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Abstract. We discuss the use of the WKB ansatz in a variety of parabolic prob-
lems involving a small parameter. We analyse the Stefan problem for small latent heat,
the Black–Scholes problem for an American put option, and some nonlinear diffusion
equations, in each case constructing an asymptotic solution by the use of ray methods.

1. Introduction. The WKB(J) ansatz, as developed by Green [9] and Liouville [21]
among others, is most commonly seen in its application to linear elliptic equations (or to
time-harmonic solutions of linear hyperbolic equations) in given domains. Representative
examples include Schrödinger’s equation when � is considered small (the semiclassical
limit) and the Helmholtz equation for large wave numbers, the latter leading to the ge-
ometrical theory of diffraction and indeed to the idea of a ray as a characteristic of the
leading order approximation, the eikonal equation. In this paper, we describe some cases
in which the exponential ansatz typical of the method, and the consequent reduction to
a nonlinear first-order equation solved by Charpit’s method, can be exploited to con-
struct approximate solutions to some (intrinsically nonlinear) free boundary problems of
parabolic and degenerate parabolic type.

In the theory of diffraction, the solution along a given ray typically has the approximate
form

amplitude × exp(i × phase), (1.1)

where the phase, but not the amplitude, varies rapidly along the ray. In our problems,
however, the factor i is absent. Instead, the second term in (1.1) varies rapidly as the
exponential of a real quantity; this makes an asymptotic approach especially fruitful.
For example, the canonical caustic singularity of diffraction theory does not play a role;
instead, the appropriate canonical situation occurs when rays meet on ‘ridge lines’, where
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the magnitudes of their contributions to the solution are equal. At other points where
two rays cross, one associated solution is typically exponentially smaller in magnitude
than the other. A well-known situation in which ridge lines occur is when the height of
a sandpile on a table is modelled by the eikonal equation of geometrical optics.

In Section 2 we discuss in some detail the small latent heat limit of the Stefan problem,
and a related problem from mathematical finance. In Section 3 we consider more briefly
the application of ray methods to degenerate parabolic equations.

2. The Stefan problem with small latent heat.
2.1. Formulation. In this section we analyse the small latent heat limit of the Stefan

problem for solidification of a pure material. In a general two-phase problem, in which
the initial data for the temperature u(x, t) vary by O(1), the phase interface varies only
slightly from the u = 0 isotherm of the corresponding heat conduction problem and can
be found by a regular perturbation scheme. However, if only one phase is active, the
other remaining at the phase-change temperature u = 0, the behaviour is more subtle.

We therefore consider the following situation: A domain Ω ⊂ R
n is filled with material,

initially solid and at the melting temperature, which we shall take to be zero. At time
t = 0, the temperature on the boundary ∂Ω is raised to a specified value g(x, t) > 0. The
solid therefore melts from the boundary inwards, and we wish to describe the evolution
of the solid-liquid interface.

Thus, for t > 0, u = 0 in the solid phase while

ut = ∆u (2.1)

in the liquid phase, with

u = 0, −∂u

∂n
= εVn

on the solid-liquid interface Γ(t) whose normal velocity (into the solid) is Vn. The initial
conditions are

u(x, 0) = 0, Γ(0) = ∂Ω.

We have chosen units so that the inverse Stefan number

ε = (St)−1 =
L

T0c
(2.2)

appears in the moving boundary condition rather than the heat equation; here L is the
latent heat, k is the thermal conductivity, T0 is a typical temperature scale, and c is the
specific heat.

We are interested in the limit ε → 0, the case of ‘weak’ or ‘slight’ nonlinearity. (In
the opposite limit when ε is large, it is necessary to scale so that the coefficient in the
moving boundary conditions is 1, and the heat equation ∆u = εut is thus approximated
by ∆u = 0. This ‘extremely’ nonlinear limit is known as the Hele-Shaw problem; we
include some instances of this case too, for comparison.) When ε = 0, the phase-change
is instantaneous. We thus anticipate that for ε � 1 and g(x, t) not everywhere small,
melting occurs on a much shorter timescale than that implicit in the scalings above, a
result which is also clear from a consideration of the energy required to melt the solid,
ε|Ω(0)| in dimensionless units, compared with the flux in from the boundary. The correct
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scalings are, however, not immediately obvious, and it is easiest to derive them first from
a particular one-dimensional solution.

2.2. The Neumann solution to the one-dimensional problem.
2.2.1. The explicit solution. In one spatial dimension, say for Ω = (0,∞) with the

applied temperature at x = 0, the phase change interface can be written as x = s(t; ε)
and the Stefan problem above simplifies to

ut = uxx, 0 < x < s(t; ε), (2.3)

u(x, 0) = 0, s(0; ε) = 0, (2.4)

u(0, t) = g(t), (2.5)

and, at x = s(t; ε),

u = 0, ux = −εṡ. (2.6)

When g(t) = g0 = constant, there is a similarity solution, the ‘Neumann’ solution (due
to Lamé and Clapeyron [20]):

u(x, t) = g0

(
1 −

∫ x/t1/2

0

e−η2/4dη

/∫ α

0

e−η2/4dη

)
, (2.7)

s(t; ε) = α(ε)t1/2, (2.8)

where α(ε) is determined from the transcendental equation

εαeα2/4

2

∫ α

0

e−η2/4dη = g0. (2.9)

It is then easy to show from (2.9) that as ε → 0,

s(t; ε) ∼ 2(t/δ)1/2,

where

δ = 1/| log ε|.

