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Summary. The most complicated part in the computation of ray amplitudes 
of seismic body waves in laterally inhomogeneous media with curved inter- 
faces lies in the evaluation of the geometrical spreading. Geometrical 
spreading can be simply expressed in terms of the Jacobian J of the trans- 
formation from the Cartesian into ray coordinates. Several systems of 
ordinary differential equations to  compute the function J are suggested. For 
general three-dimensional media, in which the velocity changes with all the 
three spatial coordinates, a system of three non-linear ordinary differential 
equations of the first order is derived. If the velocity does not depend on one 
coordinate, the system of equations reduces to only one non-linear 
differential equation. The initial conditions for these differential equations at 
point (or line) source and at points of intersection of the ray with curved 
interfaces are presented. 

1 Introduction 

The computation of rays does not now cause any difficulties; it can be performed in several 
ways. For example, rays can be determined by solving the ray-tracing system 

drlds = up, dplds = - u-2 grad u, ( 1 . 1 )  

4 S O )  = ro7 P(S0) = Po. (1.1l) 

An alternative form of the system ( l . l ) ,  more convenient for computational purposes is as 
follows, 

with appropriate initial conditions 

drldr = v2p, dpldr = - u-l grad u, (1.2) 

4 7 0 )  = ro, P(T0) = Po. (1.2l) 

with initial conditions 
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Here r = (x, y, z )  denotes the radius vector of a point of the ray, p is the slowness vector at 
this point, and u =  u(r) denotes the velocity and s is the arclength along the ray. In (1.2), 
the travel time T along the ray is used instead of s. The symbols ro and po denote the radius 
and the slowness vectors at a reference point so (or 7 0 )  of the ray. For details and various 
other forms of the ray-tracing systems see Cerven$, Molotkov & PSenEik (1977). 

The most complicated part in the computation of ray amplitudes is the evaluation of the 
geometrical spreading, which can be simply expressed in terms of the Jacobian J of the trans- 
formation from Cartesian coordinates x,  y ,  z into ray coordinates s, 71, yz: 

V. Cervenj and I. PSenEik 

(1.3) 

Here the ray coordinates yl, y2 specify the ray under investigation and the ray coordinate s 
(as above) specifies the position of a point on a selected ray. If we use T instead of s in the 
ray coordinates, then 

J = U-'D(x, y ,  z)/D(T, Y i , Y z ) .  (1.3') 

Relevant formulae for the ray amplitudes and the formulae expressing the geometrical 
spreading in terms of the Jacobian J introduced by (1.3) can be found in Cerveni & 
Ravindra (1971), Cerveni etal.  (1977). 

In the following, we shall be interested mainly in the evaluation of the function J ,  which 
can be computed in several ways, see, e.g. Cerveni et al. (1977). Here we are interested in 
the methods based on the additional systems of ordinary differential equations. In these 
methods, the function J is expressed in the terms of certain auxiliary quantities which can be 
computed from a system of ordinary differential eqdations, an additional system to the 
standard ray-tracing system. Such a procedure for the computation of J was first suggested 
by Belonosova, Tadzhimukhamedova & Alekseyev (1967). 

The additional systems can be written in various forms. The simplest derivation of such a 
system consists in the differentiation of (1 .l) with respect to the ray parameters yl, y2. 
This gives 12 ordinary differential equations of the first order for the components of the 
vectors &layl, &lay2, ap/ayl and ap/ayz. The quantities ar/ayl and ar/ay, can then be 
used to compute J ,  see (1.3). The system can be simply reduced to 10 equations since two 
components of the above vectors can be expressed in terms of the remaining components. 

It is obvious that the numerical solution of such a large system would be very time 
consuming. As a matter of fact, this is the reason why this method of evaluation of J has not 
yet been practically used and why considerable effort has been devoted to the reduction of 
the number of equations in the system. For example, Chen & Ludwig (1973) reduced the 
system to seven equations only. The right-sides of this system, however, are rather 
complicated. In Popov & PSenEik (1976, 1978), the additional system consisting of eight 
simple linear differential equations of the first order was obtained. This system was reduced 
to five linear differential equations by Cerveni (1976). For a medium, in which the distribu- 
tion of velocity is independent of one spatial coordinate (in the following we shall call such 
a medium two-dimensional or 2-D), the system can be substantially reduced. A system 
consisting of three linear ordinary differential equations is presented in Cerven$, Langer & 
PSenEfk (1974), a system consisting of only two linear ordinary differential equations of the 
first order was suggested in Kay (1961), Popov & PSenEfk (1976, 1978). 

