
Ray Casting Deformable Models on the GPU

Suryakant Patidar and P. J. Narayanan

Center for Visual Information Technology, IIIT Hyderabad.

{skp@research., pjn@}iiit.ac.in

Abstract

The GPUs pack high computation power and a restricted

architecture into easily available hardware today. They

are now used as computation co-processors and come with

programming models that treat them as standard paral-

lel architectures. We explore the problem of real time ray

casting of large deformable models (over a million trian-

gles) on large displays (a million pixels) on an off-the-shelf

GPU in this paper. Ray casting is an inherently parallel

and highly compute intensive operation. We build a GPU-

efficient three-dimensional data structure for this purpose

and a corresponding algorithm that uses it for fast ray cast-

ing. We also present fast methods to build the data struc-

ture on the SIMD GPUs, including a fast multi-split opera-

tion. We achieve real-time ray-casting of a million triangle

model onto a million pixels on current Nvidia GPUs using

the CUDA model. Results are presented on the data struc-

ture building and ray casting on a number of models. The

ideas presented here are likely to extend to later models and

architectures of the GPU as well as to other multi core ar-

chitectures.

1. Introduction

Ray casting heavy models is a highly compute intensive

process. Ray casting has been performed for static models

on the CPU [11, 16, 19] and on the GPU [2, 10, 20, 18].

A lot of effort has been put into ray casting and ray tracing

of static models at real-time rates. A recent work [20] in-

volving ray tracing of deformable objects draws small and

medium sized models. They render models of 180K trian-

gles at 6fps. Shvetsov et al. [14] ray trace dynamic models

using a parallel and linearly scalable technique of kd-tree

construction. They achieve 7 to 12 FPS for models with up

to 200K triangles at a window resolution of 1024×1024.

We aim to ray cast a million triangle deformable model

onto a million pixel window in real time. CPUs are not ca-

pable of performing ray casting of heavy deformable mod-

els at real time rates. Even with the introduction of multi

Figure 1: Dragon ray casted (870K triangles)

core CPUs, it is difficult to achieve the above target. Ray

casting is inherently parallel and maps well to architectures

like FPGA, Cell Processors, GPU etc. Co-processors like

FPGAs and GPUs are promising due to their scalable par-

allel architecture. The Cell processor also falls in this cate-

gory but are not accessible widely. GPUs provide high com-

putation power at low costs and are widely available as an

integral part of the computer, making them strong candidate

as a co-processor.

Earlier, general purpose computing on GPU was per-

formed via the graphics pipeline, which provided limited

features and a steep learning curve. With the introduction

of general purpose programming model on modern GPUs

such as CUDA (Nvidia) and CTM (ATI), their use has be-

come more widespread to applications involving complex

data structures. The data parallel architecture they embody

is well suited for ray-casting. Techniques used on such gen-

eral programming models are also likely to be applicable to

other parallel processors such as the Cell, FPGA etc.

The main contribution of this paper is the algorithm for

real-time ray casting of a deformable model on the mod-

ern GPU. We set a performance goal of real time rendering

of a million triangle deformable model to a million pixels.

We describe a three-dimensional, screen-space data struc-

ture and the algorithm that are efficient on the GPU for ray

tracing. We build the data structure from scratch in each

frame and can handle deforming objects as easily as rigid

ones. We describe how such a data structure can be built

efficiently on the SIMD architecture of the GPU. Rendering

results presented on a number of standard models demon-

strate that we achieve our performance goals. The methods

presented here may have applications on ray casting and

other problems on the GPU and other multi core architec-

tures.

1.1. Related Work

Ray tracing is a simple way of rendering the world by

finding the color at each pixel of the image. The disadvan-

tage of ray tracing is its computational cost. Due to its point

sampling approach, any kind of spatial or primitive based

coherence can not be exploited. Ray tracing has been at-

tempted over years, across architectures like, CPUs, multi-

cores, clusters, CellBE, FPGAs etc. Beam Tracing [7] was

introduced to exploit the spatial coherence of polygonal en-

vironments. Rather than working with high number of rays

per image, beam tracing sweeps areas of the scene to form

beams.

