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RAY SHOOTING AND OTHER APPLICATIONS OF SPANNING
TREES WITH LOW STABBING NUMBER*

PANKAJ K. AGAPWALt

Abstract. This paper considers the following problem: Given a set G of n (possibly intersecting) line
segments in the plane, prcproccss it so that, given a query ray p emanating from a point p, one can quickly
compute the intersection point &(G, p) of p with a segment of G that lies nearest to p. The paper presents an
algorithm that preproccsses G, in time 0(3/2 log n), into a data structure of size O(nc(n) log4 n), so that

for a query ray p, /,(, p) can be computed in time O(v/nc(ni log2 n), where w is a constant < 4.33 and
a(n) is a functional inverse of Ackermann’s function. If the given segments are nonintersecting, the storage
goes down to O(n log3 n) and the query time becomes O(v/- log2 n). The main tool used is spanning trees
(on the set of segment endpoints) with low stabbing number, i.e., with the property that no line intersects
more than O(x/) edges of the tree. Such trees make it possible to obtain faster algorithms for several other
problems, including implicit point location, polygon containment, and implicit hidden surface removal.

Key words, arrangements, fractional cascading, point location, ray shooting, spanning tree, stabbing num-
ber, zone
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1. Introduction. In the last few years many efficient randomized algorithms, based
on the random sampling techniques of [C1] or on the related e-net theory [HW], have
been developed to solve efficiently a variety of geometric problems. One such recent
development is due,to Welzl [We] (see also [CW]), who showed that, for a given set S of
n points in the plane, there exists a spanning treeT of S, such that no line intersects more
thanO( log n) edges of T. Such a tree T is called a spanning tree with low stabbing
number (a formal definition is given in 2). Welzl used spanning trees with low stabbing
number to obtain an almost optimal algorithm for simplex range searching, namely, given
a set S of n points in the plane, preprocess it into a data structure of linear size so that,
for a query triangle A, one can quickly count (or more generally report) all points of
S lying inside A. His algorithm counts (respectively, reports) the points lying inside a
query triangle A in timeO( log2 n) (respectively,O( log2 n + K), where K is the
number of points inside A). Soon after this paper, Edelsbrunner et al. [EGH*] used
these trees to preprocess a given set of n lines in the plane into a data structure of size
O(r log r) so that, for a query point p, the face of the arrangement A() containing p
can be computed quickly. The main challenge in both of these papers was to use only
roughly linear space (i.e., O(n log(1) n) space), because if we allow quadratic space,
then a query can be easily answered in O(log n) time [Ed], [EOS], [EG].

In this paper we present several new applications of spanning trees with low stab-
bing number. The algorithms presented in this paper are faster than the previously best
known algorithms for these problems. One of the main goals of this paper is to demon-
strate that such a spanning tree is a versatile tool that can be applied to obtain efficient
algorithms for a large class of problems, much beyond the simplex range searching prob-
lem for which they were originally introduced. We also show that by combining the span-
ning tree data structure with the recent partitioning algorithm of [Aga] and [Agb], we can
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(b)
FIG. 1. Ray shooting in an arrangement of (a) nonintersecting and (b) arbitrary segments.

obtain a trade-off between space and query time. Similar trade-offs have been obtained
earlier [EGH*], [Agc], [Chd].

The first and perhaps the most interesting application thatwe consider is ray shooting
in arrangements of segments. There are two versions of this problem, one for segments
that are nonintersecting, and one for an arbitrary collection of segments. Formally, these
problems can be stated as follows:

(a) Given a collection {el, en} ofn nonintersecting line segments in
theplane, preprocess it so that, given a query ray p emanatingfrom a point
p in direction d, we can quickly compute the intersection point (, p) of
p with the segments of that lies nearest to p (see Fig. l(a)).

(b) Sameproblem, except that the segments in can intersect arbitrarily ( see
Fig. l(b)).

If the segments in 6 form the boundary of a simply connected region, then the algo-
rithm of Chazelle and Guibas [CGa] preprocesses 6 into a data structure of linear size
so that, for any ray p, (6, p) can be computed in O(log n) time (see also [GHLST]).
For the general case, however, the ray shooting and other visibility problems are much
harder even for nonintersecting segments. For example, a result of Suri and O’Rourke
[SO]. shows that the portion of a polygon, with holes, visible from a fixed edge can have
f(n4) edges on its boundary, while for simple polygons such aregion is bounded by only
O(n) edges.

