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Image segmentation and annotation are key components of image-basedmedical computer-aided diagnosis (CAD) systems. In this
paper we present Ratsnake, a publicly available generic image annotation tool providing annotation e
ciency, semantic awareness,
versatility, and extensibility, features that can be exploited to transform it into an e�ective CAD system. In order to demonstrate this
unique capability, we present its novel application for the evaluation and quanti�cation of salient objects and structures of interest
in kidney biopsy images. Accurate annotation identifying and quantifying such structures in microscopy images can provide an
estimation of pathogenesis in obstructive nephropathy, which is a rather common disease with severe implication in children and
infants. However a tool for detecting and quantifying the disease is not yet available. A machine learning-based approach, which
utilizes prior domain knowledge and textural image features, is considered for the generation of an image force �eld customizing
the presented tool for automatic evaluation of kidney biopsy images. 	e experimental evaluation of the proposed application
of Ratsnake demonstrates its e
ciency and e�ectiveness and promises its wide applicability across a variety of medical imaging
domains.

1. Introduction

Image-based computer-aided diagnosis (CAD) systems aim
to aid medical diagnosis by evaluating medical images as
objectively as possible, utilizing image features and prior
knowledge about the respective application domain. Such
systems typically integrate image segmentation methods to
isolate regions of interest (ROIs) corresponding to salient
objects, and automatic annotation methods, to assign labels
that characterize each region. Prior knowledge is usually
obtained from related medical studies and multiple domain
experts, through manual segmentation and annotation of
images of that domain. Contemporary data annotation sys-
tems are based on semantic web technologies and take advan-
tage of knowledge representation structures, called ontologies,
that enable formal, unambiguous semantic annotation, which
can also be used for knowledge inference [1]. According to
this approach, labeling involves semantic, instead of plain
textual, object identi�ers. In what follows, for readability

purposes, the manual image segmentation and annotation
processes will be referred to as graphic image annotation.

Graphic image annotation is usually a time consuming
process because it requires interaction of the domain expert
with the corresponding annotation so
ware tool, whereas
the required e�ort can be thought as a function of the
aimed annotation detail and the annotator’s skill. In [2] we
presented Rapid image annotation with snakes (Ratsnake)
as an open access, cross platform so
ware tool (Ratsnake
is available at http://innovation.teilam.gr/ratsnake/), imple-
menting a framework for e
cient graphic annotation of
multiple images of the same context that contributes to
the reduction of both the annotation time and cost. 	e
e
ciency of this tool relies on a simple graphical user inter-
face (GUI), featuring complementary graphic annotation
protocols and a properly modi�ed snake model [3], which in
its original form enables semiautomatic image segmentation.
	e customizability of the snake model makes Ratsnake
versatile and applicable to a variety of imaging domains.
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Image annotation is complemented by semantics, formally
represented in ontologies that can either be developed for
a particular application or retrieved from the semantic
web. 	e functionality of Ratsnake has been later extended
to automatic annotation of multiple segmented images by
integrating an ontology of qualitative spatial semantics and
a reasoning engine for inference of the annotations [4, 5].

In this work we focus on a methodology that can
turn Ratsnake into a fully functional CAD system. 	e
comparative advantage of this approach is that it enables
faster development of such systems as plugin modules that
can exploit Ratsnake’s segmentation, semantic annotation,
ontological inference, and measurement capabilities that
have been introduced in its latest version. To this end
we present a novel application and case study, which can
also be considered as a model for developing future CAD
systems based on Ratsnake. 	e CAD system presented in
this paper aims at fast evaluation of microscopy images from
kidney biopsies. 	ese images are very complex, in the sense
that, unlike other types of medical images, their content is
characterized by diverse, inhomogeneous regions, densely,
not a priori distributed over the image space (Figure 1).
A machine learning algorithm has been incorporated to
include prior knowledge about the imaging domain of kidney
biopsies within the customizable snake model and generate
an image force �eld evaluating textural image features. 	is
force �eld can be considered as a saliency map derived from
the classi�ed image samples, roughly indicating boundaries
of ROIs, which guides the snake model to �nely segment and
automatically annotate these ROIs.

	e rest of this paper consists of �ve sections. Section 2
provides background information about the medical applica-
tion considered. Section 3 reviews the previous works related
to our study. 	e proposed graphic image annotation frame-
work and the methodology considered for its customization
for kidney biopsy image analysis are described in Section 4.
	e results from the experimental evaluation of Ratsnake are
apposed in Section 5 and the conclusions that can be derived
are summarized in the last section.

