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We present new methods for the improvement of de novo genome assembly from erroneous long-

reads incorporated into a straightforward tool called Raven (https://github.com/lbcb-sci/raven). 

Raven maintains similar performance for various genomes and has accuracy on par with other 

assemblers which support third-generation sequencing data. It is one of the fastest options while 

having the lowest memory consumption on the majority of benchmarked datasets. 

Sequencing technologies have come a long way, from tiny fragments at their infancy to large chunks 

obtainable today. The relentless advances in both length and accuracy continue to alleviate the puzzle-

like reconstruction problem of the sequenced genome, as more repetitive structures can be resolved 

naturally. Amidst the excess of available state-of-the-art options for de novo genome assembly1–6, we 

present a fast, memory frugal, reliable, and easy to use tool called Raven. It is an overlap-layout-

consensus based assembler which accelerates the overlap step, builds an assembly graph4 from reads 

that were pre-processed with pile-o-grams7, implements a novel and robust simplification method 

based on graph drawings, and polishes the unambiguous graph paths with Racon8, all of which is 

compiled into a single executable. 

Short substring matching is a conventional approach for similarity search in bioinformatics9,10. 

However, even with minimizers4 the overlap step of de novo assembly can take a substantial amount 

of time when handling larger genomes. To tackle this problem we enhanced the minimap4 algorithm 

following the MinHash approach11, where we select a fixed number of lexicographically smallest 

minimizers as the sequence sketch. The combination of MinHash on top of minimizers was already 

explored within the sequence mapper MashMap12, while a similar idea with hierarchical minimizers is 

the core of de novo assembler Peregrine13. Based on empirical evaluations, we opted for retaining |𝑟𝑒𝑎𝑑|/𝑘 minimizers per read, where 𝑘 is the minimizer length. Without any other algorithmic 

modifications to minimap, we are able to identify contained reads and create pile-o-grams for read 

pre-processing in a fraction of time and with a small impact on sensitivity. Suffix-prefix overlaps 

needed for graph constructions are found with the unmodified minimap algorithm within the 

containment-free read set, which is usually smaller than the whole sequencing yield by almost an 

order of magnitude. 

Raven loads the whole sequencing sample into memory in compressed form, and finds overlaps in 

fixed-size blocks to decrease the memory footprint. Found overlaps are immediately transformed into 

pile-o-grams and discarded, except the longest few per read which are used for containment removal. 

Chimeric reads are iteratively identified and chopped by detecting sharp declines of coverage in pile-

o-grams using coverage medians inferred from the stored overlaps. As minimap ignores the most 

frequent minimizers, which are critical for good repeat annotations, we lower this threshold while 

overlapping all contained reads to the set of containment-free reads, and search the updated pile-o-

grams for sharp coverage inclines followed by sharp declines, both above the coverage median. 

Afterwards, the containment-free read set is overlapped to itself and repeat annotations are used to 

remove false overlaps between reads containing repetitive regions. Once the assembly graph is 

created, it is simplified stepwise with transitive reduction, tip removal, and bubble popping. 

Eventually, we simplify the graph with a novel method which lays out the graph in a two-dimensional 
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Euclidean system, searches for edges that connect distant parts of the graph and removes them. 

Applying the force-directed placement algorithm14, which draws tightly connected vertices together, 

we can distinguish undetected chimeric or repeat-induced edges which are elongated with respect to 

others due to their rareness (Figure 1). Collapsing unambiguous paths while leaving room near 

junction vertices, coupled with the hierarchical force-calculation algorithm15, makes this drawing 

based simplification method feasible for even the largest assembly graphs. To finalize the assembly, 

contiguous paths of the graph are passed to two rounds of Racon. 

Since an earlier version of Raven proved as one of the best performers in a comprehensive 

benchmark16 at prokaryotic level, we evaluated several state-of-the-art assemblers alongside Raven 

on five model eukaryote datasets (Table 1),  obtained by third-generation sequencing technologies, 

namely Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). Emergence of PacBio’s 
High-Fidelity sequencing protocol (HiFi), and novel assemblers13,17,18 suitable for its highly accurate 

data, led us to evaluate the assembly reconstruction prospects of different sequencing approaches, 

that is ONT, Pacbio CLR (continuous long reads) and Pacbio HiFi, on three human samples (Table 2). 