This suggests that in order to analyse O(1) changes in s(t; ε), we must rescale time
with δ:

t = δT. (2.10)

It is now straightforward to show that the solution has an asymptotic structure consisting
of three regions. The first is a boundary layer near the fixed boundary x = 0, in which
x = O(δ1/2); in this layer the solution is, to leading order, the zero-latent heat solution.
In the second region x is of O(1), and this region matches into the third region, an interior
layer of width O(δ) near the interface x = s(t; ε) in which the solution is, to leading order,
a travelling wave. We now give further details of the three regions and their matching;
of course they can easily be shown to be consistent with the exact solution (2.7). It is
known rigorously that the result for the limiting behaviour of s(t; ε) is correct for this
and more general one-dimensional problems. This follows from [22]; the analysis there is
however confined to one spatial dimension.
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2.2.2. The boundary layer near x = 0. We recall that in (2.10) we rescaled time by δ.
In order to achieve a balance in the heat equation we set

x = δ1/2X,

and, with u = u0(X, T ) + o(1) as ε, δ → 0, the solution satisfying u(0, T ) = g0 is

u0 = g0erfc(X/2T 1/2);

we shall comment on more general boundary conditions later. As X → ∞, this solution
has the asymptotic behaviour

u0 ∼ 2g0T
1/2

π1/2X
e−X2/4T , (2.11)

and this must match into the second region.
2.2.3. The ‘outer’ region x = O(1). In this region, x is unscaled and so we must solve

δ−1uT = uxx, (2.12)

with u(x, 0) = 0. As x → 0, the solution must match with (2.11). Written in outer
variables, (2.11) is

u0 ∼ 2g0T
1/2δ1/2

π1/2x
e−x2/4δT ,

and this suggests the ansatz

u ∼ δ1/2(a0(x, T ) + . . .)e−f(x,T )/δ. (2.13)

Note also that the exponential term in (2.13) may be thought of as a WKB ansatz for
(2.12). Substitution into (2.12) yields

fT = −f2
x , (2.14)

a0T = −2fxa0x − fxxa0. (2.15)

The characteristic projections of (2.14) (obtained by Charpit’s method) are x/T = con-
stant, so f and a0 are determined by matching back into the boundary layer (which can
be viewed as a canonical ‘diffraction’ problem) for small x, T with x/T = O(1), giving

f ∼ x2/4T and a0 ∼ 2g0T
1/2/π1/2x as x, T → 0.

In this case, the solution is identical to its limiting form, namely

f = x2/4T, a0 = 2g0T
1/2/π1/2x. (2.16)

We must now match this solution into the neighbourhood of the phase change interface.
2.2.4. The interior layer near the free boundary. Near the free boundary, we expect

the solution to be, to leading order, a travelling wave. Recalling that ds/dt = O(δ−1),
when we change to coordinates moving with the free boundary, the dominant contribution
to the left-hand side of (2.12) is of O(δ−2). It is therefore appropriate to write

x = s(t; ε) + δξ = S(T ; δ) + δξ,

and, in order to achieve a balance in the latent heat condition,

u = εU.
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The leading order problem is

− (dS0/dT )U0ξ = U0ξξ,

and, imposing the moving boundary conditions U0 = 0, U0ξ = −dS0/dT , we have

U0 = e−ξdS0/dT − 1. (2.17)

This must match with (2.13); using (2.16) we write (2.13) in inner variables as

u ∼
(

2g0δ
1/2T 1/2

π1/2S
+ · · ·

)
e−S2/4δT−ξS0/2T+···. (2.18)

Recalling also that u = εU = e−1/δU , matching (2.17) with (2.13) requires

S ∼ 2T 1/2(1 − δ(log δ − log(π/g0))/4), (2.19)

completing our reconstruction of the Neumann solution for small ε and, indeed, providing
a more accurate approximation to s(t; ε) than that given earlier.

2.3. One-dimensional problems: Discussion.
2.3.1. More general one-dimensional problems. It is easy to generalise the results

above to the case where the prescribed temperature at x = 0 is not constant, and
hence there is no similarity solution. It can be seen that the constant g0 does not affect
the leading order behaviour of s(t; ε), since this is entirely controlled by the exponential
factor in (2.3), which does not depend on g0. It therefore follows from (2.19) that to
leading order

s(t; ε) ∼ 2| log ε|−1/2t1/2, (2.20)

for any boundary data u(x, 0) = g(t) for which g0 is neither exponentially small nor
large in δ, and for which g(t) does not vary by O(1) on any timescale faster than O(δ).
Because the interior layer is small, it also follows that the location of the free-boundary
is, to leading order, the isotherm U = ε of the corresponding heat conduction problem
without solidification. A further consequence is that if we consider, for example, solidi-
fication of the interval 0 < x < 1, with u(0, t) = g(t), u(1, t) = h(t), we have the rather
surprising result that the two interfaces meet, to leading order, at the mid-point x = 1/2
at dimensionless time δ/4. This result, in fact, holds even if g and h vary by O(1) on the
timescale T = O(1).

A further generalisation is provided by an example which illustrates the difference
between the ‘extremely’ and ‘slightly’ nonlinear limits in which the inverse Stefan number
is respectively large and small (see Section 2.1 above, and Section 3). We consider (2.3)–
(2.5) with g(t) = tα, α > −1. If α �= 0, so that the Neumann solution does not apply, we
can rescale to set ε = 1 in (2.5). The two limiting cases are then as follows.