In this paper, we present several reduced systems of ordinary differential equations for 
the determination of the function J in three- as well as two-dimensional laterally 
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Ray amplitudes of seismic body waves 93 

inhomogeneous media with curved interfaces. To derive these systems we choose a 
consistent and objective approach, starting from equations (1 . l )  and (1.3). Using this 
approach, we first obtain a system consisting of eight linear differential equations, which 
was already obtained by a different method in Popov & PSenEik (1976). The system can be 
reduced to five linear equations, in the same way as in Cerveni (1976). This seems to be 
the minimum number of linear equations of the first order in the additional system for 
3-D media. In this paper, this system is further reduced to three simple non-linear ordinary 
differential equations of the first order. For 2-D media, the additional system consisting of 
two linear equations is first obtained. The system is reduced to only one non-linear 
differential equation of the first order. 

Thus, in a 3-D medium we need to solve only three non-linear ordinary differential 
equations of the first order to compute the geometrical spreading. Similarly, in 2-D media 
we have to solve only one non-linear differential equation of the first order to compute the 
geometrical spreading. At the present time, this is the minimum number of equations for 
3-D as well as 2-D media. 

For the most important additional systems of differential equations, we also present here 
the initial conditions at a point (or line) source and the initial conditions at the points at 
which the ray strikes a curved interface. 

Some results presented in Sections 3 and 4.1 were derived in a different form elsewhere 
(Popov & PSenEik 1976, 1978; Cerveng 1976; Cerveng et al. 1977). In this paper we shall 
try to use the same notation as Cerveng et al. (1977); the notation is slightly different from 
that used in Popov & Pi?enEik (1976, 1978) and in Cerveny (1976). The additional system 
consisting of three differential equations for 3-D media can be derived by various approaches 
and may assume various forms. For example, it can also be derived from the well-known 
Gel’chinskiy formula (see Gel’chinskiy 1966). A short presentation of this formula is given 
in Cerveny! & Ravindra (1971, p. 55). This approach was chosen by Goldin (1978, private 
communication). In this paper, we shall derive all the additional systems using a consistent 
and simple approach following our earlier investigations in this field. 

2 Ray-tracing system for rays in the vicinity of a central ray 

Let us call the ray specified by two ray parameters yl and yz the central ray. Furthermore, 
let us introduce a curvilinear coordinate system s, ql, 42 connected with this ray, where s 
is the arclength measured, e.g. from the source. The symbols 41, q 2  are used to denote the 
coordinates in the plane perpendicular to the central ray. The origin of the coordinate 
system 41, 42 in this plane is placed at the central ray, the unit coordinate vectors are 
denoted by el, e2. The mutually perpendicular vectors el, e2 can be specified, e.g. by the 
following relations 

dellds = - K cos 9lt ,  de21ds = - K sin 6/t. (2.1) 

Here, t is a unit vector tangent to the central ray, K denotes the curvature of the central 
ray. The angle 9 is given by the relation 

where T(s) is the torsion of the ray. 
Let us now consider a ray situated in close vicinity of the central ray specified by the ray 

parameters y;, 7; and denote the arclength along this ray by u. Then the radius vector of an 
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arbitrary point of this ray, r(a), can be expressed as follows: 

V. t enen$  and I. PXenh'k 

r ( 4 =  r(s) +ql(s)el(s> +qz(s)ez(s), 

where r(s) is the radius vector of the point of intersection of the central ray with the plane 
perpendicular to it and containing the point of the ray (r;, y;) under consideration. 

The quantity dalds plays an important role in further discussion. Its value can be found 
from (2.3). By differentiating (2.3) with respect t o  s and taking into account the relations 
(2.1) we obtain 
d r  do d r  

do ds ds 
- - t q i e l  +q ;e2 -q1Kcos91 t -q2K s inS/ t ,  

where qJ = dqi/ds. The determination of the magnitude of the vectorial expression (2.4) 
yields 

do/ds = (h2 + qi2+ qb2)l/', (2.5) 

where 

h = 1 - q l K  cos 19 - q2K sin 8. (2.5') 

Let us now rewrite the ray-tracing equations (1 .l) for the ray (yi, 7;) in the coordinates 
s, ql, q2. For the first set of ray-tracing equations we have from (2.4) 

dr/do=(dr/ds +q;el+q;e2-q1K cos 8lt - q 2 K  sin 19/t)(hZ+q;2+q~2)-1'2=Up. 

q; = upi(h2 t q;2 + q ; y 2 ,  

(2.6) 

(2.7) 

Taking scalar products of (2.6) with vectors ei(i = 1, 2), we arrive at two equations for 4;: 

where the symbol pi is used to denote the components of the slowness vector p with respect 
to coordinates qi in the coordinate system s, ql, q2, i.e. pi = (ei . p). It follows immediately 
from (2.7) 

Inserting this relation into the right-side of (2.7) we obtain two ordinary differential 
equations of the first order for qi(i = 1 ,2 )  

dqi/ds = upih [ 1 - u2( p i  + p;)]-'". (2.9) 

This is the first set of differential equations for qi(s). Now we must derive the second set of 
equations for dpilds. Taking a scalar product of (2.6) with t we obtain 

ps = u - I [  1 - u2( p: + pi ) ]  112, (2.10) 

where ps is used to denote the component of the slowness vector p with respect to 
coordinate s, ps = (p . t). 

