and Huang BB, idenHficaHon transcripts, hospital inspecHon records, 
Forensic ExperHse Opinion issued by Forensic ExperHse Center of Shanghai Medical 
College of Fudan University, the case history, work condiHons, and the criminal and 
civil judgments and other evidences are sufficient to confirm.

ှ݅ Ո࿆༄੊ᴺ ೰ഴ ғ 2014 ଙ 9 ์ 10 ෭ภ ҅ ᤩޞՈ ᴯ�຤຤�ᕟᕢ�ૡՈࣁ��ᛔ૩ Ṻऱ 

಑Ṻ ᬦᑕ Ӿ ӧై ਖ਼ ᤩਸ਼Ո ୟ ຤຤ ໓ᐿ ࣁ Ṻऱ ෟᬟ ጱ ܖኈ ޾ UNK ᡕ UNK ̶ ེ෭ Ӥ
 ᩠ؑ UNK ᡕ ጱ ޾�ኈܖ�ࢩ ᬿ Ṻऱ ᴫᬪ Ᏻᶎ ҅ ԫՈڹ�ࣁ�ୟ�຤຤ ޾ ෸ᦜ ҅ ᴯ ຤຤ 7 ܌

ᳯ᷌ ݎኞԩಗ ҅ ᬰᘒ ݎኞ ಑෎ ̶ ࣁ�಑෎�ጱ ᬦᑕ Ӿ ҅ᤩޞՈ�ᴯ�຤຤ ஏಋ ਖ਼ ୟ ຤຤ 

ᶎ᮱ ἲṋ ̵ ᷙṋ ಑օ ̶ ᕪ ဩ܅਍ ᰄਧ ୟ ຤຤ ಅ ݑ ഖօ ԅ ᫷օ ̶ ໜݸݎ ҅ᤩޞՈ�
ᴯ�຤຤�ԭ ୮෭ Ԇۖ ل کਞ๢ى ಭໜ ҅ ଚ ইਫ ׀ᬿ ٌ ᇨᗜԪਫ ̶ ᦫ᧗ ׁᆙ̽�Ӿ܏
Ո࿆ڙ�ࢵ޾وဩ�̾××҅զ�×× ᗜ�੒�ᤩޞՈ�ᴯ�຤຤�Ԩզ॒ڣ�

Charge: Intentional injury
The Lu County People’s Procuratorate charged: On the evening of September 10, 
2014, The defendant Chen XX organized a worker who accidentally trampled on the 
pumpkins and UNK vines planted by the vicHm Zhang XX next to the fish pond while 
fishing in his own pond. At 7 o'clock in the morning the next day, Chen and Zhang 
met near the aforemenHoned fish pond. For the sake of the compensaHon of 
pumpkins and UNK vines, the two had a dispute , and a fight broke out. During the 
fight, the defendant Chen XX injured Zhang’s facial nasal bones and cheekbones with 
his bare hands. According to forensic medicine, Zhang XX suffered a minor injury. 
Aber the incident, the defendant Chen XX took the iniHaHve to surrender to the 
public security organ on the same day and truthfully confessed the facts of the crime. 
In accordance with the "Criminal Law of the People's Republic of China", the 
defendant Chen XX shall be sentenced for the crime of ××

ᗜݷғඳ఺օਸ਼

Charge: Intentional injuryᗜݷғඳ఺օਸ਼

Charge: Rapeᗜݷғ୩ঃ

Figure 6: More instances from the CAIL2018 dataset. Left: the fact description (in Chinese). Right: the corresponding
English translation of the fact description. In pink is the selected rationales.

• 2: Very unfluent.
• 1: Nonsense.
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