2. Medical Background

Kidney biopsy images can provide an estimation of pathogen-
esis in the obstructive nephropathy disease [6]. Obstructive
nephropathy is the main cause of renal failure, which occurs
in all ages but is o
enmet in children and infants. It is caused
by obstruction of the urinary tract, with hydronephrosis
(which is dilation of the renal pelvis and calyces resulting
from obstruction of �ow of urine), slowing the glomerular
�ltration rate and tubular abnormalities. Considering that
obstructive nephropathy is not a rare disease [7], computer-
aided evaluation of the pathogenic areas on a kidney biopsy
image is very useful for the proper assessment of the dis-
ease. In this context, the modi�ed Ratsnake tool is able to
accurately annotate salient objects and regions of interest in
the examined images, such as the most important kidney
structures, namely, glomerulus and tubulus. 	e goal is to
classify regions as pathogenic or not (see Figure 1). 	e

quanti�cation of obstructive nephropathy can be achieved by
detecting and measuring the alterations that occur in these
prominent kidney structures. In addition, the size of these
objects is an important feature that can be measured utilizing
the proposed tool. Glomeruli have a diameter ranging from
50 to 120 �m [8], while the tubules of the nephrons are 30–
55mm long [9] with an average diameter of 50 �m. 	e
dilatation of the glomerulus and tubulus objects is a symptom
of obstructive nephropathy [6], which can be measured
using the modi�ed Ratsnake tool. Furthermore, the tool
can be used to monitor the disease progress or the e�ects
of drugs and other therapeutic procedures by comparing
and measuring images from follow-up studies. Accurate and
mainly repeatable quanti�cation of obstructive nephropathy
by an expert is a rather di
cult task, and since it is not a
rare disease with severe implication in children and infants,
a tool able to provide fast and reproducible results, like the
one presented in this work, is considered valuable. It should
be noted that such a tool for detecting and quantifying the
disease is not yet available to our knowledge.

3. Related Work

A variety of so
ware tools have been proposed to aid
medical diagnosis and support medical decision making
[10]. Image-based CAD tools rely on image segmentation
and annotation methods, which are applied either in an
automatic or a semiautomatic framework. 	e majority of
these tools are application-speci�c; for example, DoctorEye
[11] is an annotation tool proposed for fast semiautomatic
annotation of tumors in magnetic resonance imaging (MRI),
and Arthemis [12] has been proposed especially for the
annotation of colonoscopy images.

State-of-the-art CAD systems and methods for micros-
copy include a real-time decision support system for diagno-
sis of rare cancers [13]; a system for discrimination of normal
from benign thyroid nodules in cytological images [14]; a
system for detection and grading of carcinoma in histology
images [15]; a method for prostate cancer diagnosis and grad-
ing [16]; a web-based so
ware framework for segmentation
of cervical cell nuclei in high-resolution microscopy images
[17]; and a tool for classi�cation of biological microscopic
images of lung tissue sections with idiopathic pulmonary
�brosis [18]. 	ese works indicate that texture plays an
important role in the characterization of the content of
microscopy images and thatmachine learning can be e�ective
for automatic annotation of such images. Additional works
could be referenced, but to the best of our knowledge there
is no other work in the literature related to kidney biopsy
evaluation, except the preliminary works of our research
group [19, 20], which have been performed on a limited
dataset, addressing automatic characterization of objects in
obstructive nephropathy images.

In this study we accept the challenge to exploit Ratsnake,
which is a generic, extensible image annotation tool, to
develop a novel CAD expert system for the evaluation of
kidney biopsy images. 	e approach we follow can also be
considered as a paradigm for the development of similar
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Figure 1: Salient objects in kidney biopsy images. 	e arrows indicate the regions of interest. (a) Normal biopsy: (1) nonpathogenic
glomerulus; (2) nonpathogenic tubulus. (b) Pathogenic biopsy: (3) pathogenic glomerulus; (4) pathogenic tubulus.

applications across a variety of medical imaging domains.
Generic image annotation tools relevant to Ratsnake [2]
include LabelMe [21], Photostu� [22], Photocopain [23], K-
space Annotation Tool (KAT) [24], ImageParsing.com [25],
Graphic Annotation Tool (GAT) [26], Caliph [27], and M-
Ontomat Annotizer [28].