Taking into account the Frenet formula dtlds = Kn, we obtain from (1 . l )  

&/do = (ds/do)[d(piei + ~ 2 e z  + ~ , t ) /d s I  

= ( p i e l  + p ; e z + p i t  -plKcos19/t - p 2 K s i n 8 / t  + p s K n ) ( h Z + q ~ Z + ~ ~ 2 ) - 1 ' 2  

= - uF2 grad u, 

(2.11) 

where 

p; = dpj/dS, pj = dp,/ds. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/57/1/91/716749 by U

.S. D
epartm

ent of Justice user on 16 August 2022



Ray amplitudes of seismic body waves 95 

As above, taking scalar products of (2.1 1)  with vectors ei ( i =  1 ,2 )  we obtain two 
ordinary differential equations for pi 

dpi/ds = - p,K(n.  ei)  - u-'(grad u . ei) (h2 t qi2 t q;2)1'2. (2.12) 

Since pi (and similarly qi) are identically zero along the central ray @ i =  ( p  * ei), and p I1 t )  
and p s =  u-l on the central ray, the relations (2.12) yield the two following identities 

K(n .ei) t u-' ui = o (2.13) 

for i = 1 ,  2. In (2.13), all the quantities are considered on the central ray and ui denotes 
au/aqi. Using these relations together with (2.8), equations (2.12) can be rewritten in the 
final form 

dpi/ds = [u-'u~'uio - u-'uih(l - u2(pf t p:))-'] (1  - u2(pf t p;))1'2, (2.14) 

where the index '0' denotes that the corresponding quantities are taken on the central ray. 
Thus, the four ordinary differential equations of the first order (2.9) and (2.14) form 

ray-tracing equations of rays in the vicinity of the central ray. As was mentioned above, 
on the central ray qi = pi = 0 identically for i = 1 ,2 .  

The initial values of qi and pi for various types of sources can be obtained immediately 
from the definitions of these quantities. The same holds for the conditions at interfaces. Let 
us only add that the form of these conditions depends on the choice of vectors ei. 

3 Computation of  the function J 

Let us now determine the function J in the coordinates s, q l ,  q2. For the ray specified by 
the parameters r;, -y;, we obtain, (see (1.3)), 

where h is given by (2.5'). By direct inspection, we can find that the determinant 
D(s, q1,42)/D(a, r;, 7;) can be rewritten as follows 

D(s, 41,42)/Wa, A 7;) = (dS/dO) . m1, q 2 )  /m;, 79. 

J ( S ) = J ( ~ ) = D ( ~ I ,  q 2 ) / D ( ~ i ,  72) = Q I I Q Z ~  - Q I ~ Q z I .  

Thus, for the central ray (h = 1 ,  ds/do = l ) ,  we have 

(3 .2) 

In (3.2), the symbols Qij are used to denote partial derivatives of coordinates 4j with respect 
to ray parameters 7i, Qij = aqj/a.yi ( i ,  j = 1 ,  2), taken on the central ray. Thus, to determine 
the geometrical spreading along the central ray, it is necessary to determine four quantities 
Qij ,  i, i = 1 , 2 .  

3.1 SYSTEM O F  D I F F E R E N T I A L  E Q U A T I O N S  TO C O M P U T E  T H E  G E O M E T R I C A L  

The quantities Qij ( i ,  j = 1 ,  2) can be determined from a system of eight linear ordinary 
differential equations of the first order. This system is obtained by means of partial 
differentiation of equations (2.9) and (2.14) with respect to -yi and specifying the results for 
the central ray. The system has the following form: 

SPREADING 

dQij/ds = ~ P i j ,  d&j/dS = - U-2(Ujl Q i 1 +  ujz Qiz ) ,  (3.3) 
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(3.3') 

In (3.3), ei denotes the partial derivatives of pi with respect to ray parameters yi, l$ = 

'1'0 solve system (3.3) or (3.3'), it is necessary to know the initial conditions at a source 
and the initial conditions at interfaces, which are discussed in Sections 3.2 and 3.3. We 
note that the details concerning these initial conditions and the evaluation of partial 
derivatives uii (see (3.3) and (3.3')) can be found in Popov & PknEik (1976, 1978). 

api/ayi, uii = azulaqlaqi (i, j = 1 ~ 2 ) .  

3.2 I N I T I A L  C O N D I T I O N S  A T  A S O U R C E  

The derivation of initial conditions at a source is not complicated. Therefore only the final 
results will be presented here. 

Let us start with a point source. As ray parameters, the polar angles, azimuth 40 and 
declination do(O G Go < 2n, 0 G 6o G n) at the point source r = r0(7= T O )  are taken. We 
choose them in such a way that the tangent to the ray at the point source t(r0) can be 
expressed as follows 

t(TO) (sin So cos $J0, sin So sin $J0, cos 60). 