(i) ‘Large’ inverse Stefan number. If the left-hand side of (2.3) is negligible, u(x, t) is
linear in x. We have

u ∼ tαf(x/t(α+1)/2), f(η) = 1 − ((α + 1)/2)1/2η, (2.21)

with
s ∼ (2/(α + 1))1/2t(α+1)/2.
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If α > 0, (2.21) represents a consistent balance in (2.3) as t → 0+ and thus gives the
small-time behaviour. Conversely, if −1 < α < 0, it provides the large-time behaviour.

(ii) ‘Small’ inverse Stefan number. Following the approach outlined in Section 2, the
boundary layer solution is the zero Stefan number similarity solution

u ∼ tαf(x/t1/2),

with

αf − ηfη/2 = fηη,

f = 1 at η = 0, (2.22)

f ∼ Aη−(2α+1)e−η2/4 as η → ∞,

where the value of the positive constant A can be determined by solving (2.22), which
can be done in terms of parabolic cylinder functions. Matching into the interior layer,
the free boundary location can then be shown to satisfy

s2 ∼ 4t(α log t − (α + 1/2) log(4α log t) + log A). (2.23)

As is clear from the sign of the leading term in (2.23), the limit required for these results
to apply is t → ∞ for α > 0 and t → 0+ for −1 < α < 0.

In order to describe the asymptotic behaviour completely, both limit cases must thus
be analysed. For −1 < α < 0, (2.21) provides the large-time behaviour and (2.23) the
small-time; the reverse is true for α > 0. As is well known, in the borderline case α = 0
the solution is, as described in §2.2, exactly self-similar and depends rather sensitively
on the value of the Stefan number. In the other cases, the effective Stefan number varies
with time in a manner made apparent by the above analysis.

2.3.2. The Grinberg and Chekmareva approach. An alternative approach to the one-
dimensional case is to use the Laplace transform to reformulate the Stefan problem as a
nonlinear integral equation for s(t; ε). This approach follows the idea of [10], also used
by [6] and [22] (with a prescribed heat flux at x = 0). We take the Laplace transforms
of (2.3)–(2.6), defining the Laplace transform of u(x, t) by

ū(x, p) =
∫ ∞

ω(x)

u(x, t)e−ptdt,

where ω(x) ≡ s−1(x) is well defined if we assume that g(t) ≥ 0, since then s(t) is
increasing. A short calculation shows that

ūxx − pū = εe−pω(x), x ≥ 0, 	(p) > 0, (2.24)

with
ū(0, p) = ḡ(p) and ū → 0 as x → ∞.

Solving (2.24), inverting with the aid of the convolution theorem, and returning to s(t)
as the dependent variable, we find the integral equation

s(t)
∫ t

0

g(t − τ )e−s(t)2/4τ dτ

τ3/2

= ε

∫ t

0

ṡ(t − τ )
(
e−(s(t)−s(t−τ))2/4τ − e−(s(t)+s(t−τ))2/4τ

) dτ

τ1/2
.
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We can then obtain the leading order behaviour of s(t; ε) by substituting in the ansatz
s(t; ε) ∼ α(ε)t1/2 as above, and confirm the results of Section 2.2. Note, however, that
although this approach readily gives details of s(t; ε), it is less helpful concerning the
structure of u(x, t); nor is it useful in more than one space dimension.

2.4. The American put option. The method described above leads to a quick deriva-
tion of the asymptotic behaviour of the Black–Scholes value of an American put option
near its expiration date; moreover, unlike certain other approaches (see [3, 8, 17, 18] for
related studies) it can readily be generalised, for example to higher dimensions (see [4]
for a different approach in more than one dimension). We recall (see [25]) that in this
model the value of such an option satisfies a backwards parabolic equation with terminal
(payoff) values given at the expiration time t = T . It is convenient to measure time
backwards from this expiration date, so we write t′ = T − t. Let us consider an American
put option, namely an option to sell an asset with price S for a strike price K at any
(physical) time up to expiration, that is for t′ ≥ 0, and write its value as V (S, t′). The
payoff value is max(K − S, 0) and the terminal (t′ = 0) value of the option is

V (S, 0) = max(K − S, 0), 0 < S < ∞.

The option value satisfies the parabolic (time-reversed Black–Scholes) equation

Vt′ =
1
2
σ2S2VSS + (r − q)SVS − rV (2.25)

for S∗(t′) < S < ∞; here σ is the volatility of the asset price returns, r the risk-free
rate, and q the continuous dividend yield. Also S∗(t′) is the optimal exercise boundary,
at which

V = K − S, VS = −1;

these conditions state that the option value is equal to the payoff at S = S∗(t′), and the
Delta, VS , is continuous there. For S < S∗(t′) we have V = K − S. The case r > q is of
most financial interest as this is usually the case in practice, and then the free boundary
emanates from S = K and moves to the left. (If r < q, the free boundary emanates from
S = rK/q with square-root-in-time behaviour as in the corresponding problem for an
American call option [25], into which it can be transformed. This case can arise for FX
options, but is unusual for stock or equity index options. If r = q = 0, there is no free
boundary.)