Before the introduction of GPUs, ray tracing was per-

formed on the CPU or on a cluster of CPUs. A single CPU

works sequentially on the rays and finds closest intersec-

tions. With the increase in CPU cores and multi threaded

architectures, ray tracing could be efficiently performed on

a set of processors. MLRTA [11] performs fast ray tracing

by allowing a group of rays to start traversing the tree data

structure from a node deep inside the tree, saving unneces-

sary operations. RLOD [19] uses an LOD based scheme

which integrates simplified LODs of the model into k-d

tree, performing efficient ray-triangle intersections. Wald

et al. [15] ray trace deformable objects on the CPU using

a bounding volume hierarchy (BVH). They exploit the fact

that the topology of the BVH is not changed over time so

that only the bounding volumes need be re-fit per frame. In

another work, Wald et al. [17, 16] ray trace animated scenes

by rebuilding the grid data structure per frame. They use

a new traversal scheme for grid-based acceleration struc-

ture that allows for traversing and intersecting packets of

coherent ray using an MLRTA-inspired frustum-traversal

scheme [11]. Ray tracing has also been performed on non-

triangulated models like implicit surfaces [9] and geometry

images [4, 3].

Programmable GPUs have been used for ray tracing even

with their constrained programming model [2, 10]. Ray

tracing was performed as a multi-pass operation due to in-

sufficient capability of the fragment shaders. With growth

in programmability of the GPU, more efficient methods

have emerged which use the looping and conditional op-

erations. Most of the work for ray tracing on GPU uses

pre-built data structures, given that the cost of building par-

allel data structures may be high [8]. Recent work by Zhou

et al. [20] builds and ray traces small and medium sized de-

formable models on the GPU using CUDA. Wei et al. [18]

take an alternative approach of non-linear beam tracing on

the GPU for deformable objects.

General purpose processing on the GPU provided effi-

cient solution for parallel solutions. Sequential algorithms

were efficiently parallelized for the use of GPU. Fast solu-

tions are provided for audio and signal processing, compu-

tational geometry, data parallel algorithms, databases, data

compression and data structures. With the introduction of

CUDA architecture, GPGPU problems are not addressed

with a much simpler API for GPU. Operations like sort-

ing, searching and other data structure problems have been

efficiently addressed for large data sets [5, 12]. Data struc-

tures have applications in multiple fields and efficient im-

plementation of basic primitives have been addressed with

their applications in various fields [6].

2. Ray Casting Deformable Models

Ray-casting is a highly parallel operation. In contrast

to rasterization which maps the world on to the camera,

ray-casting operates on every ray, yielding a highly paral-

lel framework. In the process of ray-casting, each ray needs

to process all triangles and identify the one which is clos-

est, if any. For a considerable amount of geometry and large

image size, it becomes a computationally heavy operation.

To speed up ray casting, we need to reduce the number

of ray-triangle intersections per pixel/ray. This is achieved

by organizing the triangles into a data structure such that

a front-to-back scanning is possible. Data structures like

k-d trees, grids, octrees, etc. , that organize the data spa-

tially in the world space are used commonly. Rays traverse

the data structure to find a valid subset of intersecting tri-

angles. Cost of building the world space data structures is

high. Thus, they are computed at the beginning as a prepro-

cessing step, making them unsuitable for deformable mod-

els. Zhou et al. [20] report real-time k-d tree construction

on graphics hardware for small and medium sized models.

For a model with 178K triangles, the construction time of

the k-d tree is 78msecs and consequent rendering achieves

6fps on the latest GPU. Shevtsov et al. [14] deliver 7− 12

fps on models consisting of 200K dynamic triangles with

shadows and texture using a parallel fast k-d tree construc-

tion on the CPU. Beam tracing exploits the coherence of

pixels belonging to the same primitive to reduce the com-

putation. Nonlinear Beam Tracing on GPU [18] proposes a

fast beam-tracing procedure. They render models with 80K

Figure 2: 2D view of the data structure for Ray Casting.

Image-space is divided into Tiles.

triangles at real time rates on the GPU. Above approaches

work only for small and medium sized models.

2.1. Data Structure for Ray Casting

To ray cast a million triangle model onto a million pixel

window, we need a data structure that can be built and pro-

cessed at real-time rates. we propose a 3D data structure

for this purpose as explained next. Processing image-space

tiles exploits ray-coherence and has a flavor of beam trac-

ing.