At the source, in the plane perpendicular to the ray specified by Go and 60, we choose the 
vectors el ,  ez in such a way that the vector el is horizontal and the vector e2 is lying in the 
vertical plane containing the vector t. Thus, the vectors el,  e2 at the source can be expressed 
as follows 

(3 -4) 

Then the initial conditions at the point source are given by the following relations: 

Qij(70) = 0 

Pl1(70) = UO' sin ij0, P l z ( ~ o )  = 0, P z l ( ~ o )  = 0, P z z ( ~ o )  = - u;'. 

It should be mentioned that the identity Q i j ( ~ ~ )  = 0 (i, j = 1, 2 )  will hold for an arbitrary 
selection of vectors el,  ez in the plane perpendicular to the investigated ray at the source. 
The initial conditions for the quantities ej(i, j = 1,2),  however, will change with the change 
of the vectors e l ,  ez at a source. 

In the following also the initial conditions for the system (3.3), for the case of a line 
source are given. We assume that the medium is locally homogeneous in the close vicinity of 
the line source. The initial conditions can be derived in the same way as in (3.6). 

Without any loss of generality, we can choose the Cartesian coordinate system in such a 
way that, say, the y axis is parallel to the line source. As ray parameters, we take the 
arclength Lo along the line source and the declination t io  defined as above, i.e. the tangent 
to the ray leaving the line source can be expressed in the following way 

for i ,  j = 1 , 2 ,  
(3.6) 

t(TO) = (sin t io, 0, cos 60). (3.7) 
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Ray amplitudes of seismic body waves 97 
At the source, in the plane perpendicular to the ray specified by Lo and So, the vectors el 
and e2 are chosen in such a way that the vector el coincides with the line source and the 
vector e2 is perpendicular to the source. Thus, the vectors e l  and e2 can be expressed as 
follows 

e1(T0) = (0, 1, 0), e2(To) = (- cos 60, 0, sin 60). (3.8) 

Then the initial conditions at the line source are given by the following relations 

3.3 CONDITIONS A T  INTERFACES 

In the case of transmission or reflection of the ray at an interface of the first or even second 
order, some of the quantities Qii, 4, (i, j = 1 ,  2) change discontinuously at the point of 
incidence. Thus, new values of Qij ,  4, -_we denote them by Dij, hi - must be determined 
at the point of incidence. The values of Qij, 4, will serve as the initial values for the solution 
of the system (3.3) along a ray of a transmitted or reflected wave. The relations between 
Qi,, 41 and Q i j ,  41 depend on the orientation of vectors el, e2 at the point of incidence. 
Here, we choose these vectors in the same way as in Cerveni et al. (1977). 

Let us define a local Cartesian coordinate system x, y, z at the point of incidence in the 
following way. The z axis lies along the normal to the interface at the point of incidence 
and it is directed towards the medium from which the incident wave impinges on the 
interface. They  axis is perpendicular to the plane of incidence, i.e. a plane determined by 
the normal to the interface and tangent to the ray of the incident wave at the point of 
incidence. The positive direction of the y axis is taken so that the local y axis makes an 
obtuse angle with the general y axis. The x axis lies along the intersection of the plane of 
incidence with the plane tangent to the interface at the point of incidence. Its positive 
direction is determined so that the local system x, y ,  z is right-handed. 

We shall present here the relations between Qii, pii and Qij,  fli for the vectors el ,  e2 
which are oriented at the point of incidence so that the vector el corresponds to the unit 
vector along the local y axis, perpendicular to the plane of incidence and the vector e2 lies 
in the plane of incidence, the direction of e2 being determined so that the system of vectors 
t, e l ,  e2 is right-handed. 

The orientation of vectors el, e2 determined along the ray from (2.1), however, ge_nerally 
differ from the above specified orientation. Thus, before the formulae relating &, Pi, with 
Qi,, 4, are applied, it is necessary to perform the corresponding rotation of vectors el ,  e2 
in the plane perpendicular to the ray and to transform the quantities Qij, 41, au/aqi at the 
point of incidence in accordance with the rotation. The final formulae have the following 
form : 

5 -  

5 

Qjl = Qi,, 

pjl =el - 2Qi1 DzzR - Qj2S2/sin a, 

8 2  = 4 2  sin &/sin P - Q j , &  /sin -Qj2 S2/(sin a sin P ) ,  
0' = 1 ,2 ) ,  where 

~1 = 2v-l cos O L ( K ~  sin a - Z2 sin 0) t W l l R  t V+(V,  - F,) cos2a, 

SZ= V-l(K1 - Z l )  cos a + 2D12R, 

Qj2 = Q p  sin p/sin a, - 

R = V-lsin a - V-lsin 0. 
4 

(3.10) 

