
RAxML-OMP: An Efficient Program for

Phylogenetic Inference on SMPs�

Alexandros Stamatakis1, Michael Ott2, and Thomas Ludwig3

1 Institute of Computer Science, Foundation for Research and Technology-Hellas,
P.O. Box 1385, GR-71110 Heraklion, Crete, Greece

2 Technical University of Munich, Department of Computer Science,
Boltzmannstr. 3, D-85748 Garching b. München, Germany

3 Ruprecht-Karls University, Department of Computer Science,
Im Neuenheimer Feld 348, D-69120 Heidelberg, Germany

Abstract. Inference of phylogenetic trees comprising hundreds or even
thousands of organisms based on the Maximum Likelihood (ML) method
is computationally extremely intensive. In order to accelerate computa-
tions we implemented RAxML-OMP, an efficient OpenMP-parallelization
for Symmetric Multi-Processing machines (SMPs) based on the sequen-
tial program RAxML-V (Randomized Axelerated Maximum Likelihood).
RAxML-V is a program for inference of evolutionary trees based upon
the ML method and incorporates several advanced search algorithms
like fast hill-climbing and simulated annealing. We assess performance
of RAxML-OMP on the widely used Intel Xeon, Intel Itanium, and
AMD Opteron architectures. RAxML-OMP scales particularly well on
the AMD Opteron architecture and achieves even super-linear speedups
for large datasets (with a length ≥ 5.000 base pairs) due to improved
cache-efficiency and data locality. RAxML-OMP is freely available as
open source code.

1 Introduction

Phylogenetic (evolutionary) trees are used to represent the evolutionary history
of a set of n organisms which are often also called taxa within this context.
A multiple alignment of a—in a biological context—suitable small region of
their DNA or protein sequences can be used as input for the computation of
phylogenetic trees. Note, that a high-quality multiple alignment of the organisms
is a necessary prerequisite to conduct a phylogenetic analysis: The quality of the
evolutionary tree can only be as good as the quality of the multiple alignment!
Other computational approaches to phylogenetics also use gene order data [24].

In a computational context phylogenetic trees are usually strictly bifurcat-
ing (binary) unrooted trees. The organisms of the alignment are located at the
tips (leaves) of such a tree whereas the inner nodes represent extinct common
� This work is funded by a Postdoc-fellowship granted by the German Academic Ex-

change Service (DAAD) and by the ”Competence Network for Technical, Scientific
High Performance Computing in Bavaria (KONWIHR)”.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 288–302, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

RAxML-OMP: An Efficient Program for Phylogenetic Inference on SMPs 289

45

40

35

30

25

20

15

10

Common Ancestor

H
um

an
s

M
on

ke
ys

C
hi

m
pa

nz
ee

s

Millions of

Years Ago Pr
os

em
ia

ns
N

ew
 W

or
ld

O
ra

ng
ut

an
s

G
or

illa
s

M
on

ke
ys

O
ld

 W
or

ld

G
ib

bo
ns

50

55

5

Fig. 1. Phylogenetic tree representing the evolutionary relationship between monkeys
and the homo sapiens

ancestors. The branches of the tree represent the time which was required for
the mutation of one species into another—new—one. An example for the evolu-
tionary tree of the monkeys and the homo sapiens is provided in Figure 1. Note,
that the tree need not be the model of evolution. Therefore, approaches using
phylogenetic networks are becoming more popular recently [8].

The inference of phylogenies with computational methods has many impor-
tant applications in medical and biological research, such as e.g. drug discovery
and conservation biology. A paper by D. Bader et al [1] addresses potential in-
dustrial applications of evolutionary tree inference and contains numerous useful
references to important biological results obtained via phylogenetic analysis.

Due to the rapid growth of available sequence data over the last years and
the constant improvement of multiple alignment methods it has now become
feasible to compute very large trees which comprise more than 1.000 organisms.
The computation of the tree-of-life containing representatives of all living beings
on earth is considered to be one of the grand challenges in Bioinformatics.