Alongside default assembly quality metrics such as NGAx, genome fraction and accuracy, we evaluated 

gene completeness (single and multi-copy genes present both in the reference and the assembly), and 

where possible, the number of bacterial artificial chromosomes (BAC) resolved in an assembly. Details 

about computational cost can be found in the Supplementary (Table S1). 

On erroneous data, Raven is one of the fastest assemblers, and uses the least amount of memory on 

all but two datasets, while having better or comparable contiguity and accuracy. It especially stands 

out in the number of contigs with similar genome reconstruction fractions, and in the number of 

retained multy-copy genes and resolved BACs on human datasets. On the other hand, Raven does not 

utilize the accuracy of HiFi reads, which results in longer running times and subpar assembly results 

on more accurate data. We believe that more carefully tweaked parameters for the overlap step will 

lead to performance improvements. 

We also run Raven on a couple of ONT plant datasets from two scientific studies19,20 and compared 

their results (Table 3). On datasets B. oleracea, B. rapa and M. schizocarpa Raven produces 

comparable assemblies to those obtained with Ra21. Furthermore, both O. sativa assemblies are more 

contiguous than the ones reported with Flye, but the BUSCO22 scores are lower as we did not polish 

our assemblies with Illumina data. 

Presented results indicate that PacBio HiFi assemblers achieve better overall reconstruction metrics, 

although ONT assemblies do not fall far off. ONT sequencing is still more approachable due to 

affordable consumables and portable devices, while requiring less gDNA than regular PacBio 

protocols. In addition, the length advantage of ONT reads and the recent increase in accuracy with the 

newest version of the Bonito basecaller (still in testing phase) justify the usage of assemblers which 

support this technology. 

We showcased new algorithms for the overlap and layout phases of de novo genome assembly that 

reduce execution time and increase contiguity of the final assembly. We integrated them with an 

overlap module based on minimap, and the consensus module Racon, into a powerful standalone tool 

called Raven which is optimized for error-prone long reads. We argue that its performance coupled 

with the reduced cost per base of long-read sequencing technologies will enable assembly of large 

genomes even to laboratories with limited funding. 

Methods 
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Raven starts the assembly by constructing pile-o-grams (one-dimensional structures storing per-base 

coverage) and removing contained reads with the minimap algorithm, using 15-mers, a sliding window 

of 5 bases and discarding 10-3 most frequent minimizers. The whole sequencing data set is loaded into 

memory, replacing nucleotides with two bits and merging 64 succeeding Phred quality scores with 

their average. Reads are overlapped to each other in 1Gbp vs 4Gbp chunks, and only the 

lexicographically smallest |𝑟𝑒𝑎𝑑|/15 minimizers are picked in both the index and the query 

(Supplementary Figure S1-S3; accuracy comparison in Supplementary Table S2). Once a block is 

processed, all overlaps are stacked into pile-o-grams which are decimated to every 16-th base. The 

longest 16 overlaps per read are stored for containment removal and connected component retrieval. 

When all pairwise overlaps are obtained, coverage medians are calculated for each pile-o-gram, reads 

are trimmed to the longest region covered with at least 4 other reads, and potential chimeric sites are 

detected by finding bases which have 1.82 times smaller coverage than their neighboring bases. 

Contained reads are dropped only if the containing read does not have a potential chimeric region. 

Decreasing the number of reads through containment removal enables faster verification of chimeric 

annotations. Given the stored suffix-prefix overlaps, Raven finds connected components and their 

coverage median, which approximates the sequencing depth. Each annotated coverage drop is used 

to chop problematic reads to their longest non-chimeric region, if the drop is consistent with the 

coverage median of the connected component the read belongs to. The whole process is done 

iteratively to capture different molecule copy numbers, because resolving chimeric reads tends to the 

forming of new connected components. Another containment check is carried out once chimeric 

sequences are resolved. 

Afterwards, Raven searches for suffix-prefix overlaps between the remaining reads enforcing the use 

of all minimizers. In addition, all contained reads are overlapped to the containment-free read set in 

order to increase the coverage of repetitive regions, again employing the MinHash approach. 

