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Abstract. Formal specifications play an increasingly important role in
system design-flows. Yet, they are not always easy to deal with. In this
paper we present RATSY, a successor of the Requirements Analysis
Tool RAT. RATSY extends RAT in several ways. First, it includes a
new graphical user interface to specify system properties as simple Büchi
word automata. Second, it can help debug incorrect specifications by
means of a game-based approach. Third, it allows correct-by-construction
synthesis of systems from their temporal properties. These new features
and their seamless integration assist in property-based design processes.

1 Introduction

Several (recent) trends in designing and implementing complex digital systems
necessitate the existence of a formal specification for the system at hand. For
example, specifications can be used to unambiguously communicate design in-
tents and interface assumptions between collaborating designers. They can also
be used to formally verify implementations by means of a model checker. More-
over, a complete formal specification may be used to automatically synthesize an
implementation using tools like Lily [6], Anzu [7], or as shown in [11]. Formal
specifications are also created, sold, and used as third-party verification IPs [4].

For some of these use cases it is of interest to create and analyze the formal
specification stand-alone, i.e., without a corresponding implementation, or before
such an implementation is ready. The tool RAT [2] supports these tasks by
allowing the user to write a specification in PSL syntax, to analyze it on a
trace level, and to check if it is realizable, i.e., if a conforming system exists.
However, RAT has some shortcomings when used for system design. Figure 1
depicts a typical property-based design flow. Some informal design intent is
turned into a formal specification, which is then refined in several iterations
involving simulation and debugging. Finally, an implementation is derived from
the specification, ideally using correct-by-construction synthesis. The user faces
several problems when putting this design flow into practice. First, it is hard
to express the design intent in a formal language. Second, our experience shows
� This work was supported by EU grants 217069 (COCONUT) and 248613

(DIAMOND) as well as Provincia Autonoma di Trento grant EMTELOS.

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 425–429, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



426 R. Bloem et al.

Fig. 1. A typical property-based design flow

that formal specifications for complex designs are hardly ever written correctly
on the first try. Thus, there is a need for proper support in debugging. Finally,
it must be possible to synthesize an implementation from the specification.

We present the tool RATSY, an extension of RAT which provides several
new features to assist the user in a property-based design flow. First, a graphical
user interface for drawing Büchi automata has been added. These automata are
an easy-to-understand way to specify system properties. Second, the debugging
approach presented in [8] has been integrated. It aids in debugging unrealizable
specifications and in refining specifications that allow undesired behavior. Third,
synthesis functionality has been added. Finally, an additional realizability algo-
rithm [10,5] has been implemented, handling a strictly larger subset of PSL than
the one in RAT [9]. Together with the analysis features inherited from RAT,
this yields a powerful tool with full support for property-based design processes.

RATSY is available at http://rat.fbk.eu/ratsy/. The following sections
will detail the improvements and new features of RATSY.

2 Automaton Editor

The automaton editor provides an intuitive interface to specify system properties
as Büchi automata. The graphical representation makes creating and especially
maintaining specifications easier and less error-prone. Automata are restricted to
be deterministic and complete to allow for more efficient synthesis.1Completeness
is ensured by providing an implicit “dead state” as the default destination of
transitions. When transitions are added or changed, other transition conditions
are updated by the tool to maintain determinism. Automata can be drawn once
and instantiated multiple times, with template parameters allowing for differ-
ent instantiations. For use with other features of RATSY, PSL formulas are
generated automatically from the automata. Finally, the automata are used to
visualize state information during simulation and debugging (see next section).

3 Simulation and Debugging

RATSY implements the ideas presented in [8] to test and debug formal specifica-
tions. First, it allows the user to test realizable specifications. An implementation
is synthesized and the user can simulate it. Second, the tool provides an easy-to-
use method to rule out undesired behavior observed during simulation. The user
1 This is usually not a limiting factor since specifications used in practice tend to be

in this class [9]; otherwise the designer can fall back to entering formulas in PSL.

http://rat.fbk.eu/ratsy/
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Fig. 2. A part of RATSY’s GUI

can simply modify an incorrect simulation trace to match the design intent. The
tool then turns this modified trace into a property which enforces the desired
response to the inputs, thereby eliminating the undesired behavior. Third, the
user can debug unrealizable specifications. Following [8], the user plays a diag-
nostic game in the role of the system against a counterstrategy or a countertrace
synthesized from an unrealizable core of the specification. The diagnostic game
illustrates where the specification is too restrictive to be realizable.

Figure 2 shows a part of the screen when playing a diagnostic game to debug
unrealizability. Testing a realizable specification looks similar. In every step of
the game the counterstrategy determines values for the input signals, and the
user sets values for the output signals in the game window or via the automata
window. In every automaton of the specification, the current state, as well as
transitions that can still be taken, are highlighted. The user can traverse a cer-
tain transition by clicking it. All restrictions on signal values associated with
that transition are then applied. This integration with the automaton editor
greatly increases the usability and helps the user to keep track of what is
going on.

4 Technical Aspects

RATSY itself is implemented in Python. The symbolic algorithms rely on
CUDD [12] and NuSMV [3], which are accessed through a SWIG-generated [1]
wrapper. The synthesis functionality is based on a Python reimplementation of
Anzu [7] with some minor implementation-specific improvements. The synthesis
algorithm [9] handles specifications given in Generalized Reactivity (1) (GR(1))
format. By means of the NuSMV parser, RATSY can perform several syntac-
tic transformations on its own in order to turn a specification into the required
format. Furthermore, the NuSMV library automatically encodes multi-valued
variables to Boolean signals. RATSY generates circuits in BLIF and Verilog for-
mat. If syntactic transformation into GR(1) fails, but succeeds into LTL, then a
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preliminary implementation of an algorithm along the lines of [10,5] can be used
to determine realizability; debugging and synthesis are not yet available in that
case. The conversion into non-deterministic Büchi automata required by [10,5] is
performed via a (slightly adapted) version of Wring [13] from Lily [6]. RATSY
performs similar to Anzu [7,8] when operating on GR(1) specifications, and can
decide most of the examples that Acacia [5] can for full LTL.

5 Conclusions and Future Work

RATSY enhances the analysis features of RAT with a game-based debugging
approach for specifications. Furthermore, it eases specifying properties by rep-
resenting them as Büchi automata, which can be edited via a graphical user
interface. Once the user is satisfied with the result of debugging and analyzing
her specification, she can synthesize an implementation with just a few clicks. All
the new features integrate seamlessly with the well-established analysis features
of RAT. Thus, RATSY is a powerful tool to support property-based design.

In the future, we plan to implement a wider variety of output formats for
synthesis. Furthermore, we will continue work on improving the size of the syn-
thesized circuits, as well as the time needed to perform synthesis. Concerning
debugging, we plan to combine the already implemented approach with model-
based diagnosis techniques. This should further simplify the localization of errors.
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