The most fundamental algorithmic problem computational phylogeny faces
consists in the immense amount of potential alternative tree topologies. This
number grows exponentially with the number of sequences n, e.g. for n = 50
organisms there already exist 2.84 ∗ 1076 alternative topologies; a number al-
most as large as the number of atoms in the universe (≈ 1080). Thus, given
some—biologically meaningful—optimality criterion for evaluating all alterna-
tive configurations (topologies) in order to search for the best tree, one can
quickly assume that the problem might be NP-hard. In fact, this has already
been demonstrated for the general version of the perfect phylogeny problem [3]
and maximum parsimony (MP) [4]. The maximum likelihood (ML) criterion [5]

290 A. Stamatakis, M. Ott, and T. Ludwig

is also believed to be NP-hard, though this could not be demonstrated so far
because of the significantly superior mathematical complexity of the model. Due
to the large amount of alternative trees, intelligent search space heuristics have
to be deployed for ML-based phylogenetic inference. Another important aspect
for the design of such heuristics consists in the very high degree of accuracy (dif-
ference to the score of the optimal or best-known solution) which is required to
obtain reasonable biological as well as topologically closely related results. While
an accuracy of 90% is considered to be a “good” value for heuristics designed
to solve other NP-hard optimization problems, e.g. the traveling salesman prob-
lem, recent results [29] suggest that phylogenetic analyses require an accuracy
≥ 99.99%, in particular for large trees. This observation yields the whole field
more difficult and challenging.

When comparing the various optimality criteria which have been devised for
phylogenetic trees one can observe a trade-off between speed and quality. This
means that a phylogenetic analysis conducted with an elaborate model such
as maximum likelihood requires significantly more computation time but yields
trees with superior accuracy than e.g. neighbor joining [6] (NJ) or MP [7] [28].
However, due to the higher accuracy it is desirable to infer large and complex
trees with maximum likelihood or closely related Bayesian methods.

Within this context it is important to note that the design of maximum like-
lihood programs is primarily an algorithmic discipline, due to the gigantesque
number of alternative tree topologies and the high computational cost of the
likelihood function. Thus, progress in the field has mainly been attained via algo-
rithmic improvements rather than by brute force allocation of all available com-
putational resources. As an example consider the performance of parallel fastD-
NAml [21] (state-of-the-art parallel ML program in 2001) and RAxML-V [19]
(Randomized Axelerated Maximum Likelihood, one of the fastest sequential ML
programs in 2004) on a 1.000-organism alignment: For this large alignment par-
allel fastDNAml consumed approximately 9.000 accumulated CPU hours on a
Linux PC cluster in contrast to less than 20 hours required by RAxML-V on a
single Intel Xeon processor. In addition, the likelihood of the tree computed by
RAxML-V was significantly better than the likelihood score obtained by parallel
fastDNAml.

However, as algorithmic research in phylogenetics comes of age and novel
powerful algorithms allow for computation of trees which comprise more than
500 sequences, a new category of problems arises. Those problems mainly concern
memory shortage, cache efficiency, and a still very large demand for computation
time. Thus, the main focus of this paper is on the deployment of the shared
memory programming paradigm for the computation of large trees (containing
≥ 500 sequences) based on statistic models of sequence evolution.

The remainder of this paper is organized as follows: Section 2 describes re-
lated work in the area of ML phylogeny programs. The following Section 3 briefly
describes the main components of the sequential version of RAxML-V. In Sec-
tion 4 the computation of the likelihood score for a tree is explained and the
OpenMP [14] parallelization of RAxML-V is outlined. In Section 5 we report

RAxML-OMP: An Efficient Program for Phylogenetic Inference on SMPs 291

RAxML-OMP speedups on Xeon, Itanium, and Opteron SMPs. Finally, Sec-
tion 6 provides a conclusion and briefly addresses current and future issues of
work.

2 Related Work

The survey of related work is restrained to statistical phylogeny methods since
they have shown to be the most accurate methods currently available. On the
one hand there exist “traditional” maximum likelihood methods and a large
variety of programs implementing maximum likelihood searches. The recently
updated site maintained by J. Felsenstein [17] lists most available programs. On
the other hand there exist Bayesian methods which are relatively new compared
to maximum likelihood and have experienced great impact, especially through
the release of a program called MrBayes [9].