We divide the rendering area into regular tiles which rep-

resent a set of rays/pixels (Fig. 2). We sort the triangles to

the tiles and limit the rays of each tile to intersect with the

triangles that project into it. This produces batches of rays

and triangles which can be independently processed on fine

grained parallel machines like the GPU.

The number of triangles falling into each tile can be ex-

cessive to perform ray-triangle intersection with all the rays

of the tile. If triangles in each tile are sorted in depth order

the intersection can stop at the first occurrence. Sorting tri-

angles of a tile on z completely is costly. We use a middle

approach and divide the z-extent into discrete bins called

slabs (Fig. 3). Each triangle is put into a slab based on its

nearest z value. Triangles of a slab have no ordering with

respect to each other, but triangles from different slabs do

have a front to back ordering. For small tiles, this has the

potential to exploit the spatial coherence of ray-triangle in-

tersection.

The data structure is a grid of tiles in the image space

which are further divided into discrete slabs in the depth

direction. Each triangle is projected onto the screen and

intersecting tiles are recorded against the triangle. Trian-

gle is inserted into one or more slabs based on its tiles and

distance from the camera. Thus, the data structure holds

triangles ordered by tiles and slabs within each tile.

Figure 3: 3D view of the data structure. Tiles in the image-

space are divided into frustum shaped slabs in z direction.

2.2 Ray Casting Algorithm

The CUDA algorithm for ray-casting is given in Algo-

rithm 1. In ray-casting, all rays of a tile operate in parallel.

Each ray intersects with all triangles of the next slab. The

closest intersection point for each ray is kept track of. Rays

which find a valid intersection drop out when a slab is com-

pletely processed. The computation ends, if all rays drop

out. Otherwise the computation proceeds with the triangles

of the next slab. Computation terminates when all slabs are

done for all tiles.

We map a tile to a thread-block and each ray to a thread

in it. The triangles reside in global memory, which is much

slower to access than local shared memory. Since the trian-

gles of a slab are all needed by all threads of a block, we

bring the triangles to the shared memory before ray-triangle

intersection are computed. The shared memory available to

a block is limited on the GPU. All triangles of a slab may

not, thus, fit into the available shared memory. We, there-

fore, treat triangles of a slab to be made up of batches which

can fit into the shared memory. Triangles are loaded in units

of batches. The threads of a block share the loading task

equally among themselves when each batch is loaded (Line

4).

The ray-triangle intersection starts after all triangles of a

batch are loaded. Each thread computes the intersection of

its ray with each triangle of the current batch and stores the

closest intersection in the shared memory. The next batch

of the slab is loaded when all threads have processed all tri-

angles in the current batch. This repeats till the slab ends.

Each thread determines if its ray found a valid intersection

with the slab and sets a local flag, rayDone (Alg. 1). The

#Bins Global Memory Atomic Hist/Thread1Approach Multi Level Shared

1M 4M 16M 1M 4M 16M 1M 4M 16M

1-L 2-L 3-L 1-L 2-L 3-L 1-L 2-L 3-L

32 238 950 3815 2.9 25 164 2.5 - - 11 - - 90 - -

64 170 673 2684 3.6 28 180 2.73 - - 25 - - 109 - -

128 85 340 1370 14 46 213 2.78 - - 25 - - 148 - -

256 44 177 710 27 88 343 2.87 - - 26 - - 168 - -

512 33 132 520 53 173 652 2.9 6.5 - 25 39 - 169 186 -

1024 23 101 393 104 340 1284 3.38 6.4 10 25 39 44 172 183 215

2048 21 80 319 205 666 2514 4.3 5.5 8.3 26 37 41 158 225 205

4096 17 68 266 x x x x 5.4 7.5 x 44 37 x 249 184

8192 15 58 273 x x x x 5.7 6.8 x 40 40 x 270 198

16K 14 57 279 x x x x 5.6 6.3 x 39 37 x 288 209

32K 15 59 286 x x x x 5.5 6.4 x 37 35 x 241 217

64K 15.5 64 305 x x x x 5.7 6.4 x 37 36 x 234 225

128K 15.3 62 303 x x x x 6.0 6.2 x 32 37 x 216 222

256K 15.7 67 303 x x x x 9.0 6.2 x 38 38 x 221 221

512K 15.5 64 301 x x x x 12 6.1 x 39 38 x 222 225

Table 1: Comparison of the three Split operation for range of #bins and #elements. Histogram / Thread approach is similar to