LabelMe is a web-based image annotation tool with a
very usable GUI. 	e main limitations of the online version
of LabelMe include inability to annotate images without
publicizing themand slow response times if the user’s internet
connection is slow. 	ese problems can be overcome by
setting up LabelMe on a local server; however, this is a quite
complex procedure for the average user. 	e semantic anno-
tations of LabelMe are based on free text or a lexical database
called WordNet [29]. Photostu� has a more complex GUI
that enables ontology-based semantic annotation of images,
in web ontology language (OWL). Photocopain is intended
mainly for semantic image annotation in resource description
framework schema (RDFS) language or OWL since the
graphic tools it provides are only of �xed shape (rectangle
or oval). KAT is a rather �exible annotation tool enabling
not only high but also low level semantic image annotation
using the Core Ontology of Multimedia (COMM) [30], and
it features a framework for semiautomatic labeling of image
regions by classi�cation. ImageParsing.com is a commercial
solution to graphic image annotation. It provides semiau-
tomatic image segmentation capabilities accessible through
a much more complex GUI than that of the other image
annotation tools, whereas semantics are not considered in
the annotation process. ImageParsing.com is a commercial
solution to image annotation based on ImageParser and
VideoParser annotation tools which feature semiautomatic
image segmentation functions (hierarchical image parsing),
but they are not publicly available. Annotations are provided
by specialized personnel only through a paid web service,
and only a fraction of annotated datasets are provided freely
through its website. Semantic web standards to formalize data
extracted from images are not supported. GAT is a publicly
available annotation tool that combines both semiautomatic
image segmentation and semantically aware annotation, and
it can also be used for annotation of multiple images or image
sequences. It uses partition trees to navigate through image

segments, which are automatically de�ned at di�erent spatial
scales by a hierarchical regionmerging approach. Caliph is an
image annotation tool suitable for the creation of newMPEG-
7 image metadata. 	e MPEG-7 description supported by
Caliph consists of the following parts: metadata description,
creation information, media information, textual annotation,
semantics, and visual descriptors. However, since MPEG-
7 is an XML format, Caliph is not compatible with formal
semantic formats and services, such as OWL.	e capabilities
of M-Ontomat Annotizer are compatible with those of GAT
but it utilizes a much simpler “Magic Wand” method [26]
for semiautomatic segmentation of approximately uniform
image regions. A concise review study of other annotation
tools can be found in [31].

A summary of the described state-of-the-art generic
annotation tools is provided in Table 1. Ratsnake displays
several advantages over the state-of-the-art image annotation
tools, which can be summarized to the following: (a) it
enables rapid graphic annotation of ROIs using a grid-
based freehand approach, usually requiring only a single
mouse drag by the user [2]; it features a customizable,
easily extensible, snake-based framework for semiautomatic
image segmentation; (c) it provides the ability to semantically
annotate arbitrary-shaped ROIs using any OWL ontology
available in the semantic-web, to automatically construct
ontologies of spatial relations between annotated objects; (d)
it uses these ontologies to automatically infer annotations of
unknown objects in image sequences of a static context (e.g.,
the di�erent organs projected in X-rays are characterized by
static spatial relations) [4]; (e) its latest version enables area
measurements and comparisons between annotated regions
for evaluation of graphic annotations. All these advantages
have made Ratsnake the annotation tool of choice for fast
implementation of image-based CAD systems. 	e method-
ology proposed in the following section, which is integrated
in Ratsnake as a plugin, enables Ratsnake to automatically
annotate kidney biopsy images of nonstatic context.

4. Methodology

	e segmentation framework of Ratsnake considers that
the user initially provides a quick, rough, outline of a ROI
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Table 1: Comparative summary of state of the art generic image annotation tools.

Image annotation tool
Graphic

annotation
Semiautomatic
segmentation

Image
sequences

Semantic
annotation

Annotation
method

Measurements Free

Ratsnake [2, 4]
Polygon

Grid/freehand
Customizable
snake model

Yes
Free text
OWL

Manual
Automatic

Yes Yes

LabelMe [21] Polygon None No
Free text
WordNet

Manual No Yes

Photostu� [22]
Fixed shape
Polygon

None No OWL Manual No Yes

Photocopain [23] Fixed shape None No RDFSOWL Manual No Yes

KAT [24]
Fixed shape
Polygon

None No
RDFS
OWL

Manual No Yes

ImageParsing.com [25] Polygon
Hierarchical image

parsing
Yes

Free text
WordNet

Manual
Automatic

No No

GAT [26]
Fixed shape
Polygon

Partition trees Yes
MPEG-7
OWL

Manual No Yes

Caliph [27] Polygon None No
Free text

Manual No Yes

M-OntoMat Annotizer
[28]

Fixed shape
Polygon

Magic Wand Yes
RDFS
DAML

Manual No Yes

(Figure 2(a)) which is subsequently re�ned by a paramet-
ric active contour model, also referred to as snake [32]
(Figure 2(b)). 	is snake-based framework is now enhanced
by the introduction of a force �eld generated by a machine
learning-based method. 	is force �eld is implemented as a
Ratsnake plugin and attracts the deformable contour towards
the boundaries of a target classi�ed ROI. 	e details of this
approach are provided in the rest of this section.

