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1. Main results

The goal of this work is to understand the geometry of compact Kéahler manifolds
with semipositive Ricci curvature, and especially to study the relations that tie Ricci
semipositivity with rational connectedness. Many of the ideas are borrowed from [DPS96]
and [BDPP]. Recall that a compact complex manifold X is said to be rationally connected
if any two points of X can be joined by a chain of rational curves. A line bundle L is said
to be hermitian semipositive if it can be equipped with a smooth hermitian metric of
semipositive curvature form. A sufficient condition for hermitian semipositivity is that
some multiple of L is spanned by global sections; on the other hand, the hermitian
semipositivity condition implies that L is numerically effective (nef) in the sense of
[DPS94], which, for X projective algebraic, is equivalent to saying that L - C > 0 for
every curve C' in X. Examples contained in [DPS94] show that all three conditions are
different (even for X projective algebraic). The Ricci curvature is the curvature of the
anticanonical bundle K)_(l = det(Tx), and by Yau’s solution of the Calabi conjecture
(see [AubT76], [Yau78]), a compact Kéhler manifold X has a hermitian semipositive
anticanonical bundle K 3! if and only if X admits a Kihler metric w with Ricci(w) > 0.
A classical example of projective surface with K)_(1 nef is the complex projective plane
PZ blown-up in 9 points, no 3 of which are collinear and no 6 of which lie on a conic;
in that case Brunella [Brul0] showed that there are configurations of the 9 points for

1



which K)_(l admits a smooth (but non-real analytic) metric with semipositive Ricci
curvature; depending on some diophantine condition introduced in [Ued82], there are
also configurations for which some multiple K™ of K)_(1 is generated by sections and
others for which K)_(l is nef without any smooth metric. Finally, let us recall that a line
bundle L — X is said to be pseudoeffective if here exists a singular hermitian metric
h on L such that the Chern curvature current 1" = 1Oy, j, = —i00log h is non-negative;
equivalently, if X is projective algebraic, this means that the first Chern class c¢;(L)
belongs to the closure of the cone of effective Q-divisors.

We first give a criterion characterizing rationally connected manifolds by the non-
existence of sections in certain twisted tensor powers of the cotangent bundle; this is only
a minor variation of Theorem 5.2 in [Pet06], cf. also Remark 5.3 therein.

1.1. Criterion for rational connectedness. Let X be a projective algebraic n-
dimensional manifold. The following properties are equivalent.

(a) X is rationally connected.

(b) For every invertible subsheaf F C Q% = OAPT%), 1 < p < n, F is not
pseudoeffective.

(c) For every invertible subsheaf F C O((T%)®?), p > 1, F is not pseudoeffective.

(d) For some (resp. for any) ample line bundle A on X, there exists a constant Cy > 0
such that

HY(X,(T3)®™ @ A®%) =0 for all m, k € N* with m > Crk.

1.2. Remark. The proof follows easily from the uniruledness criterion established
in [BDPP]: a non-singular projective variety X is uniruled if and only if Ky is
not pseudoeffective. A conjecture attributed to Mumford asserts that the weaker
assumption (d') HO(X,(T%)®™) = 0 for all m > 1 should be sufficient to imply
rational connectedness. Mumford’s conjecture can actually be proved by essentially the
same argument if one uses the abundance conjecture in place of the more demanding
uniruledness criterion from [BDPP] — more specifically that H°(X, K§™) = 0 for all
m > 1 would imply uniruledness.

1.3. Remark. By [DPS94], hypotheses 1.1 (b) and (c) make sense on an arbitrary
compact complex manifold and imply that H°(X,Q%) = 0. If X is assumed to be
compact Kéhler, then X is automatically projective algebraic by Kodaira [Kodb4],
therefore, 1.1 (b) or (c) also characterize rationally connected manifolds among all
compact Kahler ones. O

The following structure theorem generalizes the Bogomolov-Kobayashi-Beauville
structure theorem for Ricci-flat manifolds ([Bog74a], [Bog74b], [Kob81], [Bea83]) to
the Ricci semipositive case. Recall that a holomorphic symplectic manifold X is a
compact Kéhler manifold admitting a holomorphic symplectic 2-form w (of maximal
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rank everywhere); in particular Kx = Ox. A Calabi- Yau manifold is a simply connected
projective manifold with Ky = Ox and H’(X,0Q%) =0for 0 < p <n = dimX (or a
finite étale quotient of such a manifold).

1.4. Structure theorem. Let X be a compact Kahler manifold with K)_(l hermitian
semipositive. Then

(a) The universal cover X admits a holomorphic and isometric splitting

X:CqXHY}XHSkXHZg

where Y;, Sk, and Zy are compact simply connected Kahler manifolds of respective
dimensions nj, ny, n, with irreducible holonomy, Y; being Calabi- Yau manifolds
(holonomy SU(n;)), Sk holomorphic symplectic manifolds (holonomy Sp(n},/2)), and
Zy rationally connected manifolds with ngl semipositive (holonomy U(n}), unless Zy
is hermitian symmetric of compact type).