He’s work [6]. Due to over-use of shared memory, maximum number of bins are limited to 64, thus we need multiple passes

for bins greater than 64. We perform 2 level and 3 level splits where ever possible. ’-’ denotes the configuration which is not

of interest.’x’ denotes a configuration which is not possible.

whole block drops out from the rest of operations, if all the

rays are done. This is evaluated using a logical AND of all

local flags of the block in a procedure described later. If

any ray is not yet done, computation in the block contin-

ues with the next slab of triangles. All threads of the block

take part in loading the triangles of subsequent batches, but

the threads with rayDone set do not participate in the in-

tersection computation. Thus, threads which have found an

intersection might diverge (Alg. 1 Line 6).

The threads of a block operate independently. Evaluat-

ing aggregate information of data stored in different threads,

such as the logical AND of a bit, is difficult and slow. We,

however, use a fast technique to compute the logical AND

of the individual local ray flags. First, a common mem-

ory location in the shared memory is initialized to 1. Every

thread that is not done writes a 0 to it and others abstain.

CUDA architecture does not guarantee any specific order of

writing when multiple threads write to the same shared lo-

cation simultaneously. It, however, guarantees that one of

the threads will succeed. That is sufficient for the above

procedure to compute a logical AND in one instruction.

Our ray casting algorithm requires a 3D data structure

which has triangles sorted to tiles in the image space. Tri-

angles in each tile are arranged in z-slabs which are ordered

from front to back from the camera. Considering triangles

to be elements which can go to more than one tile in the im-

age space, the problem of building the required data struc-

ture is similar to performing a multi-split. Building a com-

pact list of triangles which are arranged by tiles and slabs

is not straight forward on a parallel hardware. We propose

a fast implementation of split and multi-split operation on

GPU which can keep up with real-time rates for fast render-

ing of heavy deformable models.

3. Split Operation on the GPU

Split is a widely used operation for building data struc-

tures and performing database operations. Split can be de-

fined as append(x,List[category(x)]), where each x is an

input element and List holds all the categories x belongs

to. Split is a function which divides an input relation into a

number of partitions. Compact function makes sure that the

output of split is a contiguous single list. Multi-split refers

to the case when each element from the input relation can

map to multiple categories. Thus, the partitions created are

not disjoint. This increases the size of the output relation

above the input relation. Split can be described as a 3 step

procedure as below.

1. Count the number of elements falling into each bin.

2. Find the starting index for each bin using a prefix sum.

3. Assign each element to the output within its position,

incrementally.

1Our implementation of He et al. [6]. For number of bins greater than

64 we implemented a multi pass approach which iterates over data multiple

times.

Algorithm 1 CUDA RAYCASTING :: Ray casting by the

GPU using 3-D data structure

1: {Each Block executes the following in parallel on the

GPU}
2: for each slab of this tile do

3: for batch = 1 to maxBatch(slab) do

4: Load triangles of the current batch from global

memory

5: SyncThreads

6: if (!rayDone) then

7: Perform ray-triangle intersections with the tri-

angles of current batch

8: Keep track of closest triangle, minz

9: end if

10: SyncThreads {All threads sync here to maintain

data consistency}
11: end for

12: rayDone ← 1 if ray intersects

13: allDone ← 1

14: if (!rayDone) then

15: allDone ← 0 {All threads in parallel}
16: end if

17: SyncThreads

18: terminate if allDone

19: end for

20: Perform lighting/shading using the nearest intersection

It is tricky to perform step 1 on parallel architectures as

multiple elements may increment the same variable. Step

2 can be performed as described in the parallel prefix sum

operation by Blelloch et al. [1], which is implemented on

the GPU by Sengupta et al. [12]. In step 3 we need to find

the index for each element by incrementing the count for

current bin which is similar to step 1.