4.1. Generic Snake-Based Image Segmentation Framework.
A snake is a time-varying parametric curve of the form

V(�, �) = (�(�, �), �(�, �))� where � and � represent coordinate
functions of � ∈ [0, �] and time � in the image plane. Given an
image 	 with a size of
×� pixels with values inΩ ⊆ �, the
energy functional that dictates the shape of the snake is given
by �(V) = �(V) + �(V), where

� (V) = 12 ∫
�

0
(��������� �V��

��������
2 + ����������

�2V��2
���������
2)��,

� (V) = ∫�
0
�� (V) ��

(1)

represent the internal and the external energy forcing the
contour to move. In (1), � and � are weight parameters
controlling the continuity (or tension) and the curvature
(or rigidity) of the contour, respectively. Typically, the snake
algorithm considers a scalar function for the generation of
the external force 	eld estimated as ��(V) = −� ⋅ ‖∇	‖ or��(V) = −� ⋅ ‖∇(�� ∗ 	)‖. In these equations � is a weight
parameter,�� is a 2DGaussian function, and  is its standard
deviation. 	e user may guide the evolution of the snake
by adding constraining terms to ��(V). Many recent snake
models are based on this snake model but use di�erent
force �elds leading to improved segmentation results. Rep-
resentative examples include the gradient vector �eld [33]

and the boundary vector �eld models [34], which e
ciently
cope with the well-known limitations of the original snake
model [3]. Such limitations include the capture range and the
extraction of concave objects.

Considering these limitations and the fact that di�erent
applications have di�erent requirements (e.g., with respect to
the target objects, their boundaries, and their backgrounds),
Ratsnake incorporates a customizable function for force �eld
generation. In its general form this function is de�ned as

���� (V) = (1 − "�⋅�(
�(V0))) ⋅ Π� (V) , (2)

where

Π� (V) = − Δ∑

=1
&
 ⋅ '
 (	) (3)

and '
 : Ω → Ω is a user-de�ned preprocessing function
of 	, such that the force driving the snake towards the
boundaries of the target object increases, and &
 is a weight
parameter that controls the degree to which '
(	) contributes
to the external energy. For '1(	) = −� ⋅ ‖∇(�� ∗ 	)‖, the
force �eld of the original active contour is obtained. -(.�)
denotes the Euclidean distance transform (EDT) applied on
image .� obtained by erosion of the binary image produced
by the projection of the (interpolated) contour V0 = V(�, 0)
on the image plane for all � ∈ [0, �]. 	is transform is
introduced to attract the contour towards the users’ graphic
annotation, assuming that they intuitively try to approximate
the boundaries of the target object. 	is formulation is
generic and can be used for the implementation of the force
�eld ��(V) of the original snake model or of a more recent
snake model such as BVF [34] or even of a future model of
this kind. Functions '
 can be easily implemented as plugin
modules of Ratsnake in simple Java.	eminimization of�(V)
is solved by the greedy algorithm proposed in [35], which is
computationally e
cient.
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Figure 2: Example of segmentation and annotation of the pathogenic kidney biopsy image illustrated in Figure 1(b) using Ratsnake. (a)
Pathogenic glomerulus region of Figure 1(b). (b) Quick rough freehand initial user annotation. (c) Polygon user annotation with landmarks
automatically derived from the freehand annotation. (d) -(.�). (e) ���� de�ned by (2). (f) Segmented ROI using (2) with '1(	) and image-
speci�c snake parameters. However, such an image-speci�c approach would not be suitable for a CAD system capable of coping with
annotation of any images of this kind.

Figure 2 illustrates an example segmentation of a path-
ogenic Glomerulus region using Ratsnake according to (1)
and (2), with snake model parameters tuned speci�cally for
that particular image. However, this set of parameters is
unlikely to be suitable for the segmentation of other regions
of this kind due to the complexity of the kidney biopsy
images and would not be acceptable in the context of a CAD
system for everyday practice. To cope with kidney biopsy
segmentation more robustly, that is, using a common set of
snake parameters for most of the images of this kind, we
introduce a new force �eld term '2(	) in (2), generated as
described in the next paragraph.