A thorough comparison of popular phylogeny programs using statistical ap-
proaches such as fastDNAml [13], MrBayes, PAUP [15], and TREE-PUZZLE [22]
on small simulated datasets (up to 60 sequences) has been conducted by T.L.
Williams et al [28]. The most important result of this paper is that MrBayes
outperforms all other phylogeny programs in terms of speed and tree quality.
However, the results of this survey do not necessarily apply to large real data
sets since simulated alignment data has different properties and a significantly
stronger phylogenetic signal than real world data (see [20] for a discussion),
i.e. typically much more computational effort is required to find a “good” phy-
logenetic tree for real-world data. Due to these significant differences between
real and simulated datasets comparative surveys should include collections of
simulated and real datasets in order to yield a more complete image of program
performance. In fact, there exist some real datasets for which MrBayes fails to
converge to acceptable likelihood values within reasonable time [19]. Huelsen-
beck et al [10] provide an in-depth discussion of potential pitfalls of Bayesian
inference.

More recently, Guidon and Gascuel published an interesting paper about
their new program PHYML [7], which is very fast and seems to be able to
compete with MrBayes. PHYML is a “traditional” maximum likelihood hill-
climbing program which seeks to find the optimal tree in respect to the likelihood
value. Moreover, the respective performance analysis includes larger simulated
datasets of 100 sequences and two well-studied real data sets containing 218
and 500 sequences. Their experiments show that PHYML is extremely fast on
real and simulated data. However, the accuracy on real data needs improve-
ment [19]. Moreover, the results show that well-established sequential programs
like PAUP* [15], TREE-PUZZLE [22], and fastDNAml [13] are prohibitively slow
on datasets containing more than 200 sequences, at least in sequential execution
mode.

Vinh et al [27] recently published a program called IQPNNI which yields
better trees than PHYML on real world data but is significantly slower.

292 A. Stamatakis, M. Ott, and T. Ludwig

Finally, the current hill-climbing and simulated annealing algorithms imple-
mented in RAxML-V clearly outperform PHYML and IQPNNI on real world
data, both in terms of execution time and final tree quality [20].

The main problem which parallel implementations of ML analyses face is that
technical development drags behind algorithmic development. This means that
programs are parallelized that do not represent the state-of-the-art algorithms
any more. Thus, it can be observed that parallel or distributed codes like parallel
fastDNAml [21], DPRml [12] (both based on a search algorithm from 1994) or
parallel TREE-PUZZLE [18] are just as good as the currently best sequential
codes in terms of tree quality. However, they require significantly more CPU
hours to attain the same results. The above programs have all been parallelized
with MPI.

To the best of our knowledge, apart from RAxML-OMP, there exists only one
distributed shared-memory implementation of an ML program for NUMA archi-
tectures: veryfastDNAml [26] which is based on the TreadMarks library [25]. The
veryfastDNAml implementation is also based on the old and slow fastDNAml al-
gorithm from 1994. The technical details of the veryfastDNAml implementation
have not been published anywhere such that it is not known if the parallelization
is based on loop-level parallelism or a coarse-grained master-worker scheme.

3 RAxML-V

In this Section we provide a brief outline of the basic components and algorithms
of RAxML-V, which are required to understand the structure of the paralleliza-
tion. The program initially computes a starting tree which contains all sequences
of the alignment using a fast greedy MP search. The MP search is performed by
an appropriately modified version of Joe Felsenstein’s dnapars program [17]. One
important property of dnapars is that it yields distinct starting trees depending
on the input order permutation of the sequences. By randomizing the sequence
input order, the program can start the optimization from different points of
search space each time it is executed. Therefore, by executing several RAxML-V
runs it is more likely to find good trees and avoid local maxima since each run
will yield a distinct final tree. Thus, the confidence into the final results obtained
by RAxML-V is higher than for strictly deterministic programs.

The procedure by which the parsimony score is computed in dnapars is very
similar to ML. Thus, the loop-level parallelization of the parsimony component
is analogous to that for ML which we describe in more detail in the following
Section 4.