We now adopt the rescalings

S = KŜ, S∗ = KŜ∗, V = KV̂ , t′ = 2t̂/σ2,

to give, dropping the hats,

∂V

∂t
= S2 ∂2V

∂S2
+ ρ(1 − θ)S

∂V

∂S
− ρV,

with
V (S, 0) = max(1 − S, 0), S∗(0+) = min(1, 1/θ),

the free boundary conditions

V (S∗(t), t) = 1 − S∗(t),
∂V

∂S
= −1,
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and, lastly, V → 0 as S → ∞; here ρ = 2r/σ2, θ = q/r. The case of financial interest
is that in which 0 ≤ q < r, so that 0 ≤ θ < 1, and this is the only case we consider.
Our final reformulation expresses the problem in the manner most reminiscent of the
Baiocchi-transformed version of the Stefan problem (i.e. the oxygen-consumption prob-
lem) by subtracting the payoff from V and discounting, and changing to moving log-price
coordinates, setting

V = 1 − S + e−ρtΨ(ζ, t), ζ = log S − (1 − ρ(1 − θ)) t,

which yields
∂Ψ
∂t

=
∂2Ψ
∂ζ2

+ ρθeζe(1+ρθ)t − ρeρt, (2.26)

with
Ψ(ζ, 0) = max(eζ − 1, 0), ζ∗(0+) = min(0,− log θ),

the free boundary conditions

Ψ =
∂Ψ
∂ζ

= 0 (2.27)

on ζ = ζ∗(t), and Ψ ∼ eζe(1+ρθ)t−ρeρt as ζ → ∞; here ζ∗(t) = log S∗(t)−(1 − ρ(1 − θ)) t.
It is worth noting that the ‘latent heat’ term in (2.27), namely eζe(1+ρθ)t−ρeρt, is negative
for sufficiently large ζ but positive for ζ < − (1 − ρ(1 − θ)t)− log θ (i.e. for S < 1/θ), the
former corresponding to an ill-posed Stefan problem and the latter to a well-posed one;
the interplay between the two has important consequences for the dynamics, and the
moving boundary is always located in the latter regime. In particular, the instantaneous
jump in the free boundary to S∗(0+) = 1/θ when θ > 1 can be interpreted similarly to
a comparable situation for the Stefan problem described in [11]. Although we do not
consider further the case θ > 1, as indicated above such a jump occurs for an American
call option when 0 < θ < 1 [25].

The problem is amenable to ray methods not only in the limit of small time, but
also for small ‘latent heat’, ρ → 0. We focus on the latter; it corresponds to a small
interest-rate regime and would be especially appropriate in markets such as Japan in the
early years of the 21st century, where annualised interest rates were less than 1% (0.01),
whereas in the same units for an individual stock σ might be as much as 0.4, so that
ρ ≈ 0.125. While related results have been obtained elsewhere (see [17], in particular), it
seems appropriate to revisit the problem in the context of the rather general framework
developed here. For brevity, our presentation of the asymptotics will be slightly informal,
but we stress that they can be made fully systematic.

Our starting point is the corresponding European Put solution

ΨE(ζ, t) =
1
2

(
erfc(ζ/2t1/2) − eζ+terfc

(
(ζ + 2t)/2t1/2

))
+ eζ+(1+ρθ)t − eρt. (2.28)

This is the solution to (2.26) with the same initial condition but with the conditions on
ζ = ζ∗(t) replaced by

ΨE ∼ 1 − eρt + eζ
(
e(1+ρθ)t − et

)
as ζ → −∞. That is, it is the solution with no constraint and it plays a role similar
to that which the heat-conduction solution plays in the Stefan problem above. Indeed,
while (2.28) contains our small parameter ρ, it serves as an outer solution which is
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uniformly valid across the relevant timescales. A key result we require from (2.28) is the
more detailed far-field expression

ΨE ∼ 1 − eρt + eζ
(
e(1+ρθ)t − et

)
+

2t3/2

π1/2ζ(ζ + 2t)
e−ζ2/4t (2.29)

as ζ → −∞ with t = O(|ζ|) and ζ/t < −2; the final term in this expression is of the
expected form

t−1/2A(ζ/t)e−ζ2/4t,

with the ‘directivity’ A(σ) given in this case by

A(σ) =
2

π1/2σ(σ + 2)
.

Setting ζ = ζ∗(t) + ξ, when ρ is small a putative leading-order inner balance (whose
range of validity can be checked a posteriori in the usual way) reads

−ζ̇∗
∂Ψ
∂ξ

∼ ∂2Ψ
∂ξ2

− ρ
(
1 − θeζ∗+t

)
(2.30)

so that
Ψ ∼ ρ

ζ̇∗2

(
1 − θeζ∗+t

) (
e−ζ̇∗ξ − 1 + ζ̇∗ξ

)
. (2.31)

Matching the exponential in ξ from (2.31) with the corresponding exponential from the
final term of (2.29) as ξ → +∞ (recall that ζ∗ < 0, ζ̇∗ < 0), shows that, for 0 ≤ θ < 1,

ζ̇∗ ∼ ζ∗

2t
,

and hence, matching the amplitudes of the exponential terms, that (since ζ∗(t) � t here)
1

2(πt)1/2
e−ζ∗2/4t ∼ ρ

(
1 − θeζ∗+t

)
. (2.32)

For t = O(1) we have −ζ∗ � 1, so the θ terms in (2.30)–(2.32) are in fact negligible, and
hence