We are not aware of any ray shooting algorithm for nonsimple polygons (or for an
arrangement of segments), which answers a query in O(log(1) n) time, using roughly
linear space. Ifwe allow quadratic space, then a query is easy to answer in time O(log n)
(see 4.1). Our goal in this paper is to obtain efficient solutions that use roughly linear
space, and to establish a trade-off between space and query time.

For a special case, where G is a set of lines, a result ofEdelsbrunner et al. [EGH*] im-
plies that we can construct, in randomized expected time O(n/ log2 n), a data structure
of size O(n log2 n), so that a ray shooting query in ,4(/2) can be answered in O(x/- log3 n)
time. (The preprocessing has been made deterministic and the query time has been re-
duced to O(x/-logn) in [Age].) Unfortunately, this algorithm does not apply to seg-
ments. An algorithm with a sublinear query time for the case of segments can be de-
veloped using the "recursive space-cutting tree" of Dobkin and Edelsbrunner [DE] (see
also [EW]). The best-known algorithm for computing I,(G, p) is by Guibas et al. [GOS],
which constructs a data structure of size O(n), so that a query can be answered in
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O(n/+) time, for any 6 > 0. Their algorithm is based on the random sampling tech-
nique of [C1] and [HW], and constructs a multilevel partition tree. The preprocessing of
their algorithm is randomized with O(n log n) expected running time. However, the pre-
processing can be made deterministic without any additional overhead using the recent
partitioning algorithms of Matouek [Maa] or Agarwal [Agb].

In this paper we show that ray shooting can be performed in roughly (that is, up to
polylogarithmic factors) time, while still using only roughly linear space and employ-
ing deterministic, rather than randomized, preprocessing techniques. We first give an
algorithm for the case of nonintersecting segments. This algorithm constructs, in time
O(n/ log n), a data structure of size O(n loga n) so that, for a given ray p, (, p)
can be computed in O(x/ log n) time, where w is a constant less than 4.33. Our algo-
rithm is simpler than that of [GOS] because it maintains only a two-level data structure.
We then extend the above algorithm to general arrangements of segments. Although
the basic idea remains the same, we need several new techniques, and the algorithm is
more complex. In this case a query can be answered in O(v/na(n) log2 n) time, using
O(na(n) log4 n) space, after O(n3/2 log n) preprocessing. Another major difference
between the two cases is that in the first case we can report all K intersections between
a query ray p and G in O(x/- log n + K log n) time, while we still do not know how to
report these intersections in a comparably efficient manner in the general case. One
disadvantage of our algorithms over those of [GOS] and [DE] is that our preprocess-
ing time is roughly na/2 instead of roughly linear. This is the price that we must pay to
achieve deterministic preprocessing and to reduce the query time.

The second problem for which we give an efficient algorithm using the spanning tree
data structure is implicitpoint location. The implicit point location problem is an exten-
sion of the widely studied planar point location problem (see [Ki], [EGS], and [ST]). In
the latter problem, a planar mapM consisting of n faces is given, and the goal is to pre-
processM into a data structure that supports fast point location queries, i.e., queries that
seek the face ofM containing a query point p. The above algorithms construct, in time
O(n log n) (or sometimes linear), a data structure of linear size, so that a query point
can be located inM in O(log n) time. In the implicit point location problem the map is
defined implicitly. In particular, we assume that it is defined as the arrangement (i.e.,
overlay) of a given set of n geometric polygonal (possibly intersecting) objects of some
simple shape (or as a collection of arbitrary line segments), and the goal is to obtain
certain information related to the arrangement of the objects; for example, to deter-
mine whether a query point lies in the union of the objects. A more formal description
is given in 7. Guibas et al. [GOS] have presented an algorithm with O(n/+) query
time, for any 6 > 0, using the random sampling technique. We improve the query time to
O(x/- log n) and use deterministic preprocessing. The algorithm of [GOS] uses O(n)
space, while ours requires O(n log2 n) space.