After the computation of the parsimony starting tree, the likelihood of the
candidate topology is improved by subsequent application of topological alter-
ations. To evaluate and select candidate alternative topologies RAxML-V uses
a mechanism called lazy subtree rearrangements [19]. This mechanism initially
performs a rapid pre-scoring of a comparatively large number of alternative
topologies. After the pre-scoring step a few of the best pre-scored topologies are
analyzed more thoroughly. The fact, that RAxML-V is currently the fastest and

RAxML-OMP: An Efficient Program for Phylogenetic Inference on SMPs 293

select
algorithm

randomize
permutation

dnapars

simulated
annealing

hill−
climbing

OpenMP
parallelization

component
ML core

starting tree

input: alignment file

output: tree file

iterateiterate

Fig. 2. Basic components of RAxML-V

most accurate program on real alignment data is due to this ability to quickly
evaluate (pre-score) a large number of alternative tree topologies. Furthermore,
RAxML-V currently implements two basic search procedures which exploit the
lazy subtree rearrangement mechanism:

1. A strict hill-climbing procedure which applies lazy subtree rearrangements
until the candidate tree can not be improved upon any more [19].

2. A simulated annealing algorithm which is slightly slower than hill-climbing
on the one hand but able to escape local maxima on the other hand [20].

Finally, it is important to know that both search algorithms use the same core
component to calculate maximum likelihood values, such that the parallelization
applies to both search strategies. Figure 2 provides an overview of RAxML-V as
described in this Section.

4 Parallelization

The current Section does not intend to provide a detailed introduction to ML
for phylogenetic trees. The goal is to give a notion of the complexity and amount
of arithmetic operations required to compute the maximum likelihood score for
one single tree topology. Furthermore, it aims to explain where the intrinsic
loop-level parallelism occurs and how it can be exploited.

The seminal paper by Felsenstein [5] which actually introduces the applica-
tion of ML to phylogenetic trees and the comprehensive and readable chapter by
Swofford et al. [23] provide detailed descriptions of the mathematical background
and models of nucleotide substitution (see below).

294 A. Stamatakis, M. Ott, and T. Ludwig

Seq 1
Seq 3 Seq 4

virtual root vr virtual root vr

Seq 1 Seq 2Seq 2
Seq 3 Seq 4Seq 4

Seq 2Seq 1

Seq 3

place arbitrary virtual rootunrooted 4−taxon tree compute likelihood vectors bottom−up

Fig. 3. Computation of the likelihood vectors of a 4-taxon tree

To calculate the likelihood of a tree topology with given branch lengths one
requires a probabilistic model of nucleotide substitution Pij(t) which allows for
computing the probability P that a nucleotide i (e.g. A) mutates to another
nucleotide j (e.g. G) within time t (branch length).

Given the model of nucleotide substitution and an unrooted tree topology
with fixed branch lengths where the data (the individual sequences of the mul-
tiple alignment) is located at the tips, one can proceed with the computation of
the likelihood score for that tree. In order to compute the likelihood a virtual
root (vr) has to be placed into an arbitrary branch of the unrooted tree in order
to calculate/update the individual entries of each likelihood vector with length
n (alignment length) in the tree bottom-up, i.e. starting at the tips and moving
towards vr. It is important to note, that the likelihood of the tree is identic irre-
spectively of where vr is placed. After having updated all likelihood vectors the
vectors to the right and left of vr can be used to compute the overall likelihood
value of the tree. The process of rooting and updating the likelihood vectors for
a 4-taxon tree is outlined in Figure 3.

To understand how the individual likelihood vectors are updated consider a
subtree rooted at node p with immediate descendants r and q and likelihood
vectors l_p, l_q, and l_r respectively. When the likelihood vectors l_q and
l_r have been computed the entries of l_p can be calculated—in an extremely
simplified manner—as outlined by the pseudo-code below and in Figure 4:

for(i = 0; i < n; i++)
l_p[i] = f(g(l_q[i], b_pq), g(l_r[i], b_pr));

where f() is a simple function, i.e. requires just a few FLOPs, to combine the
values of g(l_q[i], b_pq) and g(l_r[i], b_pr). The g() function however
is more complex and computationally intensive since it contains the evaluation
of Pij(t). The parameter t corresponds to the branch lengths b_pq and b_pr
respectively. Since entries l_p[i] and l_p[i + 1] can be computed indepen-
dently this for-loop can be parallelized by insertion of an appropriate OpenMP
directive to exploit the inherent loop-level parallelism:

#pragma omp parallel for private(...)
for(i = 0; i < n; i++)

l_p[i] = f(g(l_q[i], b_pq), g(l_r[i], b_pr));