(b) There exists a finite étale Galois cover X — X such that the Albanese variety Alb(X)
is a q-dimensional torus and the Albanese map o : X — Alb(X) is an (isometrically)
locally trivial holomorphic fiber bundle whose fibers are products [1Y; X [ Sk X [ Ze
of the type described in a). Even more holds after possibly another finite étale cover:
X is a fiber bundle with fiber [] Zy on []Y; x [ Sk X Alb(X).

(c) We have m1(X) ~ 74 and 711(X) is an estension of a finite group T' by the normal
subgroup 71(X). In particular there is an exact sequence

0— 7% =71 (X)—=T =0,
and the fundamental group m1(X) is almost abelian.

The proof relies on the holonomy principle, and on De Rham’s splitting theorem
[DR52] and Berger’s classification [Ber55]. Foundational background can be found in
papers by Lichnerowicz [Lic67], [Lic71], and Cheeger-Gromoll [CGT71], [CGT72]. The
restricted holonomy group of a hermitian vector bundle (F,h) of rank r is by definition
the subgroup H C U(r) ~ U(E,,) generated by parallel transport operators with respect
to the Chern connection V of (E, h), along loops based at zy that are contractible (up
to conjugation, H does not depend on the base point zp). We need here a generalized
“pseudoeffective” version of the holonomy principle, which can be stated as follows.

1.5. Generalized holonomy principle. Let E be a holomorphic vector bundle of rank r
over a compact complex manifold X. Assume that E is equipped with a smooth hermitian
structure h and X with a hermitian metric w, viewed as a smooth positive (1,1)-form
w =1y w;r(2)dz; NdZ. Finally, suppose that the w-trace of the Chern curvature tensor
Of, 1 s semipositive, that is

n—1 n

iOpn A —— =B BeHem(E,E), with B>0 on X,
T (n—1)! n!

and denote by H the restricted holonomy group of (E,h).
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(a) If there exists an invertible sheaf L C O((E*)®™) which is pseudoeffective as a line
bundle, then L is flat and L is invariant under parallel transport by the connection of
(E*)®™ induced by the Chern connection V of (E,h); in fact, H acts trivially on L.

(b) If H satisfies H = U(r), then none of the invertible sheaves L C O((E*)®™) can be
pseudoeffective for m > 1.

The generalized holonomy principle is based on an extension of the Bochner formula
as found in [BY53], [Ko83]: for (X, w) Kihler, every section u in H°(X, (T5%)®™) satisfies

(1.6) A(llul?) = [ Vull® + Q(u),

where Q(u) > mA1||ul|? is bounded from below by the smallest eigenvalue A\; of the
Ricci curvature tensor of w. If Ay > 0, the equality [ A(]jul|*)w™ = 0 implies Vu = 0
and Q(u) = 0. The generalized principle consists essentially in considering a general
vector bundle F rather than E = T, and replacing ||u||? with ||u||2e¥ where u is a local
trivializing section of L, where ¢ is the corresponding local plurisubharmonic weight
representing the metric of £ and w a Gauduchon metric, cf. (3.2).

1.7. Remark. If one makes the weaker assumption that K)_(1 is nef, then Qi Zhang
[Zha96, Zha05] proved that the Albanese mapping o : X — Alb(X) is surjective in the
case where X is projective, and Paun [Paul2| recently extended this result to the general
Kaéhler case (cf. also [CPZ03]). One may wonder whether there still exists a holomorphic

splitting
XZCqXHY}XHSkXHZZ

of the universal covering as above. However the example where X = P(E) is the ruled
surface over an elliptic curve C' = C/(Z+Zr) associated with a non-trivial rank 2 bundle
E — C with

0—-0c—F—=0c—0

shows that X = C x P! cannot be an isometric product for a Kahler metric w on X.
Actually, such a situation would imply that K)_(1 = Op(p)(1) is semipositive, but we know
by [DPS94] that Op(g)(1) is nef and non-semipositive. Under the mere assumption that
K)_(1 is nef, it is unknown whether the Albanese map a : X — Alb(X) is a submersion,
unless X is a projective threefold [PS98], and even if it is supposed to be so, it seems
to be unknown whether the fibers of a may exhibit non-trivial variation of the complex
structure (and whether they are actually products of Ricci flat manifolds by rationally
connected manifolds). The main difficulty is that, a priori, the holonomy argument
used here breaks down — a possibility would be to consider some sort of “asymptotic
holonomy” for a sequence of Kéahler metrics satisfying Ricci(w:) > —ew., and dealing
with the Gromov-Hausdorff limit of the variety. O

This work was completed while the three authors were visiting the Mathematisches
Forschungsinstitut Oberwolfach in September 2012. They wish to thank the Institute for
its hospitality and the exceptional quality of the environment.