An easy way to perform parallel split is to use the exist-

ing atomic operation hardware on GPUs. Atomic operation

like add, subtract, increment, etc. , can be performed on the

global memory on CUDA. This method suffers from two

main drawbacks, first, the global memory access takes 300

to 400 clock cycles and second, the performance of atomic

operation suffers in the presence of collisions in memory

writes. Thus, for a skewed data or badly arranged data if

multiple threads tend to write or increment same memory

location the cost is too high, as the global memory is slow

to access.

A recent paper by He. et.al. [6] computes the bin

counts without atomic operations on the GPU. Each proces-

sor/thread handles a disjoint portion of the input and builds

the complete histogram for its part in the shared memory.

These partial histograms are written to globally accessible

memory to separate locations. A parallel prefix sum [12]

over this data gives the required counts which is used to

Algorithm 2 SHARED MEMORY SPLIT :: Split function

as implemented on GPU using CUDA. We use a approach

similar to that proposed by Shams et al. [13] for performing

atomic operations on shared memory

1: Compute Histogram per Block

2: Store it bin-wise in global memory, #Bins×#Blocks

3: Scan the histogram array :: Scan elements give index of

each bin for each block

4: Load part of scan array corresponding to block into

shared memory

5: Read x and category(x)

6: Read the scan histogram value for the bin and incre-

ment it atomically

7: Write x to value read from the shared memory

send each data to the correct location. Due to their use of

separate histograms for each processor, no memory con-

flicts occur. This procedure can, however be used only

when the number of categories is small due to the lim-

ited shared memory available on the GPU. Given, 16KB of

shared memory is available, the method supports bins only

up to 64 using 32 threads per block. Our implementation of

the above approach uses a multi pass approach in order to

split into more than 64 bins.

We combine elements of the atomic-based algorithm and

He et al. [6] algorithm using a shared memory atomic op-

erations. Shared memory is accessible to all threads of the

block and is fast, making it an ideal candidate to maintain

the common information among threads. We maintain a

common histogram in the shared memory for all threads of

the block. We perform the atomic operations on the shared

memory using a method similar to that proposed by Shams

et al. [13] to avoid conflicts. Due to the efficient use of

available shared memory, we can perform split for bins up

to 2048.

The limited shared memory will restrict the number of

bins for a split operation. For large number of bins, we can

split the elements in multiple steps by inducing a hierarchy

in the bins. All M elements are split to n1 bins in the first

step. In the next step, all elements in each bin gets split into

n2 sub-bins. The data has now been split into n1n2 bins.

This can be repeated until the number of bins is N. We call

this approach multi level split. With multi level split, we can

perform split with bins as high as 2048×2048, although for

best performance on GPU hardware a 3 or higher levels may

give a better performance.

We use 32 threads per block and vary the number of

blocks depending on size of input list. We divide the input

array into chunks corresponding to blocks. For maximum

efficiency we use a suitable number of blocks which decides

the number of elements handled by each block. We make

sure only one thread updates the count of a bin by using

Algorithm 3 RAYCASTING :: Complete algorithm for per

frame building data structure and ray casting, deformable

triangulated models.

1: Compute tile IDs (x,y) for each triangle along with

minimum z-projection coordinate

2: Perform reduction on z-projection coordinate to find

out minimum and maximum z-projection value for cur-

rent frame

3: First level split (Algorithm 2) is performed by looking

up x-tile IDs for each triangle

4: Segmented second level split is performed using the y-

tile IDs on the output of above step

5: Split in the z-direction is performed by computing a z-

tile ID using zMin and zMax for well fitting z-slabs

6: Histogram of triangles falling into tiles and slabs is out-

putted along with the scan of the histogram from the

above step

7: Ray Casting is performed as per Algorithm 1 using the

above output

Z-Slabs DS Time (msec) RC Time Total

X Y Z (msec) (msec)

1 6.1 3.5 - 52 62

4 6.3 4.2 4.1 30 44

8 6.0 3 3.1 28 40

16 6.1 3.1 3 24 36

Table 2: Data structure building time and Ray Casting time

for varying number of Z-Slabs. For a single slab split is not

performed in the z direction. Level 1 split is performed on

tiles in X direction, second and third are then performed on

Y and Z direction respectively.

thread’s id within the warp/block.