ζ∗2 ∼ −2t log(4πρ2t); (2.33)

the appropriate scalings in (2.31) for t = O(1) are thus ξ = O(1/| log ρ |1/2), Ψ =
O(ρ/| log ρ |). For θ = 0, no earlier timescales are needed; when θ > 0, however, a
distinct early-time balance occurs in (2.32) for

t = t̄/| log ρ |, ζ∗ = −2t̄1/2

(
1 +

log | log ρ |
4| log ρ | +

z̄∗(t̄)
| log ρ |

)
,

whereby the θ terms cannot be neglected and the dominant balance in (2.32) becomes

z̄∗ ∼ −1
4

log
(

4πt̄
(
1 − θe−2t̄1/2

)2
)

. (2.34)

Returning to the regime t = O(1), from (2.33) we have

ζ∗ ∼ −2t1/2| log ρ |1/2 +
1
2
t1/2 log(4πt)

| log ρ |1/2
(2.35)

for t = O(1). The families of rays associated with the final term in (2.29) and with the
term eζ+t are given respectively by ζ/t = constant and ζ + 2t = constant, and we might
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anticipate that (2.35) will cease to be valid for t ∼ | log ρ |, when ζ = ζ∗(t) lies on the
coincident ray ζ/t = −2. However, the balances above in fact first change subtly on the
intermediate timescale t = | log ρ |T , where 0 < T < 1, and ζ∗ = | log ρ |Z∗. This follows
because (2.32) is then replaced by

2T 3/2

π1/2Z∗ (Z∗ + 2T ) | log ρ |1/2
e−Z∗2| log ρ |/4T ∼ ρ

Ż∗2
, (2.36)

so that

Z∗ ∼ −2T 1/2 +
log | log ρ |
2| log ρ | T 1/2 +

1
| log ρ |T

1/2 log
(
2(πT )1/2(1 − T 1/2)

)
, (2.37)

providing further evidence that a change in behaviour is to be expected at T = 1.
The next timescale, then, has scalings

t = | log ρ | + | log ρ |1/2τ, ζ∗ = −2| log ρ | − | log ρ |1/2τ + z∗(τ ) (2.38)

and, for the inner region,

ζ = −2| log ρ | − | log ρ |1/2τ + z,

whereby, in view of (2.28), which is equivalent to

ΨE(ζ, t)

= 1
2

(
eζ+terfc

(
−(ζ + 2t)/2t1/2

)
− erfc

(
−ζ/2t1/2

))
+ eζ+t

(
eρθt − 1

)
−

(
eρt − 1

)
,

we find that (2.29) is replaced when τ = O(1) by

Ψ ∼ 1
2
ρezerfc(−τ/2) (2.39)

as the matching condition on the inner region as z → +∞ for ρ � 1.
The dominant balance for z = O(1) is

∂Ψ
∂z

∼ ∂2Ψ
∂z2

− ρ (2.40)

with
Ψ =

∂Ψ
∂z

= 0

at z = z∗, so that
Ψ ∼ ρ

(
ez−z∗

− 1 − (z − z∗)
)

.

Thus, on matching with (2.39) we obtain

z∗ ∼ − log (erfc(−τ/2)/2) . (2.41)

Before outlining the final timescales, we note that the large-time behaviour is given
asymptotically by the steady state solution

V∞(S) =
1

ν + 1

(
(ν + 1)S

ν

)−ν

, S∗(∞) =
ν

ν + 1
,

where ν, the negative of the relevant root of the indicial equation for the time-independent
scaled Black–Scholes equation, is given by

ν = −1
2

(
(1 − ρ(1 − θ)) −

(
(1 − ρ(1 − θ))2 + 4ρ

)1/2
)

= ρ + O(ρ2) as ρ → 0.
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This corresponds to a travelling wave solution for Ψ(ζ, t) having

ζ∗(t) ∼ −| log ρ | − t as ρ → 0

with which (2.38), (2.41) are already consistent as τ → ∞. In order to complete the
asymptotic description of the solution, we must now nevertheless describe the further
regime T > 1, for which the relevant matching condition between inner and outer regions
becomes

ΨE ∼ 1 − eρt + eζ+(1+ρθ)t +
2t3/2

π1/2ζ(ζ + 2t)
e−ζ2/4t (2.42)

as ζ → −∞ with t = O(|ζ|), ζ/t > −2. This condition replaces (2.29) (one of the terms
in (2.29) no longer appears, because the location ζ = −2t at which the relevant Stokes
lines are born has passed beyond the moving boundary). It is then the third, rather than
the last, term of (2.31) that appears on matching for T > 1, i.e. (2.36) is replaced by

e| log ρ |(Z∗+T ) ∼ ρ

Ż∗2
,

from which we recover
Z∗ ∼ −1 − T. (2.43)

In view of (2.26) in particular, the final timescale is naturally seen to be t = t†/ρ, and
the change of variables

ζ = −t†/ρ − | log ρ | + ζ†

is needed to resolve the inner region, in which the analysis is now more delicate. We have

ρ
∂Ψ
∂t

+
∂Ψ
∂ζ†

=
∂2Ψ

∂ζ†
2 − ρet† + ρ2θeζ†+θt† , (2.44)

so the matching condition derived from (2.42), namely

Ψ ∼ ρeζ†+θt†

as ζ† → +∞, on the leading-order inner solution (whereby Ψ = O(ρ)) requires that

∂Ψ
∂ζ†

∼ ρ
(
eζ†+θt† − et†

)
.