2. Proof of the criterion for rational connectedness

In this section we prove Criterion 1.1. Observe first that if X is rationally connected,
then there exists an immersion f : P! C X passing through any given finite subset
of X such that f*Tx is ample, see e.g. [Kol96, Theorem 3.9, p. 203]. In other words
[*T'x = @ Op1(a;), a; >0, while f*A = Op1(b), b > 0. Hence

HOPL, f*(T%)®™ @ A®%)) =0 for m > kb/ min(a;).

As the immersion f moves freely in X, we immediately see from this that 1.1 (a) implies
1.1 (d) with any constant value C4 > b/ min(a;).

To see that 1.1 (d) implies 1.1 (c), assume that F C (T%)%? is a pseudoeffective line
bundle. Then there exists kg > 1 such that

HY(X, F&™ @ AM) £0

for all m > 0 (for this, it is sufficient to take kg such that A% ® (Ky ® G*t1)~1 > 0
for some very ample line bundle G). This implies HO(X, (T%)®™ @ AF0) # 0 for all m,
contradicting assumption 1.1 (d).

The implication 1.1 (¢) = 1.1 (b) is trivial.
It remains to show that 1.1 (b) implies 1.1 (a). First note that Kx is not
pseudoeffective, as one sees by applying the assumption 1.1 (b) with p = n. Hence

X is uniruled by [BDPP]. We consider the quotient with maximal rationally connected
fibers (rational quotient or MRC fibration, see [Cam92], [KMM92])

FiX W

to a smooth projective variety W. By [GHSO01], W is not uniruled, otherwise we could lift
the ruling to X and the fibers of f would not be maximal. We may further assume that
f is holomorphic. In fact, assumption 1.1 (b) is invariant under blow-ups. To see this,
let 7 : X — X be a birational morphisms from a projective manifold X and consider a
line bundle F C Q% . Then m, (F) C (Q%) = Q% hence we introduce the line bundle

A

F = (m (F))™ C Q%

Now, if F were pseudoeffective, so would be F. Thus 1.1 (b) is invariant under 7 and we
may suppose f holomorphic. In order to show that X is rationally connected, we need
to prove that p := dim W = 0. Otherwise Ky = €, is pseudoeffective by [BDPP], and
we obtain a pseudo-effective invertible subsheaf F := f*(Qf,) C Q% in contradiction
with 1.1 (b). O

3. Bochner formula and generalized holonomy principle

Let (E, h) be a hermitian holomorphic vector bundle over a n-dimensional compact
complex manifold X. The semipositivity hypothesis on B = Tr,, O, is invariant by
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a conformal change of metric w. Without loss of generality we can assume that w
is a Gauduchon metric, i.e. that 90w ! = 0, cf. [Gau77]. We consider the Chern
connection V on (E,h) and the corresponding parallel transport operators. At every
point zg € X, there exists a local coordinate system (z1,...,z,) centered at zy (i.e.
2o = 0 in coordinates), and a holomorphic frame (ex(2))i1<a<, such that

(3.1)  (ea(2),en(2)n = dxp — Z CikauZjZk t+ O(|Z|3), 1< A<,
1<j,k<n

’ — * S
(3.1 ) @E,h(ZO) = E Cjk)xudzj ANdzZi ® e\ ey, Ckjiuh = Cjkius
1<5,k, A, p<n

where 6y, is the Kronecker symbol and ©g j(29) is the curvature tensor of the Chern
connection V of (E, h) at 2.

Assume that we have an invertible sheaf £ C O((E*)®™) that is pseudoeffective.
There exist a covering U; by coordinate balls and holomorphic sections f; of Ly,

generating £ over U;. Then L is associated with the Cech cocycle gk in O% such
that fr = g;if;, and the singular hermitian metric e~% of £ is defined by a collection of
plurisubharmonic functions ¢; € PSH(U;) such that e=#* = |g;x|?e~%7. It follows that
we have a globally defined bounded measurable function

Y= flI* = ]| £l 7em

over X, which can be viewed also as the hermitian metric ratio (h*)™/e~% along L, i.e.
P = (h*)ﬁe“@. We are going to compute the Laplacian A, 1. For simplicity of notation,
we omit the index j and consider a local holomorphic section f of £ and a local weight
¢ € PSH(U) on some open subset U of X. In a neighborhood of an arbitrary point
zp € U, we write

f=) fa€h, ®...0€, . fac€OU),

aeN™

where (e}) is the dual holomorphic frame of (ey) in O(E*). The hermitian matrix of
(E*,h*) is the transpose of the inverse of the hermitian matrix of (E,h), hence (3.1)
implies

(ex(2)en(@n =0+ > cirmnzZ+0(2°),  1<Ap<r
1<j,k<n

On the open set U the function ¢ = (h”)[ze? is given by
o= (2 1l > T3 ik + OU=P) 1) ).
aeNm™ a,BeEN™ 1<j,k<n,1<f<m