4.2. Force Field Generation for Segmentation and Annotation
of Kidney Biopsy Images. In kidney microscopy images the
pathology is located mostly within salient anatomy objects
(i.e., glomerulus and tubulus) so in this context the �rst
step is the recognition of such objects in the examined
image dataset. Since the edges that separate the targeted
regions are not very clear, the proposed methodology based
on active contours and adaptable force �eld generation is
considered appropriate for handling this task. 	e adaptable
force �eld term'2(	) in (2) is generated by supervised pattern
classi�cation. 	e classi�cation model is developed using
prior knowledge about kidney biopsy images and their ROIs
(Figure 1), obtained from a set of training images manually
annotated by domain experts.	epatterns formodel training
and classi�cation of new, not previously annotated regions
of the images to be evaluated by Ratsnake are generated as
described below.

4.2.1. Image Representation. Color information is discarded
by 8-bit grey-scale conversion, considering that the luminos-
ity of kidney biopsy images explains a signi�cantly larger
variance (more informative) than color image components.
As it can be noticed from the indicative images of Figure 1
the image hues are rather constant, with a very small variance
only in the red scale.

	e images are raster-scanned and square blocks (subim-
ages), smaller than the ROIs, are uniformly sampled. From
each sampled block a set of textural features, forming a feature
vector, are extracted for image representation. First- and
second-order statistical measures were considered as image
features [36]. By following the best �rst-feature selection
strategy [37]we selected the following subset of features as the
most informative for the particular application: themean and
the standard deviation of the block intensities, the contrast,
the inverse di�erence moment, the correlation, the entropy,
and the angular second moment.

4.2.2. Machine Learning-Based Image Annotation. Prior
knowledge about the medical imaging domain of interest
from the experts is introduced by machine learning. To this
end a maximum margin kernel classi�cation approach has
been adopted, considering their generality and robustness
in the sense that their performance is not easily a�ected
by sparse or noisy data and that they resist to over�tting
and to the “curse of dimensionality” [38]. According to this
approach learning is based on a quadratic programming
optimization procedure which aims at the identi�cation of a
subset of important feature vectors from the training set, used
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(a) (b) (c)

Figure 3: Force �eld generation for the segmentation of the kidney biopsy image illustrated in Figure 1(b). (a) Classi�er’s output image,
where the di�erent greylevels used indicate di�erent class memberships. (b) Classi�er’s output a
er postprocessing with the majority-voting
algorithm. (c) Generated force �eld term '2(	) a
er postprocessing (the image has also been inverted for presentation purposes).

for the construction of a separating hypersurface between the
two classes. In summary this algorithm proceeds as follows.

Let 	 be an input space of vectors �
, / = 1, 2, . . . , 4, dis-
tributed to two classes, labelled as �
 ∈ {−1, 1}. ConsideringΦ as a nonlinear mapping from the input space 	 ⊆ R

]

to an Euclidean space 6, the training results in �nding a
hypersurface are de�ned by the equation

7Φ (�) + 70 = 0 (4)

so that the margin of separation between the two classes is
maximized. 	e maximum margin hypersurface is obtained
for

7 = �∑

=1

8
�
Φ� (�
) (5)

and 70 is estimated from the Karush-Kuhn-Tucker comple-
mentarity condition. 	e variables 8
 are Lagrange multipli-
ers which are estimated by maximizing the Lagrangian

�� = �∑

=1

8
 − 12
�∑

=1

�∑
�=1

8
8��
��<(�
, ��) (6)

with respect to 8
. 	e vectors �
, for which 0 < 8
 ≤ @, are
selected for the construction of the separating hypersurface.
Parameter @ is a positive constant. As @ increases a higher
penalty for errors is assigned. Function<(�
, ��) is known as
kernel function; it is de�ned as the inner product

<(�
, ��) = Φ� (�
)Φ (��) (7)

that should satisfy Mercer’s condition [38].
Most commonly used kernel functions are the linear<(�
, ��) = �
⋅��, the polynomial<(�
, ��) = (� ⋅ �
 ⋅ �� + 1)�

of second (A = 2) and third order (A = 3), and the Radial

Basis Functions (RBF) <(�
, ��) = "−‖��−��‖2/�, where � is a
strictly positive constant. 	e linear kernel is less complex
than the polynomial and the RBF kernels. 	e RBF kernel
enables high-dimensional data sets to be approximated by
Gaussian-like distributions similar to those used by RBF

networks. 	e hypersurface separating the two classes is
derived by the following equation:

∑
∀
:0<��≤�

8
�
<(�
, �) + 70 = 0. (8)

	en, given a test vector �, the trained classi�er outputs a
label C:

C = sign( ∑
∀
:0<��≤�

8
�
<(�
, �) + 70) , (9)

which designates the class that � belongs to.
	e kernel classi�er trained with representative samples

from the training images assigns to each block of the images
under evaluation a class label. 	e annotated blocks of such
an image are then represented using di�erent greylevels that
indicate their class membership, thus rendering an output
image as the one illustrated in Figure 3(a). It can be noticed
that several misclassi�ed regions may exist that could be
considered as noise artifacts.