(3.10') 
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Here, a and 0 are the angles between the positive direction of the local x axis and the tangent 
to the ray of the incident and generated wave, respectively, at the point of incidence. 
The angles are measured positively clockwise from the local x axis. If we denote by J /  
and $ the angles of incidence and reflection (transmission), i.e. the acute angles between the 
local z axis and tangent to the corresponding ray, then cos $ = I sin 01 I ,  cos ? = I sin 0 I. 
The symbols K j ( j  = 1,  2 )  have the following meaning: ~i = V-'I$. The symbols V, V, and 5 
denote the velocity and its derivatives with respect to s and qLat the point of incidence, 
measured from the side of the incident wave. The symbols Li, V, vs and 5 have the same 
meaning on that side of the interface where the transmitted or reflected wave propagates. 
The symbols Dll,  Dl2, Dzz in (3.10) denote the coefficients of the approximation of the 
equation of the interface in the vicinity of the point of incidence in the local coordinates, 

z - DllXz + 2DlzXy + D22yz. (3.1 1) 

For unconverted reflected waves and for waves transmitted at an interface of the second 

V. Cewenj and I. PSenA'k 

order, the formulae (3.1 0) simplify considerably. 

4 Reduction of the number of differential equations in the additional system: 3-D medium 

The system of eight linear ordinary differential equations of the first order (3.3') for Qi, 
and ei (i, j = 1 ,  2 )  is simple and convenient for computation. The number of differential 
equations in the system however, can be decreased. The new systems are as a rule more 
complicated than (3.3'). In this chapter, we shall present several systems with the reduced 
number of equations. It would be necessary to perform some numerical tests to determine 
which of the systems is most convenient for computations. 

4.1 S Y S T E M  O F  F I V E  L I N E A R  E Q U A T I O N S  

Let us introduce the quantities A ,  B, C, D, E b y  the following formulae 

A = QiiQzz - Q i z Q n ,  

C =  Q22P11 - Qi2Pzi3 

E = Qz2P12 - Qi2P22 + QiiPzi - Qzipii. 

B = QiiPz2 - Qzipiz, 

D = PiiP2z - Pizpzi, (4.1) 

Using (3.3), we obtain a system of five linear ordinary differential equations of the first 
order for these quantities: 

dA/dT=VZ(C+B) ,  dB/dT=uZD - u - I v ~ ~ A ,  dC/dT=vZD-  v - ' ~ l l A ,  
(4.2) dD/dr= - u-'(ullB + uz2C - u12E), 

The function J is then given by the formula 

dE/dr= - 2u-'u12A. 

J = A .  (4.3) 
The initial conditions for the system (4.2) for a point source situated at r = ro (r = T O )  are as 
follows, see (3.6): 

A ( r O )  = B(rO)  = C(r0)  = E(rO)  = 0 ,  D(r0)  = - uOZ sin So. 

B(rO)  = - u;'. 

(4.4) 

(4.4') 

For a line source at r = ro(r = ro) ,  defined in Section 3.2, we obtain 

A ( r O )  = C(r0)  = D(r0)  = E(rO)  = 0 ,  
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Ray amplitudes of seismic body waves 99 

The initial conditions for the system (4.2) at the point of reflection (transmission) at a 
curved interface can be easily obtained from (3.10). 

It should be noted that the system (4.2) consists of five linear ordinary differential 
equations of the first order, which seems to be the minimum known number of such 
equations for the computation of J in a 3-D medium. The number of equations can be 
reduced further, but the equations will become non-linear. Only in special cases can we find 
systems with a smaller number of linear equations, but not in general. 

4.2 S Y S T E M  F O R  F O U R  N O N - L I N E A R  E Q U A T I O N S  

Consider a quantity 

G = AD - BC t ?4 E ', (4.5) 
where A ,  B, C, D, E are the quantities introduced in Section 4.1. Using (4.2), it is not 
difficult to show that 

dGfdr = 0 .  (4.6) 
Hence it follows that G(T) = constant along the whole ray. Taking into account the initial 
conditions (4.4), respectively (4.4') at the source and the initial conditions at individual 
interfaces, we obtain 

G = O  (4.7) 

AD - B C t  % E Z =  0 ,  (4.7') 

along the whole ray, even if it crosses any number of interfaces. Thus, we have 

identically along any ray. Formula (4.7') can be used to eliminate one equation from (4.2). 
There are several possible ways in which one of the variables can be eliminated. We shall 
present here one version of such a system, other possibilities are straightforward. 

From (4.7') we can express A in terms of the quantities B, C, D,  E (assuming D # 0), 

A = (BC - % Ez)/D.  (4.8) 
The auxiliary quantities B, C, D, E can be determined from the system of four ordinary 

differential equations of the first order (three non-linear and one linear), 

dBfdT = u'D - u - ~  1122 (BC - ?4 E ')ID, 

dCfdr = v2D - u-'ulI (BC - 96 Ez) /D ,  

dE/dT= - 2v-'vl2(BC - ?4 E*)ID, 

dD/dT= - U-'(UllB + vZ~C - ~12E) .  