By taking i09(...) of this at z = zq in the sense of distributions (that is, for almost every
20 € X), we find

00y = ¥ <|f|2i65g0 +ilDf + fOp,df + fOp) +

+ Z fozf_ﬁ CikBray W25 N d2k>.

a,B,j,k,1<€<m
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Since 00y A 11), = sz/)% (we actually take this as a definition of A,), a
multiplication by w" ™! yields the fundamental inequality

(3.2) Auth > |fPe? (Dup +mA) + VO f + FOQI2 jom €7

where A\1(z) > 0 is the lowest eigegvalue of the hermitian endomorphism B = Tr, ©g
at an arbitrary point z € X. As 00w™ ™! = 0, we have

/}(sz—T:/zaawA /w Zai_l Dy

by Stokes’ formula. Since id0¢ > 0, (3.2) implies Ay = 0, ie. i90p = 0, and
V,ll’of + fO0p = 0 almost everywhere. This means in particular that the line bundle
(L,e%) is flat. In each coordinate ball U; the pluriharmonic function ¢; can be written
¢j = w; + w; for some holomorphic functlon w; € O(Uj), hence dp; = dw; and the
condition V}’ Of] + fj0p; = 0 can be rewritten V1 0( “i f;) = 0 where €7 f; is a local
holomorphie section. This shows that £ must be invariant by parallel transport and
that the local holonomy of the Chern connection of (E, h) acts trivially on L. Statement
1.5 (a) follows.

Finally, if we assume that the restricted holonomy group H of (E, h) is equal to U(r),
there cannot exist any holonomy invariant invertible subsheaf £ C O((E*)®™), m > 1,
on which H acts trivially, since the natural representation of U(r) on (C")®™ has no
invariant line on which U(r) induces a trivial action. Property 1.5 (b) is proved. O

4. Proof of the structure theorem

We suppose here that X is equipped with a Kéhler metric w such that Ricci(w) > 0,
and we set n = dimc X. We consider the holonomy representation of the tangent bundle
E = Tx equipped with the hermitian metric h = w. Here

B = TI'(,_, @E,h == TI‘w @Tx,w Z 0

is nothing but the Ricci operator.

Proof of 1.4 (a). Let N
(X, w) ~ H(Xi,wi)

be the De Rham decomposition of (55 ,w), induced by a decomposition of the holonomy
representation in irreducible representations. Since the holonomy is contained in U(n),
all factors (X;,w;) are Kéhler manifolds with irreducible holonomy and holonomy group
H; Cc U(n;), n; = dim X;. By Cheeger-Gromoll [CG71], there is possibly a flat factor
Xo = C? and the other factors X;, ¢ > 1, are compact and simply connected. Also,
the product structure shows that each K)_(z1 is hermitian semipositive. By Berger’s
classification of holonomy groups [Berb5] there are only three possibilities, namely
H; = U(n;), H; = SU(n;) or H; = Sp(n;/2), unless X; is a Hermitian symmetric
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space, then necessarily of compact type; such symmetric spaces have been classified by
E. Cartan, they are rational homogeneous, hence rationally connected (their holonomy
groups are also well known, see e.g. [Bes87, §10]). The case H; = SU(n;) leads to X;
being a Calabi-Yau manifold, and the case H; = Sp(n;/2) implies that X; is holomorphic
symplectic (see e.g. [Bea83]). Now, if H; = U(n;), the generalized holonomy principle 1.5
shows that none of the invertible subsheaves £ C O((T%,)®™) can be pseudoeffective for
m > 1. Therefore X; is rationally connected by Criterion 1.1.

Proof of 1.4 (b). Set X' = [],~; X;. The group of covering transformations acts on the
product X = C? x X’ by holomorphic isometries of the form x = (z,2") — (u(z),v(z’)).
At this point, the argument is slightly more involved than in Beauville’s paper [Bea83],
because the group G’ of holomorphic isometries of X’ need not be finite (X’ may be for
instance a projective space); instead, we imitate the proof of ([CG72], Theorem 9.2) and
use the fact that X’ and G’ = Isom(X’) are compact. Let £, = C? x U(q) be the group
of unitary motions of C¢. Then 7 (X) can be seen as a discrete subgroup of E, x G'. As
G’ is compact, the kernel of the projection map m1(X) — E, is finite and the image of
71(X) in E, is still discrete with compact quotient. This shows that there is a subgroup
[’ of finite index in 71 (X) which is isomorphic to a crystallographic subgroup of C9.
By Bieberbach’s theorem, the subgroup I'g C I' of elements which are translations is a
subgroup of finite index. Taking the intersection of all conjugates of 'y in 71 (X), we
find a normal subgroup I'y C 71(X) of finite index, acting by translations on C?. Then
X = XTIy is a fiber bundle over the torus C/T'; with X’ as fiber and m (X') = 1.

Therefore X is the desired finite étale covering of X.

