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ABSTRACT

In this paper, we present an end-to-end deep convolutional neural

network operating on multi-channel raw audio data to localize mul-

tiple simultaneously active acoustic sources in space. Previously

reported deep learning based approaches work well in localizing

a single source directly from multi-channel raw-audio, but are not

easily extendable to localize multiple sources due to the well known

permutation problem. We propose a novel encoding scheme to rep-

resent the spatial coordinates of multiple sources, which facilitates

2D localization of multiple sources in an end-to-end fashion, avoid-

ing the permutation problem and achieving arbitrary spatial resolu-

tion. Experiments on a simulated data set and real recordings from

the AV16.3 Corpus demonstrate that the proposed method general-

izes well to unseen test conditions, and outperforms a recent time

difference of arrival (TDOA) based multiple source localization ap-

proach reported in the literature.

Index Terms— Acoustic Source Localization, Deep Learning,

Convolutional Neural Networks, Raw Waveform

1. INTRODUCTION

Acoustic source localization (ASL) pertains to the problem of local-

izing an acoustic source in space using only the audio data captured

by an array of microphones. Historically, this problem of local-

izing a single acoustic source (single source localization or SSL

in short) has attracted a number of signal processing based solu-

tions [1–5]. Since the utility of an SSL algorithm is limited in re-

alistic settings where multiple acoustic sources could be simultane-

ously active, several authors have proposed signal processing based

algorithms for multiple source localization (MSL) [6–13]. A major

advantage of treating ASL as a signal processing problem is that,

there is no training phase and thus no training data is required. The

disadvantages, however, stem from the fact that, these algorithms

can be more complicated to deploy than a deep neural network, for

which standard deep learning libraries with a wide range of sup-

ported hardware are available [14]. Furthermore, making these sig-

nal processing based algorithms robust to specific distortions re-

quires algorithm-specific insights.

ASL can also be treated as a machine learning problem wherein

the goal is to map the location bearing features derived from the

microphone signals to the coordinates of the source. More com-

monly, this problem is cast as a classification problem by discretiz-

ing the enclosure into a grid of possible source locations [15–18].

In [15], the authors employ a neural network trained to map the

directional features derived from the short-time Fourier transform

(STFT) of the multi-channel audio to a discrete source location.

In [16] the authors use the magnitude and phase STFT to local-

ize multiple sources using deep convolutional-recurrent neural net-

works (CRNN). In [17] the multi-channel STFT phase is used as

input to a deep convolutional neural network (CNN). In [18]the

authors propose to employ deep feed-forward/convolutional neural

networks to predict likelihood-based encoding of angular location

of sources, taking generalized cross correlation (GCC) with phase

∗Work done while Weiran Wang was at Amazon.com Inc.

transform (PHAT) and GCC computed on sub-bands of a gamma-

tone filter bank as inputs. In all of the above approaches, the reso-

lution of the algorithm to localize a single source is limited to the

resolution of the grid which is typically between 5◦ − 10◦.

More recently, [19] have explored the possibility of an end-to-

end system mapping the raw multi-channel audio from a micro-

phone array directly to the source coordinates. A major drawback

of this approach is that there is no straight forward way to extend it

to localize multiple sources. Increasing the number of output nodes

to estimate the coordinates of each source leads to the well known

permutation problem, which also manifests in time difference of ar-

rival (TDOA) based MSL approaches [6, 20]. More importantly, in

practice, the number of active sources changes over time, and it is

not clear how to extend such an approach to realistic scenarios.

We present a deep convolutional neural network (CNN) to map

the raw audio data from a microphone array to the 2D coordinates

of all sources, without any pre-/post-processing of inputs/outputs.

To the best of our knowledge, this is the first end-to-end deep learn-

ing system for MSL. Based on the insights from [6] for avoiding the

permutation problem, we propose a joint Coarse-Fine localization

strategy, in which a source is associated with a coarse and a fine

location. Instead of outputting the source coordinates directly, we

propose to output encoded coordinates based on the coarse location

of the source. Such a design facilitates simultaneous localization

of multiple sources with arbitrary resolution. Additionally, it also

ensures that a source within a specific coarse location is always as-

sociated with a specific output node, thereby avoiding the permu-

tation problem. We train a “SampleCNN” architecture based on

residual connections [21] with the proposed output encoding layer

to detect the coarse regions containing an active source, while si-

multaneously estimating the source location finely within each such

active coarse region. This is achieved using a classification cost

to measure the discrepancy between actual and detected coarse re-

gions, and a regression cost to finely localize sources within each

coarse region. The network is trained to minimize a combination

of these two costs. Unlike the approaches in [16, 17], our method

does not simply treat the MSL problem as a multi-label classifica-

tion task, but as a joint multi-label classification and regression task.