The interface accordingly satisfies

ζ† ∼ (1 − θ)t† (2.45)

as required. Finally, by setting

ζ† = (1 − θ)t† + ρ−1/2ξ†, Ψ = e
1
2 ρ−1/2(1−ρ(1−θ))ξ†− 1

4ρ−1(1−ρ(1−θ))2t†Φ(ξ†, t†)

in the homogeneous version of (2.44), we recover the heat equation, whose dipole solution
governs how S∗(t) approaches the steady state, involving an algebraic modulation to the
exponential rate e−

1
4ρ−1(1−ρ(1−θ))2t† ; this also applies for ρ = O(1).

In summary, we have obtained explicit expressions for ζ∗ in each of the asymptotic
regimes, namely (2.34) on the shortest timescale t̄ = O(1) (in fact, an additional subtlety
arises for even shorter times, but this is captured by the small-time solution (2.46) noted
below), (2.35) for t = O(1), (2.37) for T = O(1) with T < 1, (2.38) and (2.41) on the
transition timescale τ = O(1), (2.43) for T = O(1) with T > 1, and finally (2.45) for
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t† = O(1). The ray interpretation of the results (with the two distinct families of rays
carrying the crucial matching information from (2.28)) is indispensable in motivating the
various asymptotic scenarios and confirming their self-consistency.

Finally we consider the local analysis of the free boundary near expiration. This has
been treated in [18, 8, 17, 3] via an integral equation approach. This behaviour can also
readily be analysed within our framework, and indeed a minor modification of (2.33)
applies, namely

ζ2 ∼ −2t log
(
4πρ2(1 − θ)2t

)
(2.46)

as t → 0 for ρ = O(1), by essentially the same arguments as those above (cf. (2.32)). We
stress that our approach generalises immediately to higher-dimensional problems, again
as shown in the following section.

2.5. Higher-dimensional problems.
2.5.1. Matched asymptotic expansions approach. The methods of Section 2.2 gener-

alise easily to the case where Ω is a bounded domain in R
n, initially filled with solid at

the melting temperature. Now there is a melted region L(t), bounded by ∂Ω and by the
phase change interface Γ(t). The model we adopt for t > 0 is equations (2.1)–(2.2) with

u = g(x, T ) x ∈ ∂Ω,

where g satisfies the conditions detailed in Section 2.3.1. Again, time is scaled with
δ = 1/| log ε| and there is a three-layer structure.

2.5.2. Boundary layer near ∂Ω. The solution here is as in Section 2.2.2; X is now
given by X = xn/δ, where xn represents distance into L(t) normal to ∂Ω. Note that if
∂Ω is not smooth, this approximation may not be uniformly valid (consider, for example,
melting the interior or exterior of a corner in two dimensions). We shall return to this
point below.

2.5.3. Outer region. In the ‘outer’ region, in which distances from ∂Ω are O(1), we
generalise (2.13) to

u ∼ δ1/2(a0(x, T ) + . . .)e−f(x,T )/δ. (2.47)

We only calculate f(x, T ) here; this is sufficient to determine the leading order position
of the free boundary. As we saw in Section 2.2.2, a0(x, T ) only contributes to a small
correction to this leading order behaviour, and for the same reason the leading order
behaviour of Γ(T ) is independent of the boundary data g(x, T ), provided that the latter
is neither too large nor too small nor varies too rapidly. We find that

fT = −|∇f |2, (2.48)

with f ∼ x2
n/4T as xn, the distance to ∂Ω, tends to zero with xn/T remaining O(1).

The solution of (2.48) takes the separable form

f(x, T ) =
(
F (x)

)2
/4T,

from which we recover the eikonal equation of geometrical optics,

|∇F |2 = 1,
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with F = 0 on ∂Ω. The solution is just

F = xn,

so

f(x, T ) = x2
n/4T.

This solution is valid sufficiently close to ∂Ω that the characteristic projections, which
are the normals to ∂Ω, do not cross, and may again require qualification if ∂Ω is not
smooth.

2.5.4. Interior layer near Γ(T ). The solution in the interior layer is as before, ξ now
representing distance along the normal to Γ(T ). Matching with the outer region requires
simply that the leading order location of the moving boundary is determined by where
f = 1, i.e.

xn = 2T 1/2.

This is evidently consistent with (2.19).
2.6. Discussion. We can summarise the results above by saying that, to leading or-

der, the phase change interface advances along the normals to ∂Ω with speed (δt)−1/2,
independently of the boundary data (provided the latter is uniformly neither large nor
small). We return to the case of variable boundary data below. Thus, the last point to
melt is that furthest from ∂Ω. As in the one-dimensional case, the location of Γ(t) is to
leading order the isotherm U = ε of the corresponding pure heat conduction problem; as
before, the solution in the boundary and outer regions is not to leading order influenced
by the inner layer near Γ(t), and the superlinearity in the exponential term in the outer
layer determines the location of Γ quite precisely. This scenario may require some modi-
fications, for example when the characteristic projections (normal to ∂Ω) cross, or when
∂Ω is not smooth.