For the second assertion we consider fiberwise the rational quotient and obtain a
factorization

X 5w AbX)

with fiber bundles 8 (fiber [ Z,;) and v (fiber [[Y; x [[Sk). Since clearly Ky = 0, the
claim follows from the Beauville-Bogomolov decomposition theorem.

Proof of 1.4 (c). The statement is an immediate consequence of 1.4 (b), using the homo-

topy exact sequence of a fibration. O

5. Further remarks

We finally point out two direct consequences of Theorem 1.4. Since the property
HY(X,(T)®™) =0  (m>1)

is invariant under finite étale covers, we obtain immediately from Theorem 1.4:

5.1. Corollary. Let X be a compact Kdhler manifold with K)_(l hermitian semi-positive.
Assume that HY(X, (T%)®™) = 0 for all positive m. Then X is rationally connected.

This establishes Mumford’s conjecture in case X has semi-positive Ricci curvature.
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Theorem 1.4 also gives strong implications for small deformations of a manifold with
semi-positive Ricci curvature:

5.2. Corollary. Let X be a compact Kdhler manifold with K)_(l hermitian semi-
positive. Let w: X — A be a proper submersion from a Kdhler manifold X to the unit
disk A C C. Assume that Xg = 7 1(0) ~ X. Then there exists a finite étale cover

X — X with projection 7w : X — A such that - after possibly shrinking A - the following
holds.

(a) The relative Albanese map o : X — Alb(X/A) is a surjective submersion; thus the
Albanese map oy : Xy = 7 1(t) — Alb(X}) is a surjective submersion for all t.

(b) Ewery fiber of i is a product of Calabi-Yau manifolds, irreducible symplectic mani-
folds and irreducible rationally connected manifolds.

(c) There ezists a factorization of « :
X5y Alb(x/A)
such that 8; = Bix, is a submersion and a rational quotient of )/(\'t for all t, and

Ye = Yy, 18 a trivial fiber bundle.

Corollary 5.2 is an immediate consequence of Theorem 1.4 and the following propo-
sition.

5.3. Proposition. Let 7 :)Y — A be a proper Kdihler submersion over the unit disk.
Assume that Yo ~ [[ X; x [[Y; x [[ Zx with X; Calabi-Yau, Y; irreducible symplectic
and Zy, irreducible rationally connected. Then (possibly after shrinking A) every Y; has

a decomposition
Ve~ [T Xiw x [[ Y5 x [ 2.t

with factors of the same types as above, and the factors form families X;, V; and Zj,.

Proof. 1t suffices to treat the case of two factors, say Yy = A; X Ay where the A; are
Calabi-Yau, irreducible symplectic or rationally connected. Since H'(A;, O 4;) = 0, the
factors A; deform to the neighboring Y;. By the properness of the relative cycle space
we obtain families ¢; : U; — S; over A with projections p; : U; — ). Possibly after
shrinking A, this yields holomorphic maps f; : J — S;. Then the map

Jix fo: Y = 51 x5

is an isomorphism, since A; - By = Ag - Bg = 1. This gives the families (4;); we are
looking for. O



Appendix: a flag variety version of the holonomy principle
by Jean-Pierre Demailly, Institut Fourier

Our goal here is to derive a related version of the holonomy principle over flag
varieties, based on a modified Bochner formula which we hope to be useful in other
contexts (especially since no assumption on the base manifold is needed). If E is as
before a holomorphic vector bundle of rank r over a n-dimensional complex manifold,
we denote by F(F) the flag manifold of E, namely the bundle F(E) — X whose fibers
consist of flags

E: E,=VoDViD...0V,={0}, dimE,=r, codimVy =)\,

in the fibers of F, along with the natural projection 7 : F(F) — X, (z,§) — z. We
let Qx, 1 < X <r be the tautological line bundles over F'(E) such that

Qre = Vao1/Va,

and for a weight a = (ay,...,a,) € Z" we set
Q=07 ®...0 Q.
In additive notation, viewing the @); as divisors, we also denote
a@Qi+... +arQr

any real linear combination (a; € R). Our goal is to compute explicitly the curvature
tensor of the line bundles Q* with respect to the tautological metric induced by h. For
convenience of notation, we prefer to work on the dual flag manifold F(E*), although
there is a biholomorphism F(E) ~ F(E*) given by

(B =WoDW1D...0W,={0}) — (EX=VoD>ViD...0V,={0})

where V) = W:_ y is the orthogonal subspace of W,_y in Ej. In this context, we have
an isomorphism

Vaer/Va = W /W (Weoa /W)™
This shows that Q¢ — F(E*) is isomorphic to Q° — F(FE) where by = —a,_x11, that is
(bh b27 SRR br—h br) = (_aT7 —Qr—1,-.., —02, _al)-

We now proceed to compute the curvature of Q® — F(E*), using the same notation as
in section 3. In a neighborhood of every point zyg € X, we can find a local coordinate
system (z1,...,2,) centered at zp and a holomorphic frame (ey)1<r<, such that

(A1) (ea(2)en(®) =Lpmuy = D cmwzze +0(2P),  1<au<r,
1<j,k<n
(A.ll) @E‘,h(zo) = Z Cjk:)xudzj VAN d?k ® 6; ® €5 Cljur = Cikius
1<5,k, A, p<n
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where 15 denotes the characteristic function of the set S. For a given point {y € F(E7)
in the flag variety, one can always adjust the frame (e)) in such a way that the flag
corresponding to &y is given by

(A.2) Vi = Vect(er,...,ex)! C EZ .