Guibas et al. [GOS] have described several applications of the implicit point loca-
tion problem, such as polygon containment, implicit hidden surface removal, polygon
placement, etc. We show that our implicit point location algorithm improves the query
time of these algorithms too.

This paper is organized as follows. In 2we discuss spanning trees with low stabbing
number. Section 3 describes our ray shooting algorithm for arrangements of noninter-
secting segments. In 4 we show that ray shooting queries can be performed faster, ifwe
are allowed to use more space. Section 5 extends the algorithms of3 and 4 to report
all intersections between G and a query ray p at logarithmic cost per intersection. In 6
we generalize our ray shooting algorithms to arrangements of arbitrary (possibly inter-
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secting) segments. Section 7 presents an efficient algorithm for implicit point location
and 8 discusses other applications of the spanning tree data structure. We conclude in
9 with some final remarks.

2. Spanning trees of low stabbing number. Let S be a set of n points in lRa, and let
7" be a spanning tree of S whose edges are line segments. The stabbing number
of 7" is the maximum number of edges of 7" that can be intersected by a hyperplane h.
Chazelle and Welzl [CW] (see also [Chc], [We]) have proved that, for any set of n points
in IRa, there exists a spanning tree with stabbing number O(nl-1/a), and that this bound
is tight in the worst case. For a family T of trees, the stabbing number or(T) is s if for
each hyperplane h there is a tree 7" E T such that h intersects at most s edges of 7".

Chazelle and Welzl [CW] also proved that a spanning tree of n points in IRa with
stabbing number O(n1-/a) can be constructed in polynomial time. In the plane, a
spanning tree with stabbing number O(x/) can be constructed in O(na log n) time. A
recent algorithm of Matouek [Mab] improves the running time to O(n5/2 log2 n) at the
cost of increasing or(T) to O(x/ log n). As for constructing a family of spanning trees,
Edelsbrunner et al. [EGH*] have presented a randomized algorithm, with expected run-
ning time O(na/ log n), to compute a family T (T, T } of O(log n) spanning
trees, with tr(T) O(x/- log2 n). The running time of their algorithm has been im-
proved to O(n4/a log n) in another randomized algorithm by Matouek [Mab]. (The
stabbing number of T computed by Matouek’s algorithm can actually be improved to
O(x/ log n); see [Agc].) An additional property of the algorithms of [EGH*] and [Mab]
is that the trees they produce are actually spanning paths. The best known deterministic
algorithm for constructing a family of spanning path is due to Agarwal [Agc], who has
shown the following.

THEOREM 2.1. [Agc] Gfien a set S of n points in the plane, we can deterministically
constructafamily C ofO(log n) spanningpaths on S with a(C) O(x/), in O(na/21ogwn)
time, using O(n3/2) working storage, where w is a constant less than 4.33. Moreover, for any
query line g, we can determine in O(log n) time a spanningpath C such that g intersects
at most O( x/-d) edges of C.

The paths constructed by [Mab] and [Age] can generally be self-intersecting. How-
ever, Edelsbrunner et al. [EGH*] have shown that a spanning tree 7" can be converted
into a simple polygonal path C in O(n log n) time, so that if a line g intersects s edges of
T, then g intersects at most 2s edges of C. Therefore, if desired, we can assume that the
spanning paths produced by the techniques of [Mab] and [Age] are non-self-intersecting.

Let C be a spanning path on S. For our applications we need to construct a balanced
binary tree B on t7 whose leaves store the points of S in their order along C. Each node
v of B is associated with the subpath C. of C connecting the points stored at the leaves
of the subtree rooted at v; let us denote by S the subset of S consisting of these points
(see Fig. 2).

A line g stabs a node v of B if g intersects tTv. Let V(g) denote the set of nodes v of
/3 such that v is not stabbed by but its parent (if one exists) is stabbed. It is easily seen
that {Sv v Vn(g)} is a disjoint partitioning of S. Moreover, we have the following
lemma.

LEMMA 2.2. If a line g intersects s edges of C, then IV(g)l <_ 2(s + 1) log n and the
nodes of Vt(g) lie on at most 2(s + 1)paths orB.