Initial results on a simulated data set and on real recordings from the

AV16.3 corpus show that the proposed end-to-end approach signif-

icantly outperforms a recent signal processing solution based on

GCC/TDOA estimation [6], especially when there are two or more

active sources.

Notations Scalar variables are denoted in lowercase, constants in

uppercase, vectors in boldface-lowercase and matrices in boldface-

uppercase. We use a uniform circular array (UCA) of microphones.

The number of microphones in the array is denoted by M and the

number of active sources is denoted by K. The locations of the mi-

crophones are assumed to be known and are denoted by the position

vectors pi = [xi, yi, zi] ; 1 ≤ i ≤ M . The M microphone signals

are represented as wi[n]; 1 ≤ i ≤ M . Fs denotes the sampling

frequency of the digitized microphone signals.
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Fig. 1: A 2D Schematic of the enclosure with L = 8 sector-like

partitions and a UCA with M = 8 microphones. Two acoustic

sources are present in regions R1 and R8.

2. DEEP CNN FOR LOCALIZATION OF MULTIPLE

ACOUSTIC SOURCES

2.1. Encoding Spatial Coordinates of Multiple Sources

A network designed to output the coordinates of multiple sources

presents a permutation problem even when localizing stationary

sources over multiple segments of data. This permutation problem

arises when it cannot be ensured that the coordinates of a particular

source always appears on the same output node of the network. To

circumvent this problem, we utilize the insights reported in [6], and

partition the enclosure into L sector-like coarse regions denoted by

{Rℓ}
ℓ=L

ℓ=1 centered around the UCA. A region is said to be active if

it contains at least one source and is said to be inactive otherwise.

We assume that there can be at most one active source in any active

region. Consequently, the proposed network can localize up to L

simultaneously active sources. Note that this assumption in general

is not restrictive as the regions can be made smaller, justifying the

above assumption of one source per region. The 2D schematic of a

representative enclosure partitioned into L = 8 sector-like regions,

along with a UCA of M = 8 microphones and two sources - one in

R1 and the other in R8 is shown in Figure 1.

Let the 2D coordinates of a source in Rℓ, located at pSℓ
, be

specified in terms of the radial distance (dℓ) and azimuthal angle

(θℓ) computed with respect to the center of the microphone array

(p0). Then,

dℓ = ‖pSℓ
− p0‖, and θℓ = ∠(pSℓ

− p0), (1)

where ∠ denotes the azimuthal angle operator and ‖.‖ denotes the

Euclidean distance between the two vectors. Instead of representing

the source coordinates directly, we encode the source coordinates in

each sector as:

d̃ℓ =
dℓ − dmin

ℓ

dmax
ℓ − dmin

ℓ

, and θ̃ℓ =
θℓ − θmin

ℓ

θmax
ℓ − θmin

ℓ

, (2)

where the limits
(

dmin
ℓ , dmax

ℓ

)

represent the minimum and maximum

possible radial distance, and
(

θmin
ℓ , θmax

ℓ

)

represent the minimum

and maximum possible azimuthal angle for points in Rℓ. As a con-

sequence of the parameterization (2), we have 0 ≤ d̃ℓ, θ̃ℓ ≤ 1, as

targets for training neural networks.

For a given input sample, the network is designed to output 3

quantities corresponding to each coarse region Rℓ; 1 ≤ ℓ ≤ L:

• r̂ℓ , Pr (Rℓ is active)

•
(

ˆ̃
dℓ,

ˆ̃
θℓ

)

- the encoded 2D coordinates of a source in Rℓ,

resulting in a total of 3×L outputs. With this design, the network is

capable of simultaneously localizing up to L sources while avoiding

the permutation problem altogether.

2.2. Overall Network Architecture

Based on the recent success in using raw-audio based convolutional

networks as reported in [21], we propose a similar network architec-

ture using residual and “squeeze-and-excitation” blocks as shown in

Figure 2. It is well-known that the cross-correlation of microphone

signals contain location information [6, 22, 23]. Thus, we use only

1D convolutional filters which shall be able to extract the required

location information.