A point (z,£) in a neighborhood of (zg, &) is likewise represented by the flag associated
with the holomorphic tangent frame (€5 (z,&))1<a<, defined by

(A.3) a8 =@+ Y Ouenlz),  (Exisacuzr € CTUTV2,

A<u<lr

We obtain in this way a local coordinate system (z;,§),) near (zo,&) on the total
space of F(E*), where the (£,,) are the fiber coordinates. The frame €(z,&) is not
orthonormal, but by the Gram-Schmidt orthogonalization process, the flag £ is also
induced by the (non-holomorphic) orthonormal frame (€)(z,£)) obtained inductively by
putting e; = €;1/|e1| and

ey = (’(5)\ — Z (€x, €u) é\u)/(norm of numerator).
1<pu<A

Straightforward calculations imply that the hermitian inner products involved are
O(|€] + |2]?) and the norms equal to 1+ O((|€| + |z|)?), hence we get

a8 =ez8+ Y. &uen)— D Laenz) +0((E+121)?),

A<pu<r 1<p<A

and more precisely (omitting variables for simplicity of notation)

~ 1 1 1 _
8,\2(1—5 > |§p,\|2—§ > |§/\u|2+§ > CjkAAZjZk>€>\+ > Gwen

1<p<A A<p<r 1<j,k<n A<p<r
(A.4) =Y Gt X ek D cmwsEe)en+ O((g + 12D)?).
1<pu<A A<v<r 1<j5,k<n

The curvature of the tautological line bundle @y = V)_1/V) can be evaluated by
observing that the dual line bundle

Qs =VI/Vi_ | =Vect(ey,..., &)/ Vect(€1,...,er 1)
admits a holomorphic section given by
a(z,&) = ex(z,&) mod Vect(eq,...,ex_1).

The tautological norm of this section is

> =1Ea = D @)l

1<pu<A
=1- Z CikANZj 2k + Z [Exal® — Z [Euxl” +O((l2] + 1€1)%).-
1<j5,k<n A< p<lr 1<pu<A
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Therefore we obtain the formula

00, (20,&) = 001log \v,\\ﬁz(}’go)
= — Z CjkAAde ANdZ + Z d@\u N dg,\u — Z dfu)\ N dgu)\,

1<j5,k<n A< p<lr 1<p<A

O« (20,%) = Y axOq, (20, %)

1<A<r
= — Z axcjpandz; A\ dzy + Z (ax —au)déx, A dEAu'

1<4,k<n, 1<A<r 1<A<u<r

This calculation holds true only at (zg,&p), but it shows that we have at every point a
decomposition of ©g. in horizontal and vertical parts given by

(A.5) Oga =08 + 07,
(A.6) 05 (20,€0) = — Z axcjeandz; A dzy = — Z a) T (Ory w(enr), en),
Jk,A 1<A<r
(A'6v) 96‘L/<ZO7 50) = Z (CL)\ - a/y,)dg)\’u A dE}‘M
1<A<u<lr

The decomposition is taken here with respect to the C*° splitting of the exact sequence
(A.7) 0—=Ty/x =Ty = m'Tx — 0, Y := F(E")

provided by the Chern connection V of (E,h); horizontal directions are those coming
from flags associated with V-parallel frames. In order to express (A.67) in a more
intrinsic way at an arbitrary point (z,£) € Y, we have to replace (ex(z)) by the
orthonormal frame (ey(z,§)) associated with the flag &; such frames are not unique,
actually they are defined up to the action of (S1)", but such a change does not affect the
expression of #7. We then get the intrinsic formula

01 (2,6) == 3 arxa(Ory w(@r(2.6),80(,))

1<A<r

(A.8) == ) ax > Cikor(2) Ero (2, €) Brr(z, €) dzj A dZ

1<A<Lr 1<j5,k<n,1<0,7<7r

where we put

)= Y Bnlz6) enl2)

1<o<r

(the coefficients €\, (z,£) can be computed from (A.4)). Moreover, since ) and ©ga
have the same restriction to the fibers of Y — X, we conclude that 6 is in fact unitary
invariant along the fibers (the tautological metric of Q® clearly has this property). Let us

12



consider the vertical and normalized unitary invariant relative volume form n of Y — X
given by

(A.9) n(z0,&0) = [\ id&uAdE,,  at (20,&).