4.2.3. Postprocessing. In order to remove noise from the
output image, a majority-voting scheme with a dynamic
vote limit [39] is applied. 	e result of this postprocessing
operation is illustrated in Figure 3(b). It can be noticed that
the edges of the image regions corresponding to the salient
foreground objects are quite rough, due to the block-based
classi�cation approach used. 	erefore, this segmentation
result is not suitable itself for accurate measurement of the
ROIs.

	e force �eld that will guide the snake towards the
actual boundaries of the foreground objects is generated
from the resulting image, by three additional postprocessing
operations: (a) Gaussian �ltering for smoothing of the object
boundaries, (b) adaptive thresholding for image binarization,
and (c) Canny edge detection [40]. 	e result of these
operations is illustrated in Figure 3(c).
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5. Experiments and Results

	e described methodology has been implemented in Java
and has been integrated in Ratsnake as a custom coded plu-
gin.	e processes related to the kidney biopsy image analysis
have been implemented as a web service communicating
with the plugin. A snapshot of Ratsnake’s GUI is illustrated
in Figure 4. 	e e�ect of the force �eld generated by the
plugin, as well as the values of the rest of the parameters of
the snake (see (1)), is controlled by the settings panel. 	e
functionality of Ratsnake from the user’s viewpoint for the
particular application can be summarized into the following
steps.

(1) Training Ratsnake for the �rst time:

(i) domain experts use Ratsnake, without any prior
domain knowledge loaded to the system, to
produce ground truth annotations on a set of
representative images selected to be used for
training;

(ii) during graphic annotation of each training
image the users may choose to combine man-
ual annotation with the autore�nement option
that executes the snake algorithm so as to
obtain faster, closer estimates of the target
object boundaries; the process of manual and
automatic re�nement may be repeated until
the actual boundary of the object is correctly
approximated;

(iii) the training images alongwith their annotations
are saved in a system’s folder.

(2) Using the trained Ratsnake for evaluation of kidney
biopsy images:

(i) either experts, or not-so-experienced domain
specialists, who may not be able to safely char-
acterize the objects in kidney biopsy images, can
use Ratsnake to quickly select (usually with only
a single quick mouse drag) a ROI that roughly
includes the object they would like to evaluate.

(ii) the users utilize the autore�nement option with
the e�ect of the plugin set to a nonzero value;
this activates the use of prior domain knowledge
collected from the training images; then Rat-
snake automatically segments the target object
and assigns it a label with its characterization;
training is performed only once for a given
training set. If this set is changed, then the
classi�er is retrained with the updated training
set;

(iii) 	e users may choose the measurement options
of Ratsnake to (a) calibrate the system to the
preferred measurement units; (b) measure the
area of the annotated objects; (c) compare the
annotated areas.

Extensive experiments were conducted to demonstrate
the e�ectiveness of the proposed methodology incorporated

Figure 4: A snapshot of Ratsnake’s GUI. It displays the annotated
kidney biopsy image of Figure 1(b). 	e user may click on the
annotation names (labels) on the right and display the respective
ROI.	e labels used are semantic identi�ers from the gene ontology
[41]. Only the currently selected annotation can be displayed at a
time, as a layer over the image to which it belongs. 	e dialog box is
the result of the menu option Measurement→Area Measurement,
which is used to measure the area of the current ROI. 	e panel on
the le
 controls the parameters of the snake.

in Ratsnake for the evaluation of the kidney microscopy
images and the achieved annotation e
ciency. 	e dataset
considered in this study consists of 60 images, half of
which originate from pathogenic kidney biopsies and the
rest from healthy (control) kidney biopsies. All images
are accompanied with ground truth annotations performed
manually by three experts using Ratsnake (with the plugin
implementing the proposed method being disabled). 	e
annotations were performed on a conventional laptop with
Intel Core 2 Duo 1.83Ghz 2MB L2 cache processor and 3GB
RAM. 	e biopsy samples were stained with the Sirius Red
technique, which is one of the most common techniques of
collagen histochemistry. In bright-�eld microscopy collagen
is red to pale yellow, while nuclei are ideally black but may
o
en be grey or brown. In the examined kidney images
the pathological �ndings are connected with alterations in
the imaging of the two major salient objects, tubulus and
glomerulus, which are the major parts of the kidney for the
processing of its renal function. 	e images were acquired
with a Nikon Eclipse E400 microscope with Nikon lens
Plan Fluor 20x/0.50; Di�erential Interference Contrast (DIC)
microscopy M;∝/0.17 Working Distance 2.1; and a Micro�re
by Optronics camera with the following settings: exposure
10ms; red: 105; green: 100; blue: 100; gain: 1; luminosity: 50;
contrast: 60.