Decreasing the minimizer frequency filter to 10-5 enables proper repeat annotation in which sought 

bases need to have coverage at least 1.42 times larger than the component coverage median. 

Repetitive regions at either end of a read are used to iteratively remove false overlaps, i.e. overlaps 

that connect different copies of bridged repeats (repetitive genomic regions that are entirely 

contained in at least one read). 

Once the overlap set is cleaned, the assembly graph is built and simplified stepwise with standard 

layout algorithms such as transitive reduction, tipping, and bubble popping. Information about 

transitive connections is kept for the last simplification step, which plots the assembly graph in a two-

dimensional space, in order to increase the connections between neighboring vertices. Raven 

searches for edges connecting remote parts of the graph, which are usually present due to leftover 

sequencing artefacts or unresolved repeats. The force-directed placement algorithm enlarges most of 

such edges due to their rareness. Given the quadratic time complexity 𝑂(|𝑉|2)14 and an approximate 

of 100 iterations until convergence, we shrink the graph by creating unitigs (paths in the graph 

consisting of vertices with only one ingoing and one outgoing edge) that are 42 vertices away from 

any junction vertex (vertices with more than one outgoing or ingoing edge). Furthermore, 

approximating the forces of distant vertices by replacing them with their centre of mass enables 

linearithmic time complexity 𝑂(|𝑉| log|𝑉|)15, and the use of this method on larger genomes. 

Depending on vertex distances in a finished drawing, Raven removes outgoing edges that are at least 

twice as long as any other outgoing edge of that junction vertex. As the drawing heavily depends on 

an initial layout, which is random but with a fixed seed, the whole procedure is restarted 16 times. It 

should be noted that if there exist a lot of false connections in a single area of the graph (usually 

induced by repeats), the drawing algorithm will not be able to sufficiently enlarge all of these edges 

for removal (Supplementary Figure S4). 
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Finally, paths of the assembly graph without external branches are polished with a library version of 

Racon, using small windows of 500bp and partial order alignment with linear gaps, in a total of two 

iterations. All constant values used in various Raven stages were empirically determined based on a 

large set of real datasets of various sizes. 

Because of resource limitations we chose the best performing genome assemblers for erroneous 

third-generation data from recent scientific papers3,6,16. The assemblers are Raven (v1.3.0), Canu 

(v2.0), Flye (v2.8.1), miniasm (v0.3-r179) coupled with minimap (v0.2-r123) and polished with two 

iterations of Racon (v1.4.13), Ra (v0.2.1), Shasta (v0.7.0) and Wtdbg2 (v2.5). Raven was run without 

any additional parameters on ONT and PacBio CLR datasets. On PacBio HiFi datasets, we increase k-

mer length from 15 to 29, and window length from 5 to 9, in order to decrease the number of found 

pairwise overlaps (comparison with default parameters can be found in Supplementary Table S3). We 

use options ‘-pacbio’ or ‘-nanopore’ for Canu, ‘-pacbio-raw’ or ‘-nano-raw’ for Flye, ‘-x ont’ or ‘-x pb’ 
for Ra, ‘-x sq’, ‘-x rs’ or ‘-x ont’ for Wtdbg2, and configuration files Nanopore-Dec2019, Nanopore-

Sep2020 or PacBio-CLR-Dec2019 for Shasta. For ONT runs we modified the Shasta consensus caller to 

better match the basecaller used to obtain the corresponding dataset, while we decreased the 

minimal read length to 5000 for non-human datasets, except PacBio CLR D. melanogaster dataset for 

which Shasta produced a decent assembly. Canu and Wtdbg2 require approximate genomes sizes 

which were 120 Mb, 144 Mb, and 3 Gb for A. thaliana, D. melanogaster and H. sapiens datasets, 

respectively. All assemblers were run with 64 threads on a server with 1 TB RAM and two AMD EPYCTM 

7702 64-core processors. Due to high memory requirements, the ONT CHM13 dataset was 

benchmarked with 48 threads on a server with two Intel® Xeon® Platinum 8260L 24-core processors 

and 1.5 TB of OptaneTM Persistent Memory. Shasta was unable to assemble the PacBio CLR HG00733 

dataset on the first machine due to memory requirements, so it was run on the second machine. Also, 

it was not able to assemble the ONT CHM13 dataset on either machine, so we found the assembly in 

its publication. Canu was not run on human datasets due to its long running time, but we found 

assemblies in other publications5,23 (NA12878 assembly was polished with Illumina data so it was 

excluded from accuracy comparison). We omitted Ra from the human dataset benchmark due to its 

complexity on larger genomes. Hifiasm human assemblies were found in its publication18. 