RAxML-OMP: An Efficient Program for Phylogenetic Inference on SMPs 295

p

q r

l_p

towards vr

l_q l_r
b_prb_pq

g(l_q[i], b_pq)

g(l_r[i], b_pr)

l_p[i] = f(g(l_q[i], b_pq), g(l_r[i], b_pr))

Fig. 4. Updating the likelihood vector of node p at position i

Up to this point it has been described how to compute the likelihood of a tree
given some arbitrary branch lengths. However, in order to obtain the maximum
likelihood value for a given tree topology the length of all branches in the tree has
to be optimized. Since the likelihood of the tree is not altered by distinct rootings
of the tree the virtual root can be subsequently placed into all branches of the
tree. Each branch can then be optimized individually to improve the likelihood
value of the entire tree. In general—depending on the implementation—this
process is continued until no further branch length alteration yields an improved
likelihood score. Branch length optimization can be regarded as maximization of
a one-parameter function lh(t) where lh is the phylogenetic likelihood function
and t the current branch length at vr.

Typically, the three basic operations: computation of the likelihood vectors,
optimization of the branch lengths, and computation of the overall likelihood
value require ≈ 90% of the complete execution time of every ML implemen-
tation. For example 92.72% of total execution time for a typical dataset with
150 sequences in PHYML and 92.89% for the same dataset in RAxML-V. Thus,
an acceleration of these functions on a technical level by optimization of the C
code, the memory access behavior and consumption, as well as the exploitation
of loop-level parallelism can lead to substantial performance improvements. The
structure of the loops in the three basic functions is very similar to the abstract
pseudocode representation provided above. The main for-loops of RAxML have
been parallelized in an analogous way.

Memory consumption is becoming a problem for inference of large phy-
logenetic trees containing more than 1.000 sequences. Table 1 provides some
figures for memory requirements of RAxML, PHYML, and MrBayes for large
datasets. Note that MrBayes could not handle the 10.000-taxon dataset, even
when compiled on a 64-bit architecture. In fact only the sequential RAxML-
version could still be executed on a 32-bit processor with this large dataset. The
memory requirements of RAxML-V are directly proportional to the alignment
size, i.e. Θ(n∗m) where n is the number of sequences and m the number of base
pairs (length of the alignment). Figure 5 depicts how the memory allocated by
RAxML-OMP is accessed by 2 individual threads, each running on a separate
CPU. The situation is particularly favorable because memory accesses are inde-

296 A. Stamatakis, M. Ott, and T. Ludwig

Alignment Size= Memory Requirements

number of
sequences: n

alignment length: m

Cache0 Cache1

CPU0 CPU1
Thread0 Thread1

working
space of
thread 0

working
space of
thread 1

= data matrix =O(n *m)

Fig. 5. Memory access scheme of RAxML-OMP

Table 1. Memory consumption of RAxML-III, MrBayes, and PHYML for large data
sets

Program 1.000 taxa 10.000 taxa

RAxML-III 200 MB 750 MB
PHYML 900 MB 8.8 GB
MrBayes 1.2 GB not available

pendent and equally distributed among threads, i.e. thread 0 in the figure works
exclusively on the left half of the data matrix and thread 1 on the right half.

Thus, we believe that RAxML-OMP provides a viable approach to resolve
both memory shortage problems and allow for higher cache efficiency at the
same time. It is important to emphasize that memory efficiency is becoming
an important issue because evolutionary biology has already entered the whole-
genome era. This means that alignments used for phylogenetic analyses will
particularly grow in length m which will have typical values of around 10.000
or 20.000 base pairs and do not fit into cache any more. Moreover, inferences
of large trees containing more than 1.000 sequences which are now becoming
algorithmically feasible also require long alignments in terms of m to produce a
reliable phylogenetic signal [2]. Finally, RAxML-OMP can serve as a basis for
hybrid MPI/OpenMP implementations on constellations of PC-clusters which
are widely available nowadays.

5 Results

Initially, we provide a brief description of the test platforms and datasets used
in this study. Thereafter, we provide measured speedup values for various plat-

RAxML-OMP: An Efficient Program for Phylogenetic Inference on SMPs 297

form/dataset combinations and compare the performance on the different SMP
architectures.