Even if ∂Ω is smooth, the characteristic projections must eventually meet. (For an
analysis of the late stages of the special case of melting a sphere (but with large Stefan
number), see [23, 24].) When they do cross, the dominant contribution is from those on
which the distance to ∂Ω is shortest. The leading order moving boundary determined by
our procedure may then not be smooth, and the inner region is no longer one-dimensional.
For example, if ∂Ω is an ellipse, the leading order approximation to Γ(t) first becomes
irregular at the foci, with X ∼ const.|Y |4/3 in local variables (X, Y ). For later times,
the leading order approximation to Γ(t) has two finite-angle corners which move in from
the foci towards the centre of the ellipse (see Figure 1). If on the other hand ∂Ω is a
square and Ω its interior, ‘ridge-line’ discontinuities are present for all t > 0 along the
diagonals: Γ(t) is to leading order a square, distance 2(t/δ)1/2 inwards normally from ∂Ω,
but our approximation is clearly invalid at its corners. In such cases, an inner travelling-
wave free boundary problem is easily formulated to describe the smoothing of the outer
solution [16].

Lastly if ∂Ω has reentrant corners, for example, the leading order approximation to
Γ(t) consists of smooth segments constructed from the normals to the smooth parts of
∂Ω, joined up by ‘expansion fans’ emanating from the corners. Thus, for example, if Ω
is the exterior of a square of side a, the approximation to Γ(t) consists of straight line

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



54 J. A. ADDISON, S. D. HOWISON, AND J. R. KING

Fig. 1. Melting of the interior of an ellipse. The outer ellipse is
∂Ω; moving inwards, Γ(t) is shown before it becomes irregular at the
foci, at the moment it becomes irregular and at a later time. Only
the solid portion of the innermost curve contributes to Γ(t); on the
dashed portion, the relevant ray carries an exponentially subdomi-
nant amplitude.

segments (normal translations of the sides through a distance 2(t/δ)1/2) joined by arcs of
circles centred on the corners. Both reentrant and non-reentrant corners occur in models
for options on several assets.

3. Nonlinear diffusion.
3.1. Preamble. We now illustrate the more widespread applicability of ray methods

to moving boundary problems by noting two generalisations of the Hamilton-Jacobi for-
mulation of the limit problem m → 0+ of

ut = ∇ · (um∇u), (3.1)

which has been exploited by [12].
We firstly consider more general nonlinearities, i.e. we treat

ut = ∇ · (D(u)∇u), (3.2)

where D(u) depends on some small positive parameter ε; we shall give a general form
of this dependence for which ray methods are applicable in the limit ε → 0. As with
(3.1), the key step is a change of dependent variable. It is instructive to consider two such
transformations, the second of which gives the formulation appropriate to the application
of ray methods; the first is not relevant to such approaches, being included for comparison.

The change of variable w = D(u). The change of variable w = D(u) transforms (3.2)
into

wt = w∆w +
(
D(u)/D′(u)

)′|∇w|2. (3.3)

If D(u) is such that the third term is negligible in (3.1), we have

wt = w∆w. (3.4)
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The circumstances under which this occurs (the simplest of which is m → ∞, as for
example in [7]) are discussed in [13]. This represents the ‘extremely nonlinear’ limit
of (3.2), a limiting case analogous to the Hele-Shaw limit of the Stefan problem (see
Sections 2.1 and 2.3.1). A particular feature worth noting is that separable solutions
w = W (x)/t satisfy the linear problem

∆W = −1,

the ‘squeeze-film’ variant of the Hele-Shaw problem (see [19]).
The change of variable v =

∫ u

0
D(u′)du′/u′. In this case we have

vt = |∇v|2 + D∆v; (3.5)

when the third term is negligible, which is the case of interest here (we give examples
below), we have

vt = |∇v|2. (3.6)

This represents the ‘slightly nonlinear’ limit of (3.2). As we saw earlier, it also arises
on applying the WKB method to the heat equation (see (2.48)), and thus complements
(3.4).

3.2. Solutions with moving boundaries. Many nonlinear diffusion problems have solu-
tions with moving boundaries. We consider two generalisations of the WKB method to
analyse such problems, beginning with the equations considered in the previous section.

The requirement that the interface u = 0 of (3.2) exhibit finite speed of propagation
is that the integral

∫ u

0
D(u′)du′/u′ be bounded; that is the case we treat here. For any

suitable D(u), both (3.5) and its approximation (3.6) have the exact travelling wave
solution

v = q(qt − x)+, (3.7)

and this more generally describes the local behaviour at an interface moving with
speed q.

We therefore now illustrate the circumstances under which (3.5) can be approximated
by (3.6) by taking

D(u; ε) = εψ(ε log u), ψ(0) = 1, ψ(−∞) = 0, (3.8)

for example D(u; ε) = εuε. For definiteness we consider the Cauchy problem with com-
pactly supported initial conditions of the form

v = V (x) at t = 0,

where V (x) is independent of ε and has its global maximum at x = 0. We normalise the
problem such that V (0) = Ψ(0), where Ψ(σ) =

∫ σ

−∞ ψ(σ′)dσ′; this is bounded for finite
propagation speed. From (3.8) we thus have

v = Ψ(ε log u), D(u) = ε/Φ′(v),

where Ψ(Φ(v)) = 1, implying

u = exp(Φ(v)/ε), (3.9)
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which is the appropriate WKB ansatz here. In the outer region |x| = O(1), with v ∼
v0(x, t) as ε → 0, we have the ray problem

v0t
= |∇v0|2,

v0 = V (x) at t = 0,
(3.10)

from which the leading order moving boundary location for t = O(1) can be determined
from where v0 = 0. We note that the solution v0 to (3.10) is decreasing along character-
istics, so that (3.10) in fact holds only where v0 > 0; elsewhere v0 = 0 applies.