We used QUAST-LG24 (v5.0.2) for assembly evaluation and ran it with minimal identity of 80%. For H. 

sapiens datasets we used the T2T (telomere-to-telomere) reconstruction of CHM13 (and options ‘--
large’ in QUAST), while for A. thaliana and D. melanogaster datasets we used appropriate NCBI 

assemblies or references depending on the strain. The assembly quality value (QV) was obtained with 

yak (v0.1), which is available at https://github.com/lh3/yak, by comparing 31-mers found in short 

accurate reads and the assembly for datasets NA12878, HG002 and HG00733. Gene completeness 

was evaluated with paftools (v2.17-r982) asmgene function, found inside the minimap225 package. 

We mapped annotated Ensembl cDNA sequences (v102 for D. melanogaster and H. sapiens, and v49 

for A. thaliana) to the references and the assemblies. Identity of 97% was used to find single-copy and 

duplicated single-copy genes, while 99% identity was used for multi-copy genes. We validated BAC 

resolution with a pipeline available at https://github.com/skoren/bacValidation (commit 4f3e463), 

where 99.5% of bases of a BAC need to be present in the assembly for it to be resolved. We used 

VMRC53 (237 BACs), VMRC59 (647 BACs) and VMRC62 (190 BACs) clones for NA12878, CHM13 and 

HG00733, respectively. BUSCO (v4.1.4) scores for the five plant datasets were found with the 

embryophyta database, although the current version contains more orthologs (1614 in total). 

ONT dataset for A. thaliana is available under the accession number ERR2173373, for D. melanogaster 

under SRR6702603, for H. sapiens NA12878 here (release 6), for H. sapiens CHM13 here (release 6), 

for H. sapiens HG002 here, and for H. sapiens HG00733 here. 
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PacBio CLR dataset for A. thaliana is available here, for D. melanogaster under accession number 

SRR5439404, for H. sapiens CHM13 here (extracted from draft v1.0 bam), for H. sapiens HG002 here, 

and for H. sapiens HG0073 under SRR7615963. 

PacBio HiFi dataset for H. sapiens CHM13 is available from accession number SRR11292120 to 

SRR11292123, for H. sapiens HG002 under SRR10382244, SRR10382245, SRR10382248 and 

SRR10382249, and for H. sapiens HG00733 under ERX3831682. 

Illumina reads for yak evaluation are available from accession number SRX1049768 to SRX1049782 for 

H. sapiens NA12878, here (extracted from 60x bam) for H. sapiens HG002, and under accession 

number SRR7782677 for H. sapiens HG00733. 

Accession numbers of the plant datasets used for separate Raven evaluation can be found in 

corresponding publications. 

All generated assemblies in this research can be found at Zenodo under DOI 10.5281/zenodo.4443062. 
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Figure 1 Bacterial assembly graph drawn with the force-directed placement algorithm. Raven uses vertex distances in two-

dimensional Euclidean system to find elongated edges (red) that connect junction vertices and removes the longest ones. 

Those represent false connections which occur either due to sequencing errors or repetitive genomic regions. Without unitig 

creation (large circles) and the hierarchical force calculation, the drawing algorithm would partake an extensive amount of 

time on larger genomes. In addition, transitive edges (dotted green) are reinstated to increase the connectivity of 

neighboring vertices. 
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Table 1 Evaluation of long-read assemblers. 