Table 1 depicts performance of three different ap-

proaches for Split operation. Performance of the global

atomic approach is affected by number of clashes, making

it data dependent. The approach performs well with high

number of bins. Hist/Thread approach is our implementa-

tion of He et al. [6], which limits its number of bins to 64

due to limited shared memory. We perform multiple iter-

ations over the data for bins higher than 64. Multi Level

Shared uses one histogram per CUDA block. For higher

number of bins 2-Level and 3-Level split is used and allows

a wide range of number of bins.

4. Ray casting with Multi Level Split

Ray Casting requires small tiles in the image space, the

order of 8×8. Thus, a large number of tiles and a moderate

number of slabs will work best for real-time ray casting of

heavy models. For a 1024× 1024 window/image size we

Dragon

Preview

Rotation

Angle

0 30 60 90

RTI

(M/frame)

16-Slabs

43.7 44.3 33.2 23.9

RTI

(M/frame)

0-Slabs

77.2 77.8 77.3 78.8

Table 3: Number of Ray-Triangle Intersections (RTI) per-

formed per frame for Dragon Model (∼ 1M triangles) after

multi-sorting triangles to tiles. With increase in depth com-

plexity of the model, z-slabs tend to deliver better perfor-

mance.

use 128× 128 tiles in the image space along with 16 slabs

in the z-direction, giving 128×128×16 bins. We hierarchi-

cally organize the bins and perform a 3 level split to build

the required data structure.

We perform first level of split by dividing the image

space into a 128 tiles in the x direction and sorting the tri-

angle to these 128 bins. We then perform segmented split

over these 128 bins by dividing each of the partitions to

128 y oriented tiles. For second and third level segmented

splits, elements of each partition take part. We then perform

a third level split considering the distance of triangles from

the camera and binning the triangles into 16 different bins.

We consider highly triangulated models of the order of

1M for ray casting on a image size of 1M pixels (1K×1K).
A 2D tiled data structure in the image space is built, which

maps rays to CUDA threads and each tile to a CUDA block.

To reduce the ray-triangle intersection for each ray, we di-

vide the depth for each tile into z-slabs. High percentage of

triangles are small in size and map to not more than 3− 5

tiles. A few triangles do fall into a lot of tiles. We experi-

mented on various models and a triangle belongs to 1.2 tiles

on an average. Table 3 shows number of ray-triangle inter-

sections for various views of the Dragon model. When we

do not use slabs we perform ray-triangle intersection for all

rays of the tile against all triangles belonging to the tile,

which remains independent of the view. With slabs, we

stop at the closest intersection in a slab. Thus, slabs per-

form better for views with depth complexity of triangles.

RTI/frame drops as Dragon model rotates from a side view

(less depth complexity) to a frontal view (more depth com-

plexity). Table 2 shows that the ray tracing time decreases

with increasing number of slabs while the DS building time

remains unaffected.

Figure 4: Top : Deformed Bunny Model. Bottom : Dragon Model going under deformation

Models→
Triangles 1.09M 870K 70K 346K 97K 641K

Tile Sorting 3.5 2.79 0.3 1.13 0.37 2.05

DS Building 15 13 2 4.6 2.1 11

Ray Casting 35 25 8 17 12 27

Frame Rate 20 26 100 47 70 26

Table 4: Data Structure building and Ray Casting time for various triangulated models on an Nvidia 8800 GTX.

We perform three level split on triangles of the model to

build the required data structure. Multi split is performed

as each triangle can map to more than one tile (Figure 2).

Each id comprises of three numbers, x-tile, y-tile and z-

bin. Each level of split uses these ids to sort triangles to

corresponding bins. We use 128× 128 tiles in the image

space, and up to 16 slabs in the z direction for building an

optimal data structure. Table 4 shows break-up timings for

various triangulated models. Tile sorting and DS building

time is proportional to number of triangles. Ray casting

time depends on the number of triangles as well as the depth

complexity of the model.