1<A<u<r

Let N = r(r —1)/2 be the fiber dimension. For a strictly dominant weight a, i.e.
a1 > as > ...> a,, the line bundle Q¢ is relatively ample with respect to the projection
7:Y = F(E*) — X, and i0) induces a Kihler form on the fibers. Formula (A.6")
shows that the corresponding volume form is

@)Y =N J[ (ax—au) n.

1<A<pu<lr

A.10. Curvature formulas. Consider as above Q* — Y := F(E*). Then:

(a) The curvature form of Q% is given by Oga = 08 + 0V where the horizontal part is
given by

05 = — Z Cl)\7r*<®TX7w(/e\)\>7é\>\>

1<A<r
and the vertical part by

9;/(20750) = Z (ax — ay)dn, A dE)\u

1<A<pu<lr

in normal coordinates at any point (zo,&o).

(b) The relative canonical bundle Ky x is isomorphic with QP for the (anti-dominant)
canonical weight py =2\ —r —1, 1 < X <r. For any positive definite (1,1)-form w
on X we have

i00n A" = —i@f AN ATt
= Y pam(iOry w(Er), Ea) A AT

1<A<Zr

Proof. (a) follows entirely from the previous discussion.

(b) The formula for the canonical weight is a classical result in the theory of flag varieties.
As (i0Y)N and n are proportional for a strictly dominant, we compute instead

900 YN = N (0)YN"1 AN099Y + N(N — 1) (0)N=2 n060Y A 06Y,

and for this, we use a Taylor expansion of order 2 at (29,&o). Since ©g. is closed, we
have 900Y = —990X  hence

359;/ =900 Z ay Z Cikor(2) €xo(2,E) Err(2,€) dz; N dZp,

1<A<Lr 1<j5,k<n,1<o0,7<r

13



and we have similar formulas for () and 9(6Y). When taking 0, 0 and 90 we need
only consider the differentials in £, otherwise we get terms A=3(dz, dz) of degree at least
3 in the dz; or dz), and the wedge product of these with 7*w™ ! is zero. For the same
reason, 0¥ A 90Y will not contribute to the result since it produces terms of degree > 4
in dz;, dZy. Formula (A.4) gives

€xo ::1{A—a}(1'_'%' j{: Eanl® — % j{: \fku\2>

1<pu<A A<u<r

+ 1{)\<0’}§)\O’ - 1{0’<)\} (Ea’)\ + Z 5)&50;1) + O(‘Z‘Z + ‘£|3)

B>

Notice that we do not need to look at the terms O(|z]), O(|z|?) as they will produce no
contribution at (zg,&p). From this we infer

ot = Lomomry (1= 22 l&ml? = 2 1wl

1<pu< A<p<r

+ 1por<orbne — Locr=ri€or T Lppnzocrinr — Lirar=o}&ra

+ 1o r5a16n0bnr + Lorant&rnéor + LirarcorEnoérn + LiscrcriEonéar
= Y loarmramEnbon + Lrarmocuy&ruba, mod(lzl, [€%).

1<p<r

In virtue of (A.7), only “diagonal terms” of the form d&y, A dgm in the 00 of this

expression can contribute to (8Y)N=1 A 9907, all others vanish at z = ¢ = 0. The useful
terms are thus

35( Z ay Z cjkm’e}gadzj A d2k> = (unneeded terms) +
1<A<r 1<o,7<r

+ Z (— AuCikpp — ANCjEAN T ANCjkppu + aquk)\)\)df)\u VAN dEM VAN de A dZp,
1<A<u<lr

= Z (ax — ap)(Cikun — Cikan) d€xp A dEy, A dzj A dZ), 4 (unneeded).
1<A<pu<lr

From this we infer

200N At = ()N A Z (2A — 1 —7) cjpan dz; A dZp A mrw™ !
1<j,k<n, 1<A<r

Y

in fact, the coefficient of c¢jrxy is the number (A — 1) of indices < A (coming from the
term (ax — a,)Cjru, above) minus the number r — A of indices > A (coming from the
term —(ax — a,)cjran). Formula A.10 (b) follows. O

A.11. Bochner formula. Assume that X is a compact complex manifold possessing a
balanced metric, i.e. a positive smooth (1,1)-form w =143, ;1 <, wjk(z) dzj A dzx such

14



that dw™™ 1 = 0. Assume also that for some dominant weight a (a1 > ... > a, > 0),
the R-line bundle Q® is pseudoeffective on Y := F(E*), i.e. that there exists a quasi-
plurisubharmonic function ¢ such that i(©gas + 00p) >0 onY. Then

/ (i@gp A Op — i@f_p)e‘p nAT*O" <0,
Y
or equivalently

/ (26@ A 5@ + Z (CL)\ — p)\)<i@TX’w(/€\)\),/€\)\>)€@ n AN ﬂ'*wn_l < 0.
Y

1<A<r

Proof. The idea is to use the 0-formula
/Y i00(e?) An ATt —e? Nidon A W™
= /y d(i@(e@) An AT " e ion A W*w”_l) =0
which follows immediately from Stokes. We get
(A.12) /Y(iﬁgcp +i0p A Op)e? An AT w1 —efidon ATFw" T = 0.