Another simple but key observation is given in the following lemma.
LEMMA 2.3. A line g intersects a polygonalpath ifand only if g intersects the convex

hull ofthe vertices of.
Lemma 2.3 implies that g stabs a node v if and only if g intersects the convex hull
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FIG. 2. C and B(C): black nodes of 13 denote Vt3

of S.. Since an intersection between a line and a convex n-gon can be detected in
O(log n) time, it follows that Vt (/) and the paths containing its nodes can be computed
in o(Iv (e)l log n) time, ifwe store the convex hull of the subpath Cv at each node v of B.
The running time ofthis computation can actuallybe improved to time o(Ivw(e)I+log n),
using fractional cascading (cf. [CGc]).

All the problems considered in this paper involve a set ofsegments in IR2 and most of
the algorithms presented here are based on spanning paths with low stabbing number.
The spanning path is constructed either on the endpoints of the segments or on the
points dual to the lines containing the segments. To answer a query, we choose a line
depending on the query and the problem (e.g., in the ray shooting problem, we take to
be the line containing the query ray), and compute the intersection points of t? and the
spanning path. The portion 7r of the spanning path between two consecutive intersection
points lies either above or below L The query for segments corresponding to the points
lying on 7r is answered directly in O(log(z) n) time, see below for details. We repeat
this procedure for all such portions of the spanning path and then compute the overall
answer from them. If intersects s edges of the path, the query time is O(s log(1) n).
Since s O(x/-), the query time of these algorithms will be O(x/-log(z) n).

3. Ray shooting in arrangements of nonintersecting segments. In this section we
present an algorithm that preprocesses a given set of n nonintersecting segments so
that, given a query ray p emanating from a point p in direction d, (, p) can be com-
puted quickly. (For technical reasons we consider p as an open ray, i.e., the point p does
not belong to p.) We will also use (,/9) to denote the distance of that point from p;
if no such intersection exists, we put (, p) +oo. Without loss of generality, we re-
strict our attention to rightward-directed rays; leftward-directed rays can be handled in
a symmetric way. We also assume that there is no vertical segment in . Denote the set
of left endpoints of the segments of G as S {p, -.., Pm}, where m < n. Let 12
{C, Ck } denote a family of k O(log n) spanning paths on S, with a(C) O(v/-).

We show how to preprocess a single path C. First, construct the binary tree
B B(C). Let Gv c_ G be the set of segments whose left endpoints are inS (see Fig. 3).
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FIG. 3. G,: dashedpath denotes Cv ;solid lines denote Gv; bullets denote S,.

Let denote the line containing the query ray p; then

min ( (I)(Gv, p)}.(g’P)

Note that for a node v E VB(i) C,, is a connected path; therefore, either all points
in S,, lie above or all of them lie below . In what follows we assume that all points
of Sv lie above/. We will show below that /,(Gv, p) can be computed in O(log n) time.
First, a few notations: Let t?- (respectively, /+) denote the half plane lying below (re-
spectively, above) the line/?. We distinguish between the two sides of a segment e, the
top (respectively, bottom) side of e is denoted by e+ (respectively, e-). We say that a
ray p hits e from above (respectively, below) if slightly to the left of their intersection, p
lies above (respectively, below) e. Ifwe think of e as expanded into a very thin rectangle
and of e+, e- as denoting the top and bottom sides of that rectangle, respectively, then
p hits e from above if, when traversed from left to right, p first intersects e+ and then
e-, and symmetrically for rays that hit e from below (see Fig. 4). If p hits e from above
(respectively, below), then we also say that it hits e+ (respectively, e-). The following
lemma is quite obvious, so we state it without proof.

+

FIG. 4. Two-sided segments: p hits el from above and e2 from below.

LEMMA 3.1. Let v be a node of VB(g). Under the assumption that all points of S, lie
above g, ifp hits a segment e , then it hits efrom below.

Before proceeding, we introduce a linear ordering among the segments of 7,,, as de-
fined in [GOS] (see also [GY]). As we will see later, this ordering sorts the segments in
a manner that is consistent with any order in which they can be crossed by a rightward-
directed ray (from below).
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DEFINITION 3.2 [GOS]. For a given set {e, e,} of segments,
(i) ei < e if there exists a (nonvertical) line/? hitting both e- and e- such that

its intersection with e lies to the left of its intersection with e, and such that
+ for k y i j, at a point between ei and edoes not hit any e,

(ii) e < e if there exists a vertical line intersecting both e and e such that its
intersection with e lies below its intersection with e.