There is also an inner region x = ε1/2X. Choosing axes such that

V (x) ∼ Φ(0) −
N∑

i=1

αix
2
i as |x| → 0,

for positive constants αi, then the leading order inner solution u ∼ u0(X, t) satisfies

u0t
= ∆u0,

u0 = exp
(
−

N∑
i=1

aiX
2
i

)
at t = 0,

where ai = αi/Φ′(0), so that [14]

u0 = exp
(
−

N∑
i=1

aiX
2
i

/
(1 + 4ait)

)/ N∏
i=1

(1 + 4ait)1/2.

Simple examples in which the approach applies include

D(u) = εuε = εv,

and

D(u) = ε(1 − ε log u)−n = ε
(
(n − 1)v

)n/(n−1) for n > 1.

We now turn to our second generalisation, which concerns the doubly nonlinear equa-
tion (see [1] for related considerations)

ut = ∇ · (um|∇u|n−1∇u), (3.11)

with n > 0. It is instructive first to note the instantaneous source solution (cf. [2])

u = t−N/((m+n−1)N+n+1)f(r/t1/((m+n−1)N+n+1)),

with

f (m+n−1)/n =
(m + n − 1)(a(n+1)/n − η(n+1)/n)+
(n + 1)((m + n − 1)N + n + 1)1/n

, m + n > 1,

f = a exp
(
− n

(
η/(n + 1)

)(n+1)/n)
, m + n = 1,

f−(1−m−n)/n =
(1 − m − n)(a(n+1)/n + η(n+1)/n)+
(n + 1)(n + 1 − (1 − m − n)N)1/n

,

m + n < 1 with N < (n + 1)/(1 − m − n),
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for some constant a. The solution is thus compactly supported for m + n > 1 only; the
case we discuss here corresponds to the limit m + n → 1+. We define

v =
n

m + n − 1
u(m+n−1)/n,

to give

vt = |∇v|n+1 +
m + n − 1

n
v∇ · (|∇v|n−1∇v). (3.12)

The limit problem for m + n → 1+ is thus

vt = |∇v|n+1. (3.13)

Where v > 0, (3.13) provides the leading order solution to (3.11) where u is exponentially
small and, in particular, determines the location of the moving boundary, on which
u = 0. For given initial data v = V (x) at t = 0, equation (3.13) is straightforward to
solve via Charpit’s equations, with the usual considerations applying when characteristic
projections intersect, and we shall not elaborate further here.

Our remaining comments largely concern the limit case n = 0, which is a singular limit
of (3.11); we do not give a detailed discussion, merely noting that in the one-dimensional
case (3.11) then reduces to

∂u

∂x

(
∂u

∂t
− ∂

∂x

(
umsgn

(
∂u

∂x

)))
= 0,

and is readily solved. For example, taking m = 1 and initial conditions u = U(x) at
t = 0 with U ′(x) negative for x positive (and vice versa), then we have

u = U(x − t) for x < s−(t),

u = M(t) for s−(t) < x < s+(t),

u = U(x + t) for x > s+(t),

where M(t) = U(s−+t) = U(s+−t) is determined by conservation of mass. The solution
thus contains additional moving boundaries s±(t).

For n = 0, (3.13) becomes

vt = |∇v|, (3.14)

which implies that the outward normal velocity of any level set of v is unity. Thus different
level sets, and in particular the moving boundary v = 0, can be tracked separately. This
is not true for other values of n; only for n = 0 is v constant along characteristics of
(3.13), its exceptional status in this regard being consonant with its role as a singular
limit. However, the required solution to (3.13) for n > 0 is commonly of the form

v = 1 − n

t1/n

(
F (x)
n + 1

)(n+1)/n

,

so that

|∇F | = 1. (3.15)
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Writing the moving boundary (or indeed any level set) of (3.14) as t = F (x) we again
obtain (3.15). Under such circumstances the same formulation is appropriate for any
n ≥ 0, the moving boundary being given by

F (x) = (n + 1)t1/(n+1)/nn/(n+1).

4. Conclusion. We have shown that the WKB ansatz provides an effective approx-
imation for a wide variety of parabolic free-boundary problems in which the evolution
of the free boundary is rapid, facilitating their asymptotic solution explicitly by ray
methods. We considered the one-phase Stefan problem in some detail, showing that the
location of the phase-change interface is to leading order that of the U = ε isotherm of
the corresponding pure conduction problem. To leading order, the interface (isotherm)
propagates with constant speed in directions normal to ∂Ω; the last point to melt is the
furthest point from the boundary. This point is also the instantaneous minimum, at
t = 0+, of the corresponding conduction problem. Subject to certain constraints, these
results do not depend on the precise behaviour of the applied boundary temperature.
We also discussed more briefly several nonlinear diffusion problems in which a similar
asymptotic approach can successfully be employed, illustrating the broad applicability
of the technique to extensive classes of moving boundary problems. The outcome is that
we can both extract the behaviour of limiting cases and derive analytically tractable
reduced problems that can be used to provide insight that is instructive beyond such
limiting regimes. It is particularly striking that the approach readily provides results in
any number of dimensions, a feature that may be particularly valuable in the context of
mathematical finance where the large number of assets involved can cause very severe
computational difficulties. Our final remark (cf. [15]) is that the approach is also well
suited to certain problems in mathematical biology in which degradative enzymes occur
which are so well suited to their specific roles that models of their action lead to what is
in effect the small Stefan number regime described above.
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