Test data, platforms and experimental setup: For measuring the efficiency of
RAxML-OMP we executed the program on three common SMP architectures:
a dual-processor Intel Xeon 2.4GHz with 4 Gbyte of main memory, a quad-
processor Intel Itanium2 1.3GHz with 8 Gbyte of main memory, and a quad-
processor AMD Opteron 850 2.4 GHz with 8 Gbyte of memory. We used several
real world alignment data sets containing 150, 218, 500, and 1.000 taxa (150 SC,
218 RDPII, 500 ARB, 1000 ARB). In addition we generated 3 simulated align-
ment data sets with 300 sequences (sim300 1000, sim300 5000, sim300 10000) to
evaluate the effect of increasing alignment length on program performance. For
the sake of completeness we indicate the alignment lengths (# of base pairs) of
all datasets we used in Table 2.

Table 2. Alignment lengths

Dataset # bp Dataset # bp

150 SC 1.130 sim300 1000 1.000
218 RDPII 1.847 sim300 5000 5.000
500 ARB 2.751 sim300 10000 10.000
1000 ARB 3.364

We compiled RAxML-OMP with the native Intel compiler icc -O3 and
the respective OpenMP flags for the Itanium and Xeon architectures. For the
Opteron we used the PGI [16] compiler pgcc -O3. In order to measure execu-
tion times and calculate speedup values we executed RAxML-OMP with 1 and
2 threads on the Xeon, and 1,2, and 4 threads on the Itanium and Opteron pro-
cessors respectively. We executed 3 runs for each dataset/architecture/number-
of-threads combination and report average values. To be able to reproduce com-
parable results we used a fixed parsimony starting tree. This was achieved by
using a standard input sequence permutation order instead of a randomized one.
Moreover, we also measured the execution times of the parsimony and maximum
likelihood components separately to analyze the efficiency for each part. A sepa-
rate analysis is of particular interest since the parsimony component exclusively
performs integer operations while maximum likelihood performs mainly a large
number of floating point operations. Moreover, ML requires approximately 5
times higher per-loop execution times than MP, e.g. for the 150 SC dataset 18.3
µs for one complete iteration of a parsimony for-loop and 97.2 µs for an ML
for-loop1

Experimental results: A complete analytical table containing the execution times
of all experiments conducted within the framework of this study is available

1 These times have been measured on an Intel Centrino.

298 A. Stamatakis, M. Ott, and T. Ludwig

of processors

sp
ee

du
p

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 4

Opteron
Xeon

Itanium

Fig. 6. Speedup on Xeon, Opteron, and Itanium for 218 RDPII

at: wwwbode.in.tum.de/˜ottmi/results jan 05.html. Therefore, we present some
representative examples of RAxML-OMP performance.

Figure 6 indicates the speedup values for the relatively small—in terms of
alignment length m (see Table 2 and Figure 5)—dataset 218 RDPII on Xeon,

sp
ee

du
p

of processors

1

2

3

4

5

6

1 2 4

Opteron
Xeon

Itanium

Fig. 7. Speedup on Xeon, Opteron, and Itanium for sim300 10000

RAxML-OMP: An Efficient Program for Phylogenetic Inference on SMPs 299

sp
ee

du
p

of basepairs

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

2xOpteron
4xOpteron

2xXeon
2xItanium
4xItanium

Fig. 8. Speedup over alignment length (number of base pairs) per processor type and
number of CPUs

Opteron, and Itanium architectures. The generally better scalability of the Opteron
processor is most probably due to the HTT (Hyper Transport Technology [11])
memory access architecture which suits the program structure of RAxML-OMP.
However, this issue requires further investigation. On the other hand, due to
an unfavorable memory access design the Xeon processor yields only marginal
speedups.