(4.9) 

The function J is then obtained from the formula 

J = A = (BC - 94 E2) /D ,  

see (4.3) and (4.8). 
For a point source we have the following initial conditions 

(4.10) 

B(rO) = C(r0)  = E(rO) = 0 ,  (4.1 1 )  

The system (4.9) is not convenient for a line source, as then D(ro)  = 0. It would be, 
however, easy to write an equivalent system suitable for a line source, using B = (AD t 
%I Ez) /C  instead of (4.8). 

D(ro)  = - ui2 sin So. 
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curved interfaces are just the same as the initial conditions for the system (4.2). 

V. eerven): and I.  RenEz'k 

The initial conditions for the system (4.9) at the points of reflection (transmission) at 

4.3 SYSTEM O F  T H R E E  NON-LINEAR EQUATIONS 

After some simple manipulations we obtain from (4.9) a fully independent system of three 
non-linear differential equations of the first order. The remaining fourth equation in (4.9) 
can be solved by quadratures along the ray, as soon as the solution of the three equations is 
found. Let us introduce 

b = BID, c = C/O. e = E/D. (4.12) 

From (4.9) we obtain without difficulty a system of three ordinary differential equations 
of the first order for b, c, e and one linear equation for D. The system for b, c, e reads: 

dbldr = u2 - u-' (uIzeb - % uz2ez - ull b'), 

dc1d.r = u' - u-'(ul2ec - %ulle2 - uz2c'), (4.13) 

de1d.r = u-l [ullbe + uZZce - 2u12(bc t %e')]. 

The equation for D now reads 

dD1d.r = - u-'D(ullb + uz2c - ulze). (4.14) 

The initial conditions for a point source situated at r = r0(7 = T ~ )  are as follows 

b(70) = C ( 7 0 )  = e(7,,) = 0, (4.15) 

The initial conditions for the system (4.13) and for the equation (4.14) at the points of 
reflection (transmission) at a curved interface can be obtained from (3.10). Since the system 
(4.13) might be important in applications, we shall present here these conditions in a 
complete form, 

D(70) = -  sin tio. 

= [ b  sin2 a - (bc - % e2)Sl]/A, 

c" = [c - 2(bc - % eZ)DzzR] sin2 P/A, 

e"= [e sin a - 2(bc - %e2)Sz] sin P/A, 

b = DA/(sin a sin P) ,  

(4.16) 

where 

A = (bc - % e') (2DZ2RSl - S',) - (2bDz2R - 1) sin' a - cS1 + eSz sin a. (4.16') 

All the symbols used in the right-sides of (4.16) and (4.16') are defined in (3.10) and in the 
following discussion. 

Assume now that the quantities b(7), c(7), e(7)  were determined from (4.13) along the 
whole ray. Equation (4.14) can be then solved by quadratures to give 

v- ' (ul lb  + uz2c - ulze)d( , 1 .T 

[- J,. D(7) = O(70)W exp (4.17) 

where 

W = fl Ai/(sin a,- sin Pi). 
N 

i =  1 
(4.17') 
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Ray amplitudes of seismic body waves 101 

In (4.17'), A,, q, pi, denote the quantities A (see (4.16')), (Y and p ,  respectively, 
corresponding to the ith point of incidenceof the investigated ray on an interface, N denotes 
the number of interfaces struck by the investigated ray. 

The function J(r)is finally obtained from the formula 

J(r) =D(r, ,)W[b(r)c(r) - %ez(r) ]  exp u-'(ullb + uzzr - ulze)dS (4.18) 

see (4.10) and (4.12). 
For a general case of a three-dimensional medium with the coordinates 41, 42 along the 

vectors el, ez specified by (2.1), the above presented system (4.13) cannot be reduced 
further. Thus the minimum number of ordinary differential equations of the first order in 
the additional system is three. 

It would, however, be possible to use a special coordinate system 41, 42, which would 
keep ulZ = 0 along the whole ray. The system of ordinary differential equations of the first 
order could then be reduced to two equations only. 

5 Reduction of the number of differential equations in the additional system: 2-D medium 

In some special situations the additional systems can be considerably simplified. The most 
important example is a two-dimensional medium. Under a two-dimensional medium we shall 
understand the medium in which the velocity does not depend on one coordinate. Let us 
consider a coordinate plane Z perpendicular to, say, the coordinate axis y, along which the 
velocity does not change, and let us denote the orthogonal coordinates in the plane by x 
and z (x denotes the horizontal distance, z the depth). When the initial directions of the rays 
lie in the plane Z, the rays are plane curves and lie fully in Z. We choose the coordinate 
system s, 41,qz such that the vector el  is perpendicular to Z. Then we have u1 = a ~ / a q l =  0 
and u12= a2u/aq1aqz= 0 along the whole ray. It would be possible to obtain the additional 
system of equations for a 2-D medium from the systems presented in Section 4. It is, 
however, more natural and simpler to start directly from the system of eight equations 
(3.3). Taking into account the initial conditions at the source and the boundary conditions 
at interfaces, we readily obtain 

Qlz(7) = Q z 1 ( ~ ) = P i z ( ~ ) = P z i ( ~ ) = O ,  (5.1) 

identically along the ray. The system (3.3') is now reduced to two independent systems, 
each of them consisting of two linear ordinary differential equations of the first order. The 
first system reads 

dQll /dr  = uzPll ,  dPll/dr = - u-lul lQll .  (5 *2)  

dQzz Jdr = U' Pzz,  dPzz JdT = - u - ~  uzz Qzz. (5.3) 

The second system is as follows 

The initial conditions for Pl l ,  Pzz, ell, Qzz at the source and at the point of reflection 
(transmission) at a curved interface for these systems can be deduced from those given in 
(3.6), (3.9) and (3.10). 