Dataset Metric Raven Canu Flye miniasm Ra Shasta Wtdbg2 

A. thaliana 

KBS-Mac-74 

ONT ~30x 

Genome fraction (%) 99.283 95.393 99.883 99.505 99.741 76.317 97.500 

No. of contigs 25 448 118 62 57 1382 353 

NG50 (Mb) 11.11 2.61  13.26 11.18 7.44 0.28 9.83 

NGA50 (Mb) 5.62 2.20 9.21 7.01 5.66 0.27 3.10 

NGA75 (Mb) 3.28 0.38 4.91 3.30 2.49 - 0.98 

No. of missasemblies 261 368 653 256 420 41 500 

Mismatch fraction (%) 0.298 0.163 0.299 0.179 0.325 0.509 0.363 

Indel fraction (%) 1.729 2.247 1.589 1.414 1.421 2.574 2.999 

Single-copy genes (%) 75.911 38.226 81.397 84.252 83.466 11.920 25.826 

Duplicated genes (%) 0.014 0.009 0.042 0.009 0.014 0.0 0.005 

Multi-copy genes (%) 0.0 0.0 2.083 0.0 2.083 0.0 0.0 

CPU time (h) 4.51 1157.51 22.41 5.99 9.47 0.64 19.79 

Memory (GB) 9.64 10.57 87.94 21.72 30.46 21.56 15.77 

A. thaliana 

Ler-0 

PacBio CLR ~90x 

Genome fraction (%) 99.603 99.069 99.692 99.300 99.622 22.483 99.275 

No. of contigs 74 591 174 155 112 1508 280 

NG50 (Mb) 10.78 0.75 13.98 8.68 6.78 - 12.21 

NGA50 (Mb) 6.12 0.75 6.68 6.21 6.40 - 6.09 

NGA75 (Mb) 3.07 0.31 4.55 1.77 2.34 - 2.74 

No. of missasemblies 792 1189 798 611 833 22 728 

Mismatch fraction (%) 0.129 0.219 0.137 0.107 0.166 0.371 0.184 

Indel fraction (%) 0.252 0.077 0.023 0.231 0.577 2.118 0.279 

Single-copy genes (%) 98.659 98.752 99.889 98.632 96.581 8.544 99.174 

Duplicated genes (%) 0.070 0.088 0.028 0.116 0.074 0.0 0.023 

Multi-copy genes (%) 72.581 93.548 85.484 72.581 38.710 0.0 45.161 

CPU time (h) 22.86 238.86 62.18 25.62 29.06 0.77 43.44 

Memory (GB) 18.83 12.22 59.68 46.65 32.67 37.44 25.65 

D. melanogaster 

ISO1 

ONT ~30x 

Genome fraction (%) 92.200 94.326 93.023 92.316 88.376 71.756 91.371 

No. of contigs 148 664 468 219 232 1852 635 

NG50 (Mb) 6.15 4.56 19.65 3.29 1.90 0.10 10.62 

NGA50 (Mb) 1.36 1.23 1.70 1.10 1.09 0.10 1.03 

NGA75 (Mb) 0.51 0.46 0.56 0.41 0.34 - 0.32 

No. of missasemblies 1230 3167 1316 1098 605 342 1974 

Mismatch fraction (%) 0.163 0.218 0.164 0.183 0.195 0.456 0.370 

Indel fraction (%) 0.713 0.935 0.407 0.737 0.727 1.800 1.556 

Single-copy genes (%) 98.573 98.059 99.273 98.219 97.864 63.432 96.083 

Duplicated genes (%) 0.071 0.284 0.035 0.151 0.071 0.0 0.027 

Multi-copy genes (%) 52.404 57.212 56.731 47.115 21.154 0.962 3.365 

CPU time (h) 5.05 520.75 25.64 7.91 13.71 0.62 26.90 

Memory (GB) 12.86 13.08 33.37 23.44 26.69 21.45 19.25 

D. melanogaster 

A4 

PacBio CLR ~125x 

Genome fraction (%) 93.460 95.967 92.291 93.709 90.423 91.242 92.830 

No. of contigs 121 254 199 299 177 484 311 

NG50 (Mb) 12.83 13.80 15.63 6.54 4.27 3.46 17.05 

NGA50 (Mb) 3.92 9.41 8.28 3.20 2.55 2.68 4.54 

NGA75 (Mb) 1.21 1.99 2.20 1.34 0.77 0.91 1.43 

No. of missasemblies 771 774 609 791 405 416 761 

Mismatch fraction (%) 0.047 0.037 0.036 0.058 0.033 0.035 0.170 