The multi-channel audio of duration T seconds forms the in-

put to the network. Consider one such multi-channel audio sample

W ∈ R
T.Fs×M . W is first processed by a “wave-norm” layer

wherein, each input waveform is normalized to have a maximum

amplitude of unity. This was found to be useful in our initial ex-

periments. The normalized raw-audio samples are then fed to the

basic convolutional block shown in Figure2(a), containing a sin-

gle convolutional layer with 64 1D convolutional filters, followed

by the batch normalization layer and rectified linear unit (ReLU)

non-linearity as prescribed in [21, 24]. The output from the ba-

sic block is down-sampled by a factor of 3, and fed to a series of

residual squeeze and excitation blocks containing 2 convolutional

layers each and abbreviated as “ReSE-2” blocks. The operations

performed by each ReSE-2 block is summarized in Figure 2(b) and

2(c). In each ReSE-2 block the input passes through 2 convolutional

layers with 128 1D convolutional filters and is down-sampled by a

factor of 3. The 2D output of the final ReSE-2 block is then trans-

formed into a 256 dimensional vector, through global max pooling

layer and 2 fully connected layers, which is used for generating the

final classification outputs (referred to as coarse location predic-

tions), and regression outputs (referred to as fine location predic-

tions), to detect active regions and localize the sources finely within

each active region, respectively.

For a threshold based detection, the active regions are first iden-

tified as the ones with coarse location predictions higher than a

threshold. Let D , {ℓ : r̂ℓ >= ǫ} be the set of indices correspond-

ing to active regions, where ǫ is the detection threshold. For each

detected region, the source location
(

d̂ℓ∗ , θ̂ℓ∗
)

is computed from

the encoded fine location predictions -
(

ˆ̃
dℓ∗ ,

ˆ̃
θℓ∗

)

∀ℓ∗ ∈ D as:

d̂ℓ∗ =
ˆ̃
dℓ∗ .

(

d
max
ℓ − d

min
ℓ

)

+ d
min
ℓ (3)

θ̂ℓ∗ =
ˆ̃
θℓ∗ .

(

θ
max
ℓ − θ

min
ℓ

)

+ θ
min
ℓ (4)

If the number of active sources is K, then D constitutes K active

region indices corresponding to the top K scores in {r̂ℓ}
L

ℓ=1. The

source in each active region is then estimated using (3) and (4).

The proposed approach is referred to as Sample based Multiple

Encoded Source Location Predictor (SMESLP).

2.3. Loss Function

The training data for the proposed network architecture is a triplet

- (W ,R,D). W =
[

w(1),w(2), · · · ,w(J)
]

denotes the raw-

audio samples input to the network where w(j) ∈ R
T.Fs×M and J

indicates the number of training samples. R =
[

r(1), r(2), · · · , r(J)
]

represents the ground truth of the coarse region labels where r(j) =
[

r
(j)
1 , r

(j)
2 , · · · , r

(j)
L

]T

, r
(j)
ℓ = 1 if Rℓ is an active region in the

jth training sample and 0 otherwise. D =
[

d(1),d(2), · · · ,d(J)
]

represents the encoded 2D location of the source in each of the L re-

gions, where d(j) =
[(

d̃
(j)
1 , θ̃

(j)
1

)

,
(

d̃
(j)
2 , θ̃

(j)
2

)

, · · · ,
(

d̃
(j)
L , θ̃

(j)
L

)]T

.

Encoded coordinates -
(

d̃
(j)
ℓ , θ̃

(j)
ℓ

)

are related to the corresponding

absolute coordinates -
(

d
(j)
ℓ , θ

(j)
ℓ

)

∀1 ≤ ℓ ≤ L as in (2).
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Fig. 2: A block diagram of the model architecture. The tensor sizes

at the output of each layer is also indicated.

For the j th sample, the coarse location prediction from the net-

work is represented as r̂(j) and the fine location prediction is repre-

sented as d̂
(j)

. We define the training loss for the j th sample - L(j)

as a weighted sum of the coarse localization loss - L
(j)
Coarse and the

fine localization loss - L
(j)
Fine, i.e.,

L(j) = α · L
(j)
Coarse + β · L

(j)
Fine,

where L
(j)
Coarse is the multi-label classification loss between the pre-

dicted regions and the actual regions averaged over the regions:

L
(j)
Coarse = −

1

L

L
∑

ℓ=1

[

r
(j)
ℓ log

(

r̂
(j)
ℓ

)

+
(

1− r
(j)
ℓ

)

log
(

1− r̂
(j)
ℓ

)]

,

and L
(j)
Fine is the average Euclidean distance between the actual and

predicted encoded coordinates of sources in active regions:

L
(j)
Fine =

1

L

L
∑

ℓ=1

✶{

r
(j)
ℓ

=1
}

√

(

d̃
(j)
ℓ −

ˆ̃
d
(j)
ℓ

)2

+
(

θ̃
(j)
ℓ −

ˆ̃
θ
(j)
ℓ

)2

,

where ✶{

r
(j)
ℓ

=1
} is the indicator function for Rℓ being active.