Let us denote 

Jll(7) = Qzz, JL(T)  = Qii .  (5 -4) 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/57/1/91/716749 by U

.S. D
epartm

ent of Justice user on 16 August 2022



102 

The function J(T) is then given by the formula 

V, cerven3 and I. BenEz'k 

47) = Jll (7)J1(7). (5.5) 

Geometrically, the quantity J l 1 ( ~ )  describes the spreading in the plane Z, J ~ ( T )  in the plane 
perpendicular to the plane Z and to the ray. 

5.1 C O M P U T A T I O N  O F  ~ ~ ~ ( 7 )  

The system (5.3) can be used to compute Jll (7). The system, however, can be rewritten in 
several equivalent forms. We shall present three of these versions. It would be necessary to 
perform numerical tests to find which version is the most convenient for computations. 

5.1 . I  Two linear equations of first order 

Inserting Jll (7) = QZ2 into (5.3) and denoting pll = Pzz, we obtain the final form of two linear 
differential equations of the first order to compute Jll , 
dJll /dT = ~ ' P l l ,  dpll/dT = - U - ' U Z Z J ; I .  (5 a 
The initial conditions for the above system at a point source situated at r = ro(T = 70)  (or a 
line source defined in Section 3.2, and situated at the same point) are as follows, see (3.6) 
and (3.9), 

Jll (To) = 0, 41 (To) = - VO'. (5.7) 

The initial conditions at the points of reflection (transmission) at curved interfaces can be 
obtained from (3.10). We again denote by a tilde quantities corresponding to reflected (trans- 
mitted) waves, the quantities corresponding to the incident wave being without a tilde. Then, 
Jl and 4, are given by the following formulae: 

jlI = J~~ sin p/sin a, 8, = (pil sin a - J~~ Sl/sin a)/sin p, (5.8) 

where the meaning of the symbols a, 0 and Sl is the same as in (3.10) and (3.10'). For the 
equation of the interface f (x, z )  = 0 the quantity Dll in the expression for S1 (see (3.10')) 
is given by the formula: 

Dll = - MA(fxxf,Z - 2hzfx.G +f,z.L')l(f~ +f,Z13"* (5.9) 

In (5.9), f, = aflax, f, = affaz, f,, = a'ffax', f,, = a'flaxaz, f,, = a2flaz2, the constant A 
assumes the value of t 1 or - 1 depending on the desired orientation of the normal. If we 
choose, for example, the orientation of the normal so that it is directed toward the medium 
in which the incident wave propagates, then A = -sign (f, sin 6 t f, cos 6). Here 6 is the 
angle between the tangent to the ray and the positive direction of the general z axis at the 
point of incidence, -IT G 6 G n. 

Finally, the partial derivatives of velocity with respect to  s and q2 appearing in (5.6) 
and (5.8) can be expressed as follows 

Was = u, sin 6 t U, cos 6 ,  u2 = V, cos 6 - V, sin 6, 

~ 2 2  = sxx COS' 6 - 2v,, cos 6 sin 6 t v,, sin' 6. 
(5.10) 

In (5.101, V, = avlax, U, = avlaz, v,, = a2vlax2, u,, = a2u/axaz, u,, = azulazz. The angle 6 
has the same meaning as above. 
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Ray amplitudes of seismic body waves 103 

5.1.2 One linear equation of the second order 

It is not complicated to rewrite the system of two ordinary differential equations of the 
first order into one linear differential equation of the second order for Jll : 
d(U-2dJlI /dr)/dr + u - ~  ~ 2 2  41 = 0. (5.1 1) 

The initial conditions for Jll at the source and at the points of reflection (transmission) are 
given in (5.7) and (5.8). The initial conditions for q l / d r  are easily obtained from the same 
equations, when we consider dJll/dr = u'pll. 

5.1.3 One non-linear equation of the first order 

We introduce 

4 = JlIlP,l. (5.12) 

Then we obtain for q one fully independent non-linear ordinary differential equation of the 
first order 

dqldr = u2 + u22 u-lq'. 