	e capability of the proposed supervised Ratsnake
approach to evaluate kidney biopsy images is assessed by
measuring its performance in the classi�cation (automatic
annotation) and segmentation of ROIs. All images were
raster-scanned and 37×37 pixel block samples were obtained.
	is block size has been selected heuristically, as the most
appropriate for providing satisfying accuracy and acceptable
processing times, based on pilot experimentation.

	e classi�cation of the blocks was based on the kernel
classi�er described in Section 4.2.2, and its performance was
compared with three other widely known classi�ers, namely,
Näıve Bayes [42], K-Nearest Neighbor [43], and Decision
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Table 2: Confusion matrix obtained by the linear kernel maximum margin classi�er.

True nonpathogenic
glomerulus

True nonpathogenic
tubulus

True pathogenic
glomerulus

True pathogenic
tubulus

Class
precision (%)

Total
accuracy (%)

Pred. nonpathogenic
glomerulus

381 1 12 12 93.8

Pred. nonpathogenic
tubulus

4 244 0 0 98.4

Pred. pathogenic
glomerulus

8 0 312 12 94.0

Pred. pathogenic tubulus 4 3 14 314 93.7

Class recall (%) 96.0 98.4 92.3 92.9 94.7

Trees [44]. Tenfold cross-validation has been adopted as
a widely accepted method to assess classi�cation accuracy
[45]; that is, the dataset was randomly split into 10 mutually
exclusive subsets, leaving out one set for testing and using the
other nine as training, exhaustively, until all of them serve
as testing sets. 	e best performing classi�er for the current
problem is the less complex kernel classi�er, with linear
kernel, achieving a 94.7% accuracy using cost parameter@ = 1.5, a
er grid search of the parameter space. 	e
results obtained per class are presented in Table 2, where class
precision and recall refer to the capability of the classi�er to
identify relevant image samples and to correctly label them,
respectively [46].

Table 2 indicates that the classi�cation methodology
incorporated in Ratsnake enables automatic annotation of
ROIs very accurately, despite the type of the objects of
interest considered, and performs best for the annotation of
nonpathogenic tubulus objects.

In order to assess the segmentation performance of the
proposed supervised Ratsnake approach we consider the
Jaccard index, which expresses the overlap I between the
areas J1 and J2 of two shapes (in pixel units), as de�ned by
the ratio

I = �1 ∩ �2�1 ∪ �2 (10)

which is a standard, well-grounded measure of segmentation
accuracy [47]. 	e settings used from Ratsnake’s settings
panel (Figure 4) include � = 8, J = 1.44, � = 1.58, &1 = 0.6, = 23, and &2 = 0.99. Ratsnake received the above settings
a
er repeating the experiments several times and storing
the best performing settings. In each run, several di�erent
initial contours have been tested approximately indicating the
region to be segmented and annotated.

	e average segmentation performance of the supervised
Ratsnake approach was measured on each object of the
available test images, in comparison with the segmentation
performance of the unsupervised Ratsnake, that is, with the
plugin being disabled, using only'1(	), and the segmentation
performance of the block-based classi�cation approach used
for the generation of the force �eld. 	e results obtained are
apposed in Table 3 and graphically illustrated in Figure 5.
In the last row of this table, the average overlap of the
initial contours manually drawn by the (nonexpert) users
to indicate the respective ROI is also provided. It can be

Table 3: AverageImeasured with respect to the ground truth using
di�erent image segmentation methods.

Method Average I (%)

Ratsnake supervised 90.0 ± 3.1

Block-based segmentation 61.1 ± 9.5

Ratsnake unsupervised 83.4 ± 3.4

Initial contour 72.9 ± 1.3

Method
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Figure 5: Bar-chart graphically illustrating the results presented in
Table 3.

noticed that the best performing method is the supervised
Ratsnake approach.	e block-based segmentation results are
low, indicating that the error introduced by the use of image
blocks is signi�cantly high; therefore, the results validate
that this approach is inadequate for area measurements.
Despite its low accuracy it provides an e�ective force �eld
for the supervision of Ratsnake. As compared with the initial
contour, the overlaps obtained by both the supervised and
the unsupervised Ratsnake approach indicate a signi�cant
contribution of the snake algorithm.