5. Conclusion and Future Work

We present a method to ray cast large deformable models

at real time rates by building a suitable sorted data structure

in each frame. The approach we take can work with other

parallel hardwares, viz. FPGAs, Cell Processors etc. To

maximize the performance of ray casting on GPU, we pro-

pose an image-space data structure which avoids traversing

of data structure for each ray and arranges geometry for a set

of rays. For construction of required data structure we de-

velop a fast implementation of multi-split and propose multi

level split which supports large number of bins.

We are working on tracing the secondary rays for shad-

owing, reflection, refraction etc. We have the triangles listed

into a 3D grid of cells as part of ray casting for each frame.

The secondary rays which spawn at the intersection points

can traverse this grid to find second level intersection. We

can use the 3-D data structure built each frame for shadow

and secondary rays. Even though the data structure changes

each frame, it inherently remains a uniform grid. Future

GPUs with more cores and better memory performance will

be able to ray trace large models interactively.

Figure 5: Various triangulated models (70K - 1.2M trian-

gles) ray cast using our method.

References

[1] G. Blelloch. Vector Models for Data-Parallel Computing.

MIT Press, 1990.
[2] N. A. Carr, J. D. Hall, and J. C. Hart. The ray engine. In

In Proceedings of Graphics hardware, pages 37–46. Euro-

graphics Association, 2002.
[3] N. A. Carr, J. Hoberock, K. Crane, and J. C. Hart. Fast GPU

ray tracing of dynamic meshes using geometry images. In

GI ’06: Proceedings of Graphics Interface 2006, pages 203–

209, 2006.
[4] X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. ACM

Trans. Graph., 21(3):355–361, 2002.
[5] M. Harris, J. D. Owens, S. Sengupta, Y. Zhang, and

A. Davidson. CUDA data parallel primitives library. 2007.
[6] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo,

and P. Sander. Relational joins on graphics processors. In

SIGMOD ’08, pages 511–524. ACM, 2008.
[7] P. S. Heckbert and P. Hanrahan. Beam tracing polygonal ob-

jects. In Proceedings of the conference on Computer graph-

ics and interactive techniques, pages 119–127. ACM, 1984.
[8] D. R. Horn, J. Sugerman, M. Houston, and P. Hanrahan. In-

teractive k-d tree GPU ray tracing. In Proceedings of I3D

2007, pages 167–174. ACM, 2007.
[9] A. Knoll, Y. Hijazi, C. Hansen, I. Wald, and H. Hagen. Inter-

active ray tracing of arbitrary implicits with SIMD interval

arithmetic. Interactive Ray Tracing, Sept. 2007.
[10] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray

tracing on programmable graphics hardware. In ACM SIG-

GRAPH 2005 Courses, page 268. ACM, 2005.
[11] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray

tracing algorithm. ACM Trans. Graph., 24(3), 2005.
[12] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan

primitives for GPU computing. In Proceedings of Graphics

hardware, pages 97–106, 2007.
[13] R. Shams and R. A. Kennedy. Efficient histogram algo-

rithms for NVIDIA CUDA compatible devices. In Interna-

tional Conference on Signal Processing and Communication

Systems, 2007.
[14] M. Shevtsov, A. Soupikov, and A. Kapustin. Highly parallel

fast KD-tree construction for interactive ray tracing of dy-

namic scenes. volume 26, pages 395–404. Computer Graph-

ics Forum, 2007.
[15] I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable

scenes using dynamic bounding volume hierarchies. ACM

Trans. Graph., 26(1):6, 2007.
[16] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray

tracing animated scenes using coherent grid traversal. ACM

Trans. Graph., 25(3):485–493, 2006.
[17] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt,

S. G. Parker, and P. Shirley. State of the art in ray tracing an-

imated scenes. In STAR Proceedings of Eurographics, 2007.
[18] L.-Y. Wei, B. Liu, X. Yang, C. Ma, Y.-Q. Xu, and B. Guo.

Nonlinear beam tracing on a GPU, MSR-TR-2007-168.
[19] S.-E. Yoon, C. Lauterbach, and D. Manocha. R-LODs:

fast lod-based ray tracing of massive models. Vis. Comput.,

22(9):772–784, 2006.
[20] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time KD-

Tree construction on graphics hardware. In Proceedings of

SIGGRAPH Asia. ACM, 2008.

