
Ravenscar-Java: A High Integrity Profile for
Real-Time Java

Jagun Kwon Andy Wellings Steve King

Presenter: Petur Olsen

September 20, 2007



Introduction
Ravenscar-Java

Example Program
Conclusion

The problem
The solution

High Integrity Real-Time Systems

What are they and why do we care?

Expensive failures

Loss of lives

Environmental damages

Financial loss

Real-Time

Predictable and reliable to external events

Adhere to deadlines

Does not mean really fast

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

The problem
The solution

High Integrity Real-Time Systems

Traditionally

Implemented on hardware

Embedded systems

Customized components

Hardware specific software

Poor reusability

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

The problem
The solution

High Integrity Real-Time Systems

Increase in use of software

Increased flexibility

Reduced production cost

Enhanced complexity management

Improved functionality

Improved reusability

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

The problem
The solution

Java for Real-Time systems

The Java Programming Language

Easy to learn

Early (first) programming language

Object oriented

Industrial strength

Platform independent

Concurrent

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

The problem
The solution

Java for Real-Time systems

Disadvantages of Java

Unpredictable performance

Scheduling
Memory
Control and data flow

Automatic garbage collection

Dynamic class loading

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

The problem
The solution

Contributions from Sun

Real-Time Specification for Java (RTSJ)

Predictable execution

Expressive Real-Time environment

Complex virtual machine

Difficult to analyze software

Java 2 Micro Edition (J2ME)

Simple

Runs on limited hardware

Too restricted for RTSJ

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

The problem
The solution

The Solution

Ravenscar-Java

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

The problem
The solution

Ravenscar-Java

Key features

Based on Ravenscar for Ada

Reliable and predictable programming environment

Analyzable and dependable systems

Suitable for embedded systems

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

Computational model
Memory management
Scheduling
Control and data flow

Ravenscar-Java

Development

RTSJ

Computational model

Memory management

Scheduling

Control and data flow

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

Computational model
Memory management
Scheduling
Control and data flow

Computational model

Focus on reliability

No garbage collection

Well defined scheduling

Threads and event handlers
Periodic and sporadic

Two phases

Initialization phase

Mission phase

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

Computational model
Memory management
Scheduling
Control and data flow

Phases

Initialization phase

Threads

Memory areas and objects

Event handlers

Events

Scheduling parameters

(Compiling all load classes)

Mission phase

Threads run and events are fired

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

Computational model
Memory management
Scheduling
Control and data flow

Memory management

Memory types

Immortal memory

Lives throughout the lifespan of the application
Allocation only in the initialization phase

Linear time scoped memory

Limited lifetime
Allocation during the mission phase
Fixed maximum size
Not sharable

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

Computational model
Memory management
Scheduling
Control and data flow

Scheduling

Threads

java.lang.Thread is disallowed

Periodic thread

Sporadic event handler

Static allocation

Restrictions

Only fixed priority based scheduling

No missed deadline handling

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

Computational model
Memory management
Scheduling
Control and data flow

Control and data flow

Restrictions

Ease the static analysis

No break and continue

One return statement

No asynchronous transfer of control

No wait, notify and notifyall

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

Example Program

Traction Controller

Monitor wheels on car

Cut power when wheels spin

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

Example Program

Traction Controller

SporadicEventHandler powerCutHandler

SporadicEvent powerCutEvent

PeriodicThread spinMonitor

Initializer TractionController

Main

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

Ravenscar-Java

Advantages

Real-time systems

Static analysis

Embedded systems

On the paper a good profile

Kwon, Wellings, King Ravenscar-Java



Introduction
Ravenscar-Java

Example Program
Conclusion

Conclusion

Disadvantages

Class inheritance

Analysis is seen as a separate process

Parameters mixed with application logic

Kwon, Wellings, King Ravenscar-Java



Thank you