Indel fraction (%) 0.118 0.041 0.027 0.121 0.125 0.135 0.285 

Single-copy genes (%) 99.533 99.023 99.785 99.177 99.159 99.196 99.551 

Duplicated genes (%) 0.140 0.897 0.075 0.495 0.196 0.0 0.037 

Multi-copy genes (%) 80.447 92.737 83.799 86.592 80.447 29.050 59.777 

CPU time (h) 25.54 389.18 75.83 37.87 61.39 4.35 20.54 

Memory (GB) 22.18 19.08 79.62 56.59 61.99 62.82 19.36 

H. sapiens 

NA12878 

ONT ~45x 

Genome fraction (%) 92.267 92.037 92.748 90.611  91.491 87.356 

No. of contigs 249 1145 1264 502  2989 5147 

NG50 (Mb) 27.89 10.58 31.82 9.73  3.60 9.80 

NGA50 (Mb) 15.96 8.06 19.40 8.03  3.38 5.73 

NGA75 (Mb) 5.90 2.95 8.49 3.40  1.33 1.52 

Mismatch fraction (%) 0.135 0.152 0.128 0.140  0.151 0.242 

Indel fraction (%) 0.341 0.054 0.359 0.248  0.360 0.724 

Yak QV 25.659 35.063 25.479 27.002  25.209 22.450 

Single-copy genes (%) 90.285 94.045 90.021 95.200  70.849 58.881 

Duplicated genes (%) 0.198 0.252 0.299 0.525  0.008 0.016 

Multi-copy genes (%) 48.015 42.772 41.348 49.139  7.491 2.247 

Resolved BACs (%) 61.181 44.726 40.084 63.713  16.456 8.861 

CPU time (h) 470  1264 1373  29 1994 

Memory (GB) 83  730 401  391 279 
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Table 2 Evaluation of long-read assemblers across sequencing technologies. 

  ONT PacBio CLR PacBio HiFi 

Dataset Metric Raven Canu Flye Shasta Wtdbg2 Raven Flye Shasta Wtdbg2 Raven hifiasm 

H. sapiens 

CHM13 

ONT ~130x 

PacBio CLR 

~50x 

PacBio HiFi 

~35x 

 

Genome fraction (%) 93.392 94.943 93.444 92.552 88.668 91.825 92.121 91.442 91.783 92.551 99.778 

No. of contigs 120 558 548 1236 19029 897 2247 2937 3632 1755 470 

NG50 (Mb) 67.58 79.50 68.42 41.09 5.29 10.97 20.83 12.71 16.76 12.02 88.93 

NGA50 (Mb) 56.59 44.65 56.77 28.85 2.34 9.35 17.45 11.63 14.57 10.37 80.81 

NGA75 (Mb) 32.08 19.85 32.20 12.01 0.59 3.82 6.04 3.71 4.17 3.69 36.43 

No. of missasemblies 2847 3885 264 126 7046 869 316 186 954 2921 156 

Mismatch fraction (%) 0.073 0.117 0.014 0.039 0.285 0.036 0.017 0.034 0.072 0.059 0.002 

Indel fraction (%) 0.088 0.479 0.085 0.351 0.428 0.094 0.020 0.254 0.129 0.011 0.001 

Single-copy genes (%) 98.939 93.595 99.275 95.823 82.979 98.422 98.472 96.570 96.681 98.286 99.908 

Duplicated genes (%) 0.331 0.158 0.150 0.014 5.288 0.303 0.247 0.017 0.058 0.386 0.061 

Multi-copy genes (%) 86.217 49.513 62.547 14.607 34.831 44.419 30.262 5.393 6.592 44.644 99.700 

Resolved BACs (%) 95.518 88.717 72.798 43.895 30.294 42.040 36.785 33.076 35.858 39.104 96.600 

CPU time (h) 4792  4855  5978 498 1865 36 461 554  

Memory (GB) 251  873  423 98 407 547 180 65  

H. sapiens 

HG002 

ONT ~60x 

PacBio CLR 

~80x 

PacBio HiFi 

~35x 

 

Genome fraction (%) 92.691 94.034 93.309 93.446 88.866 91.257 91.707 89.474 90.882 92.144 96.183 