Figure 7 provides the speedup values for the sim300 10000 dataset. Though,
comparable in size in respect to the number of taxa with 218 RDPII, the length
of this alignment and consequently the length of the parallelized for-loops is sig-
nificantly longer: 10.000 nucleotides = 10.000 iterations (also called base pairs).
Note, that the speedup on the AMD Opteron on 2 and 4 CPUs is clearly super-
linear (≈ 2.8 and ≈ 5.6 respectively). This is due to the improved cache efficiency
and data locality inherent to RAxML-OMP in conjunction with AMD’s HTT
and a “long” alignment. In order to demonstrate the impact of alignment length
on speedup values in Figure 8 we plot the speedup over the number of base
pairs—for all datasets used in this study—per processor type and number of
CPUs. The general tendency is that the parallel efficiency increases with align-
ment length due to the aforementioned reasons on the Opteron. Note, that for
an AMD Opteron equipped with significantly less main memory (512MB) and
a smaller cache the speedups became already super-linear at significantly lower
alignment lengths (≥ 2.000 base pairs). Another point worth mentioning is that
a “large” number of taxa n (see Figure 5) in the alignment has a negative effect
on speedup-values since the amount of allocated memory increases significantly.
This explains the buckling which can be observed at ≈ 3.500 base pairs. This
value corresponds to the large—in terms of taxa—1000 ARB dataset. In Fig-

300 A. Stamatakis, M. Ott, and T. Ludwig

Opteron
Xeon
Itanium

1 CPU 2 CPU 4 CPU

to
ta

l r
un

tim
e

[s
]

0

50000

100000

150000

200000

250000

300000

350000

Fig. 9. Accumulated average execution times over all datasets per processor type and
number of CPUs

ure 9 we present the accumulated average runtime over all datasets per number
of CPUs for the Itanium, Opteron, and Xeon architectures. In all cases RAxML-
OMP is at least ≈ 50% faster on Opteron than on the Xeon and Itanium.

Finally, as expected the parallel efficiency of the ML component was signif-
icantly better than for MP due to the aforementioned reasons (please refer to
the results web-site for exact figures).

6 Conclusion, Availability and Future Work

We have presented an efficient OpenMP parallelization of RAxML-V which scales
particularly well on the AMD Opteron SMP architecture. Due to improved cache
efficiency and data locality RAxML-OMP yields clearly superlinear speedups for
long (in terms of base pairs) datasets on 2-way and 4-way Opteron nodes. More-
over, the current implementation allows for inference of large 1.000-taxon trees
on a single Opteron node in less than 6 hours. The program is freely available for
download as open source code at www.ics.forth.gr/˜stamatak. Currently, we are
working on an OpenMP-version of PHYML which faces more serious memory
problems than RAxML.

Since scalability of parallel programs which exploit fine-grained loop-level
parallelism is limited, future work will mainly cover the implementation of a
mixed MPI/OpenMP parallelization of RAxML for hybrid supercomputer archi-
tectures. Moreover, the architectural causes for the relatively bad performance
of RAxML-OMP on both Intel architectures in comparison to the efficiency on
the Opteron need to be further investigated.

RAxML-OMP: An Efficient Program for Phylogenetic Inference on SMPs 301

References

1. Bader, D.A., Moret, B.M.E., Vawter, L.: Industrial Applications of High-
Performance Computing for Phylogeny Reconstruction. Proceedings of SPIE IT-
Com: Commercial Applications for High-Performance Computing 4528 (2001)
159–168

2. Bininda-Emonds, O.R.P., Brady, S.G., Sanderson, M.J., Kim, J.: Scaling of accu-
racy in extremely large phylogenetic trees. Proceedings of Pacific Symposium on
Biocomputing (2000) 547–558

3. Bodlaender, H.L., Fellows, M.R., Hallett, M.T., Wareham, T., Warnow, T.: The
hardness of perfect phylogeny, feasible register assignment and other problems on
thin colored graphs. Theor. Comp. Sci. 244 (2000) 167–188

4. Day, W.E., Johnson, D.S., Sankoff, D.: The computational Complexity of inferring
rooted phylogenies by parsimony. Math. Bios. 81 (1986) 33–42

5. Felsenstein, J.: Evolutionary Trees from DNA Sequences: A Maximum Likelihood
Approach. J. Mol. Evol. 17 (1981) 368–376

6. Gascuel, O.: BIONJ: An improved version of the NJ algorithm based on a simple
model of sequence data. Mol. Biol. Evol. 14 (1997) 685–695

7. Guindon, S., Gascuel, O.: A Simple, Fast, and Accurate Algorithm to Estimate
Large Phylogenies by Maximum Likelihood. Syst. Biol. 52(5) (2003) 696–704