The overall training loss is computed as L = 1
J

∑J

j=1 L
(j). The

SMESLP networks are trained using Tensorflow1 and Keras2.

3. EXPERIMENTS

Although there are a few publicly available data sets like the LO-

CATA challenge data set [25], because of our choice of the micro-

phone array and the requirement of a large data set to train the pro-

posed network, we resort to simulated data for training our model.

However, in section 3.3 we test this network on real recordings.

3.1. Simulated Data set Details and Performance Metrics

The microphone signals are simulated by suitably transforming

clean speech data from dialect 8 (DR8) of the TIMIT database [26],

1https://www.tensorflow.org/
2https://keras.io/

Table 1: Simulated Data set statistics.

Acoustic Condition Train Validation Test

Anechoic 33,356 443 414

Reverb 34,196 460 456

sampled at 16 kHz. Both anechoic and reverberant data (with

a 60 dB reverberation time RT60 of 300 ms) are simulated for

training and evaluation of the proposed network. The anechoic

data set is created by superposition of appropriately shifted and

attenuated clean speech signals for each active source based on

the source-microphone distance. The reverberant data are created

by convolving clean speech signals with room impulse response

(RIR) generated using [27] based on the Image method [28]. For

RIR generation, an enclosure of size 6m ×7.5m ×4.5m is used.

The enclosure is divided into L = 8 sector-like regions with equal

azimuthal angular width of 45◦. A UCA with M = 8 microphones

and a radius of 10 cm is used and is placed at the center of the

enclosure. In each region Rℓ; 1 ≤ ℓ ≤ 8, 312 points are randomly

sampled [29, 30] out of which 250 are chosen for training, and 36

each for validation and testing. Up to 3 simultaneous sources are

simulated. Each training/evaluation sample is chosen to be of 1s

duration. Care is taken to ensure similar number of samples are

generated for different number of simultaneously active sources.

The data set statistics are summarized in Table 1. We analyze the

performance of the localization systems using two types of mea-

sures. One measure to capture how well the proposed approach

is able to coarsely localize the sources to be within the regions -

Rℓ; 1 ≤ ℓ ≤ 8. This is done using Hamming accuracy (ACC),

also known as the Jaccard index, which is a suitable metric for

analyzing multi-label classification systems [31]. It is defined as

ACC = ‖T
⋂

P‖
‖T

⋃

P‖
with T and P representing the set of true and

predicted labels respectively. The other measure is to capture how

well the proposed approach is able to finely localize the detected

sources, which is done using the absolute direction of arrival (DOA)

error between the actual and estimated source locations. In order

to conform with the existing literature, the performance on the

AV16.3 corpus is measured in terms of the root-mean-squared-

error (RMSE) of direction-of-arrival (DOA) and the percentage of

non-anomalous frames defined as the percentage of 1s frames in

which the algorithms estimate the source within a DOA error of

10◦.

3.2. Performance on Simulated Data

We compare performance of the proposed networks trained on

anechoic data only called SMESLP-Anechoic, and trained on re-

verberant data only called SMESLP-Reverb, with a baseline. The

baseline is the GCC/TDOA based approach “I-IDIR-UCA” by [6].

Since I-IDIR-UCA is also a region based approach, we compare its

coarse and fine localization performances with the proposed net-

works in one, two and three active sources scenarios. Figure 3 (left

panel) shows the Hamming score (ACC) for the three techniques

on anechoic data (top row) and on reverberant data (bottom row).

In a single source scenario, all three techniques perform coarse

localization perfectly. On the anechoic test set, the I-IDIR-UCA

has a slight degradation in performance with increase in number

of sources, while this degradation is more pronounced on the re-

verberant test set. SMESLP-Anechoic and SMESLP-Reverb have

much lesser degradation on the number of sources. Interestingly,

SMESLP-Anechoic generalizes well to the reverberant test set,

while SMESLP-Reverb generalizes well to the anechoic test set.

Closer examination of the results indicates that as reported in [6],

I-IDIR-UCA does well on sources lying closer to the center of

each region and is less robust to sources lying closer to the region

boundaries. Our SMESLP approach is more robust to source lying

closer to the boundary due to dense sampling of points for training.