Now, i00p > —iOga in the sense of currents, and therefore by A.10 (a,b) we obtain
(A.13) i00p A ATt —i0on A mrw™ T > (—ifH 4 i@f) An AT

The combination of (A.12) and (A.13) yields the inequality of Corollary A.11. O

The parallel transport operators of (E, h) can be considered to operate on the global
flag variety Y = F(E*) as follows. For any piecewise smooth path v : [0,1] — X, we get
a (unitary) hermitian isomorphism 7., : E, — E, where p = 7(0), ¢ = y(1). Therefore
7, induces an isomorphism 7, : F'(E;) — F(E;) of the corresponding flag varieties, and
an isomorphism over 7, of the tautological line bundles Q. Given a local C* vector
field v on an open open set U C X, there is a unique horizontal lifting v of v to a C*
vector field on 7~ (U) C Y, where horizontality refers again to V.= Vg . Now, the flow
of v consists of parallel transport operators along the trajectories of v. By definition, A
is invariant by parallel transport, therefore the associated hermitian metric h, on each
line bundle Q° is also invariant. Another metric h,,, = hoe™ % is invariant if and only if
the weight function ¢ is invariant by the flows of all such vector fields v on Y, that is if
dp(¢) = 0 for all horizontal vector fields ¢ € Ty.

A.14. Theorem. Let E — X be a holomorphic vector bundle of rank r over a compact
complex manifold X . Assume that X is equipped with a hermitian metric w and E with
a hermitian structure h such that B := Tr,(i®g ) > 0. At each point z € X, let

0<bi(z) <...<b(2)
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be the eigenvalues of B(z) with respect to h(z). Finally, let Q% be a pseudoeffective R-line
bundle on Y := F(E™*) associated with a dominant weight a; >...za >0, and let ¢
be a quasi-plurisubharmonic function on'Y such that i(©ge + 00p) > 0. Then

(a) The function ¥(z) = supecp(p=) P(2,§) is constant and by = 0 as soon as ax > 0,
and in particular B =0 if a, > 0.

(b) Assume that B = 0. Then the function ¢ must be invariant by parallel transport
onY.

Proof. Since our hypotheses are invariant by a conformal change on the metric w, we can
assume by Gauduchon [Gau77] that 99w™ 1 = 0.

(a) Notice that if a is integral and ¢ is given by a holomorphic section of Q%, then e? is
the square of the norm of that section with respect to h, and e¥ is the sup of that norm
on the fibers of Y — X. In general, formula A.10 (a) shows that

i00¢p(2,€) > —ibF (z,£) — 0} (2,£),
hence

(A.15) i@gHgo(z, HAWTHz2) > Z ax (iO7x.(Ex), Ex) (2, &) Aw™ ()

1<A<r

—H —
where 100 ¢ means the restriction of i00¢p to the horizontal directions in Ty . By taking
the supremum in £, we conclude from standard arguments of subharmonic function theory
that

Au(2) = ) aaba(a),

1<A<r

since the right hand side is the minimum of the coefficient of the (n,n)-form occurring
in the RHS of (A.15). Therefore 1 is w-subharmonic and so must be constant on X by
Aronszajn [Aro57]. Tt follows that by = 0 whenever ay > 0, in particular B = 0 if a,. > 0.

(b) Under the assumption B = Tr,, ©g j = 0, the calculations made in the course of the
proof of A.10 (b) imply that

ATt =0, 20n A *w" ! = 0.

By the proof of the Bochner formula A.11 (the fact that 00w™ ! = 0 is enough here),
we get

OS/i@gp/\&o/\n/\w*w”_l <0,
Y

and we conclude from this that the horizontal derivatives &%y vanish. Therefore ¢ is
invariant by parallel transport. O

In the vein of Criterion 1.1, we have the following additional statement.
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A.16. Proposition. Let X be a compact Kahler manifold. Then X is projective and
rationally connected if and only if none of the R-line bundles Q% over Y = F(T%) is
pseudoeffective for weights a # 0 with a1 > ... > a, > 0.

Proof. If X is projective rationally connected and some Q%, a # 0, is pseudoeffective,
we obtain a contradiction with Theorem A.14 by pulling-back Tx and Q% via a map
f: P! — X such that E = f*Tx is ample on P! (as B > 0 in this circumstance).

Conversely, if the R-line bundles Q%, a # 0, are not pseudoeffective on ¥ = F(T%),
we obtain by takinga; = ... =ap =1, apy1 = ... = a, = 0 that 71.Q* = Q%. Therefore
HO(X,0Q%) =0 and all invertible subsheaves F C Q% are not pseudoeffective for p > 1.
Hence X is projective (take p = 2 and apply Kodaira [Kod54]) and rationally connected
by Criterion 1.1 (b). O
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