No. of contigs 192 767 776 2039 10166 2168 2879 8425 4660 2375 383 

NG50 (Mb) 34.51 32.60 50.42 28.92 7.71 3.55 11.56 0.91 9.91 6.49 98.17 

NGA50 (Mb) 21.06 20.09 26.84 22.73 3.37 2.86 8.99 0.89 7.56 5.94 31.43 

NGA75 (Mb) 9.69 7.99 12.61 11.42 1.18 1.24 3.08 0.34 2.32 2.14 13.09 

Mismatch fraction (%) 0.159 0.222 0.137 0.153 0.380 0.143 0.127 0.143 0.192 0.185 0.239 

Indel fraction (%) 0.226 0.794 0.220 0.182 0.605 0.162 0.048 0.361 0.200 0.036 0.031 

Yak QV 28.032 21.887 28.221 29.179 24.307 29.455 37.424 25.647 29.464 42.265 48.675 

Single-copy genes (%) 97.833 88.954 98.225 98.522 85.743 96.725 97.645 90.573 93.367 97.570 99.244 

Duplicated genes (%) 0.603 0.547 0.481 0.147 2.730 0.397 0.322 0.022 0.042 0.481 0.297 

Multi-copy genes (%) 70.936 28.390 56.704 27.865 15.655 26.742 18.652 4.045 5.169 38.727 85.243 

CPU time (h) 1157  1962 128 2191 987 3586 34 544 527  

Memory (GB) 105  951 771 352 129 562 567 207 67  

H. sapiens 

HG00733 

ONT ~80x 

PacBio CLR 

~95x 

PacBio HiFi 

~35x 

 

Genome fraction (%) 92.511 94.043 92.716 92.904 89.176 92.341 92.334 92.071 90.796 91.960 96.089 

No. of contigs 262 778 1028 1953 4848 559 1589 2281 2863 2176 657 

NG50 (Mb) 33.32 40.63 37.74 18.43 13.95 22.45 26.53 14.03 29.05  7.12 68.31 

NGA50 (Mb) 18.32 22.51 23.87 13.47 8.23 17.27 18.00 12.21 19.38 6.09 29.94 

NGA75 (Mb) 8.29 9.49 9.35 5.36 2.40 7.29 6.84 4.28 6.43 2.16 12.83 

Mismatch fraction (%) 0.128 0.205 0.129 0.131 0.272 0.131 0.110 0.175 0.165 0.157 0.221 

Indel fraction (%) 0.347 0.677 0.405 0.211 0.715 0.142 0.041 0.381 0.233 0.033 0.031 

Yak QV 25.705 22.635 24.978 27.979 22.772 29.758 37.310 25.143 28.345 40.056 42.390 

Single-copy genes (%) 97.145 91.406 96.814 97.650 88.484 98.411 98.672 96.045 96.442 97.584 99.333 

Duplicated genes (%) 0.417 0.714 0.278 0.069 0.253 0.503 0.261 0.039 0.053 0.489 0.367 

Multi-copy genes (%) 53.783 34.307 41.798 14.457 4.719 56.929 36.479 5.543 11.461 37.154 88.689 

Resolved BACs (%) 71.053 67.895 42.632 26.842 15.790 48.421 34.211 22.105 29.474 22.105 80.000 

CPU time (h) 1234  2871 98 1895 1522 6473 115 1491 486  

Memory (GB) 131  546 870 345 138 663 1012 340 70  

 

Table 3 Raven plant assemblies. Values in brackets represent assembly metrics in corresponding publications. Oryza 

genomes in the original publication were additionally polished with Illumina reads. 

Metric \ Dataset Brassica 

oleracea 

Brassica rapa Musa 

schizocarpa 

Oryza sativa 

basmati 334 

Oryza sativa dom 

sufid 

Total length (Mb) 535.9 (546.4) 351.7 (375.3) 534.4 (522.0) 382.4 (386.6) 380.5 (383.6) 

N50 (Mb) 6.35 (7.28) 5.52 (3.80) 2.48 (2.13) 8.14 (6.32) 11.86 (10.53) 

No. of contigs 252 (244) 410 (544) 546 (615) 116 (188) 107 (116) 

% complete BUSCOs 74.783 (74.300) 85.936 (79.700) 47.150 (53.800) 92.503 (97.600) 92.193 (97.000) 

CPU time (h) 40.52 (261.40) 58.55 (315.70) 94.95 (245.60) 43.59 (N/A) 33.89 (N/A) 
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