Figure 3 (right panel) shows the absolute DOA error for the

three approaches on anechoic (top row) and reverberant (bottom

https://www.tensorflow.org/
https://keras.io/
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Fig. 3: (Color Online): Left panel: Coarse localization performance measured using Hamming score (ACC) for the 3 techniques. Right

panel: Absolute DOA error in deg(◦) for K = 1, 2 and 3 active sources. The top row corresponds to the performance evaluated on the

anechoic test set and the bottom row corresponds to the performance on the reverberant test set.
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Fig. 4: (Figure taken from [6])2D schematic of the local-

ization setup used in the real recordings from the sequence

seq37-3p-0001 of the AV16.3 corpus [32]. Following [6], the

enclosure is partitioned into 8 regions R1 −R8, the boundaries of

which are shown in dashed lines.

row) test sets with different number of active sources. Overall the

proposed SMESLP approaches clearly outperform I-IDIR-UCA in

the two and three active source scenario, with much smaller DOA

error for localizing all the active sources.

3.3. Performance on AV16.3 Corpus

In this section, we analyze the performance of the proposed network

on real recording sequence seq37-3p-0001 from the AV16.3

corpus [32] recorded in the IDIAP smart room [33]. In this record-

ing, three speakers A, B, and C converse from an azimuthal angular

location of 74◦, 353.5◦, and 309.6◦, respectively. While speakers

B and C are stationary, speaker A moves to an angle of 62.16◦ and

then to 314.1◦ over the duration of the sequence.

Similar to [6], we partition the enclosure into L = 8 regions

as shown in Figure 4. The proposed network is compared with two

other algorithms I-IDIR-UCA [6] and circular harmonics beam-

forming (CHB) [34]. We fine-tune the SMESLP-Anechoic net-

work with data from AV16.3 corpus for 50 epochs with a lower

learning rate of 0.0001. Of the 510 samples in the sequence

seq37-3p-0001, 110 are used for fine tuning, 10 for valida-

tion and the remaining 380 for testing. In order to prevent the

network from forgetting what it has learnt on the simulated data

sets, we also include 100 random samples each from anechoic and

reverberant data sets. Table 2 shows the mean absolute DOA error

for the proposed approach and RMSE of DOA for comparing the

proposed approach with the other two techniques. The percentage

Table 2: DOA Error and Percentage of non-anomalous frames

(indicated within parentheses) in real recordings for the three ap-

proaches being compared.

Sp. B Sp. B, C Sp. A, B, C

Absolute DOA Error

SMESLP 1.13◦(100%) 1.96◦(97.95%) 2.05◦(100%)

RMSE DOA Error

SMESLP 1.45◦(100%) 2.33◦(97.95%) 2.33◦(100%)

I-IDIR-UCA [6] 1.00◦ (92%) 1.83◦ (79 %) 4.1◦ (60%)

CHB [34] 1.18 ◦ 2.00 ◦ 2.98 ◦

of non-anomalous frames for the three approaches is also shown.

Although the RMSE of DOA for SMESLP is slightly higher for

one and two sources, in terms of the percentage of non-anomalous

frames, the SMESLP approach outperforms I-IDIR-UCA [6]. For

localizing three active speakers SMESLP approach outperforms the

other two techniques.

4. CONCLUSIONS

An end-to-end deep CNN operating on multi-channel raw audio

data is proposed to address the problem of localizing multiple

acoustic sources in space. The main contribution of the paper is in

designing an output layer to handle localizing multiple source while

avoiding the permutation problem in localizing/tracking multiple

sources over time. To the best of our knowledge, this is the first time

an end-to-end approach is proposed for localizing multiple acoustic

sources operating on raw multi-channel audio data. Evaluations on

simulated data show that the proposed approach (SMESLP) trained

on anechoic data generalizes to reverberant data and vice-versa.

On real recordings from AV16.3 corpus, with fine-tuning on a

small amount of data, the SMESLP approach clearly out-performed

existing state-of-the-art approaches even with three active sources.

Deploying the SMESLP network in a completely different en-

closure configuration from the one used for training, would require

a small amount of fine-tuning data in order to achieve an acceptable

level of performance. Overall, the SMESLP approach significantly

reduces the domain knowledge required for deploying a multiple

source localization system as compared to existing signal process-

ing based approaches in the literature [6, 8, 9, 34] and can be de-

ployed easily using existing deep learning frameworks.
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