8. Gusfield, D., Eddhu, S., Langley, C.: Efficient Reconstruction of Phylogenetic Net-
works with Constrained Recombination. Proceedings of 2nd IEEE Computer So-
ciety Bioinformatics Conference (2003) 363–371

9. Huelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J.P.: Bayesian Inference and
its Impact on Evolutionary Biology. Science 294 (2001) 2310–2314

10. Huelsenbeck, J.P., Larget, B., Miller, R.E., Ronquist, F.: Potential Applications
and Pitfalls of Bayesian Inference of Phylogeny. Syst. Biol. 51(5) (2002) 673–688

11. Hyper Transport Technology: www.hypertransport.org.
12. Keane, T.M., Naughton, T.J., Travers, S.A.A., McInerney, J.O., McCormack, G.P.:

DPRml: Distributed Phylogeny Reconstruction by Maximum Likelihood. Bioinfor-
matics 21(7) (2005) 969–974

13. Olsen, G., Matsuda, H., Hagstrom, R., Overbeek, R.: fastdnaml: A Tool for Con-
struction of Phylogenetic Trees of DNA Sequences using Maximum Likelihood.
Comput. Appl. Biosci.10 (1994) 41–48

14. OpenMP: www.openmp.org/drupal.
15. PAUP project site: paup.csit.fsu.edu.
16. Portland Group High-Performance Compilers and Tools: www.pgroup.com.
17. PHYLIP downlaod site and list of phylogeny software:

evolution.genetics.washington.edu.
18. Schmidt, H.A., Strimmer, K., Vingron, M., Haeseler, A.v.: TREE-PUZZLE: maxi-

mum likelihood phylogenetic analysis using quartets and parallel computing. Bioin-
formatics 18 (2002) 502–504

19. Stamatakis, A., Ludwig, T., Meier, H.: RAxML-III: A Fast Program for Maxi-
mum Likelihood-based Inference of Large Phylogenetic Trees. Bioinformatics 21(4)
(2005) 456–463

20. Stamatakis, A.: An Efficient Program for phylogenetic Inference Using Simulated
Annealing. Proceedings of 19th International Parallel and Distributed Processing
Symposium (2005) to be published

21. Stewart, C., Hart, D., Berry, D., Olsen, G., Wernert, E., Fischer, W.: Parallel Im-
plementation and Performance of fastdnaml - a Program for Maximum Likelihood
Phylogenetic Inference. Proceedings of SC2001 (2001)

302 A. Stamatakis, M. Ott, and T. Ludwig

22. Strimmer, K., Haeseler, A.v.: Quartet Puzzling: A Maximum-Likelihood Method
for Reconstructing Tree Topologies. Mol. Biol. Evol. 13 (1996) 964–969

23. Swofford, D.L., Olsen, G.J., Wadell, P.J., Hillis, D.M.: Phylogenetic Inference.
Hillis, D.M., Moritz, C., Mabel, B.K., (editors) Molecular Systematics, Chapter
11 (1996) Sinauer Associates, Sunderland, MA

24. Tang, J., Moret, B.M.E., Cui, L., dePamphilis, C.W.: Phylogenetic reconstruc-
tion from arbitrary gene-order data. Proc. 4th IEEE Conf. on Bioinformatics and
Bioengineering BIBE’04 (2004) 592–599

25. The TreadMarks Distributed Shared Memory (DSM) System:
www.cs.rice.edu/˜willy/TreadMarks/overview.html

26. VeryFastDNAml: www-bioweb.pasteur.fr/seqanal/soft-

pasteur.html#veryfastdnaml

27. Vinh L.S., Haeseler, A.v.: IQPNNI: Moving fast through tree space and stopping
in time. Mol. Biol. Evol. 21(8) (2004) 1565–1571

28. Williams, T.L., Moret, B.M.E.: An Investigation of Phylogenetic Likelihood Meth-
ods. Proceedings of 3rd IEEE Symposium on Bioinformatics and Bioengineering
(2003)

29. Williams, T.L., Berger-Wolf, B.M., Roshan, U., Warnow, T.: The relationship be-
tween maximum parsimony scores and phylogenetic tree topologies. Tech. Report,
TR-CS-2004-04 (2004) Department of Computer Science, The University of New
Mexico

	Introduction
	Related Work
	RAxML-V
	Parallelization
	Results
	Conclusion, Availability and Future Work