Figure 6 illustrates representative segmentation results
obtained for the images of Figure 1, validating the average
results obtained. 	e respective quantitative results in terms
of overlap are apposed in Table 4.

	e capability of Ratsnake to incorporate prior knowl-
edge about the imaging domain under investigation pro-
vides an additional advantage over the state-of-the-art image
annotation tools, in terms of annotation e
ciency, that
is, the time required by the user to annotate the ROIs.
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Table 4: I values obtained for the images from Figure 6.

Image Ratsnake supervised Block-based Segmentation Ratsnake unsupervised Initial contour

Figure 1(a) I (%)
Object 1 92.8 59.3 86.8 71.3

Object 2 91.0 56.3 81.4 73.5

Figure 1(b) I (%)
Object 1 89.1 70.8 84.5 71.7

Object 2 92.9 76.6 86.4 72.6
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Figure 6: Representative segmentation results obtained using di�erent methods for objects in the kidney biopsy images of Figure 1.

In order to demonstrate this advantage we have asked
three domain specialists to annotate the dataset using both
Ratsnake and LabelMe [17] (running on a local server).
	e average annotation time required per image using the
supervised Ratsnake was 14.5 ± 0.8 seconds, whereas, for the
manual LabelMe approach, for the same level of segmentation
accuracy, this time reached 21.4 ± 2.53 seconds. However,
it should be noted that the time measurements for LabelMe

have taken into account only the graphic image annotation
times and not the time required by the specialists to decide
about the class membership of the graphically annotated
ROIs (which is automatically performed by the supervised
Ratsnake based on its prior domain knowledge). 	is time
cannot be su
ciently estimated in the scope of this study
since it may include literature searches or even interaction
between specialists, for example, for a second opinion, which
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is undoubtedly a time consuming process. 	erefore, the use
of Ratsnake can contribute in faster evaluation of the kidney
biopsy images.

6. Discussion and Conclusions

In this paper, we presented a novel approach to the develop-
ment of image-based CAD systems. 	is approach exploits
Ratsnake, a generic, versatile, and open access image anno-
tation tool, for fast development of such systems as plugin
modules. A Ratsnake plugin module should implement only
the part of the expert system required for the description of
prior knowledge about the application domain of interest.
In order to demonstrate this unique capability we presented
a novel medical application with impact on the diagno-
sis and quanti�cation of obstructive nephropathy, through
computer-aided evaluation of kidney biopsy images. 	is is
considered a nontrivial task, which is not fully supported by
a specialized computer-based annotation tool such as the one
presented in this paper. 	e proposed methodology is based
on a machine learning approach to include prior knowledge
about kidney biopsy images, so that the user of Ratsnake
can be able to quickly segment a ROI, estimate its actual
boundaries, measure its area, and automatically annotate it
with a semantic identi�er corresponding to a diagnostic char-
acterization, that is, pathogenic or not. 	e results showed
that the utilization ofmachine learning to supervise Ratsnake
has a signi�cant impact on the segmentation accuracy of
kindey biopsy images, enabling it to perform more accurate
area measurements e
ciently. 	e evaluation of a kidney
biopsy image based on a classi�cation model obtained by
training is quite e
cient as it involves only linear complexity
algorithms.

As an annotation tool, Ratsnake can be used for e
cient
generation of ground truth training data (graphic annota-
tions), which are directly accessible by the CAD system and
can be used to actively update its domain knowledge for
improved diagnostic performance. Considering its capability
to embed ontologies [2], the annotations produced by Rat-
snake can be associated with semantic identi�ers described
in biomedical ontologies [48], enabling unambiguous repre-
sentation and semantic interoperability with relevantmedical
systems, such as clinical information systems. Given a set of
graphically annotated images and a semantically annotated
training image, the semantic identi�ers of the graphically
annotated images can be automatically inferred [4, 5], speed-
ing up the generation of a semantically annotated training
data set.

Currently the image segmentation process is based on
the original snake model, but the fact that the force �eld
of Ratsnake is customizable enables the implementation of
other recent or even future snake models for more accu-
rate segmentation. 	e customizability of Ratsnake makes
it suitable for a multitude of applications involving image
segmentation, annotation, and image-based measurements,
across a variety of imaging domains. Future work includes
further automation of the image annotation process by smart
snake initialization and implementation of an extensible web

service featuring active learning capabilities that will be able
to provide Ratsnake with knowledge on various imaging
domains.
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