The equation for 41 now reads 

dpl /dr  = - U - ~ U Z ~  41 4 .  (5.14) 

The initial conditions for a point as well as line source situated at r = ro(r = ro) are as 
follows: 

(5.13) 

d r o )  = 0, p1,(70) = G'. (5.15) 

The initial conditions at the point of reflection (transmission) at a curved interface simply 
follow from (5.8) and (5.1 2) 

4" = q sin' ~/o lz i ,  ql = ql @(sin a sin 01, (5.16) 

where 

E = sin2 a - qS1. (5.16') 

All the symbols used in (5.16) and (5.16') are defined in (3.10) and in the following 
discussion. 

Assume now that the quantity q ( r )  was determined from (5.13) along the whole ray. 
Equation (5.14) can be then solved by quadratures to give 

where 

f? = n Ai/(sin ai sin p i ) .  
N -  

i =  1 

(5.17) 

(5.17 ') 

The symbols &, ai, & denote the quantities z, a, 0, respectively, corresponding to the ith 
point of incidence of the ray on an interface; N denotes the number of interfaces struck by 
the investigated ray. 
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Function 4, is finally given by the formula 

(5.18) 

Thus, the additional system of ordinary differential equations reduces to only one non- 
linear differential equation of the first order for a 2-D situation (see (5.13)). The procedure 
must be supplemented by one numerical quadrature along a ray. 

5 . 2  C O M P U T A T I O N  O F  ~ ~ ( 7 )  

Denoting Jl= Q l l ,  Pl= Pl l ,  we have a system of two differential equations to determine 
Jl and Pl (see (5.2)) 

dJlldr = u2Pl, dPlldr = - u-'ul lJl .  (5.19) 

The initial conditions for Jl and Pl for a point (or line) source situated at the point r = ro 
(7 = 7 0 )  are as follows: 

J1(r0) = 0, P l ( ~ o )  = ui' sin 60 (5.20) 

for a point source, 

Jl(70) = 1, Pl(70) = 0 (5.21) 

for a line source. 

(3.1 0). 

applications. 

The initial conditions at points of reflection (transmission) can be simply obtained from 

We shall now consider three different situations, which can have important practical 

5.2.1 Cartesian coordinates - point source 

In this case, ull  = 0 and P1(7) = P ~ ( T ~ )  = u;' sin 60. Inserting this expression into the 
equation for Jl we obtain dJl/d7 = uz sin 6ouO', which gives 

(5.22) 

5.2.2 Cartesian coordinates - line source 

In this case, u l l  = 0 and P1(7) = P l ( ~ o )  = 0 along the whole ray. From the first equation in 
(5.19), we then obtain J1(7)= J 1 ( ~ o ) .  Taking into account (5.21), we have finally 

J ~ ( T )  = 1. (5.23) 

5.2.3 Cylindrical coordinates - point source 

Let us consider cylindrical coordinates r, z ,  $ and assume that the velocity does not depend 
on 4. Assume that a point source is situated at r = 0, thus r is the epicentral distance. As the 
coordinate plane C, let us select any vertical plane containing the axis of symmetry (z axis) 
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Ray amplitudes of seismic body waves 105 

and consider that the initial directions of rays are again in the plane Z. In this case again 
v1 = 0, the value of ul l ,  however, does not vanish, ull  = r-'au/ar. Then we can rewrite the 
system (5.19) into the following form 

dll/dT = uzPl, dPl/dr = - u-lr-l au/arJl. (5.24) 

By direct inspection, we readily find the solution of these equations 

J'(T) = r, Pl (7) = u-' sin 6. (5.25) 

(Let us note that equations (5.24) correspond in fact to two equations in the ray-tracing 
system: dx/dr = u'px, dp,/dr = - u-'au/ax, where px is the x component of the slowness 
vector, px = u-' sin 6 .) 

6 Dependence of velocity on one spatial coordinate only 

When the velocity depends only on one coordinate, say z ,  the differential equation for Jll 
can be solved in closed-form integrals. We shall consider equation (5.1 1). We choose a new 
variable z instead of r ,  dz = u cos 6 dr. Taking into account that u2' = uzz sin' 6 (see (5.10)), 
we obtain 

cos 6d(u-' cos SdJII/dz)/dz + u-'uZz sin'6JlI = 0. (6.1) 

We introduce a new quantity 7 by the relation 

For x w e  obtain from (6.1) a new differential equation 

d(-  p' u, T+ u-l cos' 6dqdz)ldz  + p' u z z f =  0, (6.3) 

where p = u-l sin 6 .  After some manipulation this equation can be rewritten in the following 
form 

d(1n dadz) /dz  = uz u-l cos' 6 (2 sin' 6 + 1) = d [In (u C O S - ~  S)]/dz .  

From this, an ordinary differential equation of the first order for yfollows immediately, 

d a d z  = Cu C O S - ~  6 ,  c = u;' cos 6 0. 

The equation can be integrated to give 

7(z )  = C lz: u C O S - ~  6 dc. 

Finally, we obtain for Jll (z), see (6.2) and (6.4), 

Jll ( z )  =Ccos 6 / z lu (c )  C O S - ~  6 dc. 

(6.4) 

This is a well-known integral expression for Jll ( z )  in a vertically inhomogeneous medium. 
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