(iii) ei < e if ei and e have nonoverlapping z-projections and the projection of ei
lies to the left of that of e.

(iv) e < e if either e precedes e in the transitive closure <, of <, or e and e
are not related by <, and e < e.

THEOREM 3.3 [GOS]. < is a partial order, and < is a linear order that extends <.
Moreover < can be computed in time O(n log n).

Remark 3.4. It is possible for a pair of segments e, ez that e < e within some set, but e < e relative to a subset ’ c (see Fig. 5). Therefore, it is important to
mention the set relative to which we are ordering the segments.

FIG. 5. Ordering ofa pair ofsegments is relative to a set.

Nextwe prove a technical lemma about < thatwe will need later. Letl (respectively,
r) denote the left (respectively, right) endpoint of a nonvertical segment e.

LEMMA 3.5. Forallsegrnents , b , ifr lies below gand z(r) < z(l), then a < b
(relative to ).

Proof. Suppose, to the contrary that, there is a pair of segments a, b . such that
r lies below and z(r) < z(l), but b < a. Since the z-projection of b is to the right
of that of a, the only way b can precede a in <-ordering is by the transitive relation <...
Thus there exists a sequence of segments in. such that b e <. e <. < e a.
Let 7r, denote a shortest sequence among all such sequences, and let d, denote the
length of 7r,. We obtain a contradiction by showing that, for every k > 0, there is no
sequence 7r, such that d, k.

Obviously d, > 2, because z(r) < z(16). If d6, 3, then there is a segment
c G. such that b < c < a. This implies that x(r) >_ x(lb) > X(ra) > x(l). Let q be
the intersection point of c and the vertical line x x(ra). Note that a and c satisfy the
following properties: (i) c < a, (ii) x(r) > X(ra), (iii) a does not intersect c, and (iv)
the point l lies above (because c e G). These properties imply that lies below/?
(see Fig. 6), which contradicts the assumption that b <v c (because x(r) >_ x(lb) and c
lies below b at x x(lb)). Hence db,a > 3.

Now assume that, for all segments a, b Gv satisfying the conditions of the lemma,
either a < b or db, >_ k. Suppose there exists a pair a, b such that b <.. a and db,a k.
Let b e < <v ek-1 <v ek a be a corresponding shortest sequence T’b,a,
and let c ek-. Since 7rb, is a shortest sequence, it is easily seen that x(r) > x(ra).
Indeed, let e be the first segment in this sequence whose x-projection overlaps that
of a. Then e must lie below a, for otherwise we would have obtained a cycle in <..,
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which is impossible. Hence ej <v a and we can shortcut the sequence after ej. Clearly,
z(r) > z(ra). Let q be the intersection of cwith z z(ra), as above. Againwe can argue
that lies below e. If z(rc) < Z(Ib), then c and b satisfy the property of the lemma,
and thus contradict the inductive hypothesis because db,c < k. On the other hand, if
z(r) > z(lb), then we have c <,, b (because c lies below b at z z(lb)), contradicting
the assumption that b <v. c. Hence, we can conclude that a < b, and this completes the
proof. [3

FIG. 6. Illustration forLemma 3.5, db,a 3.

Using Lemma 3.1 and Theorem 3.3 we obtain the following lemma.
LEMMA 3.6. Let (e, e,) denote the segments of ordered with respect to

< (relativeto ), andsuppose (,p) pAef, forsome I < f < m. Thenforall i < f,
ei does not intersect p.

Proof. If ei intersects p, it does so at a point to the right of p f3 ey. This implies that
ey <8 e, which means el < e since < extends <8. D

Hence the original problem is reduced to the following restricted problem:
Given a sequence ofm segments sorted according to <, preprocess so
thatforany (rightward-directed) query ray p emanatingfrom apointp and
lying on a line thatpasses below the left endpoints ofall segments in , we
can quickly determine ey (p), the first segment ofg hit by the ray p.

A possible approach to solving this problem is to do a binary search on g, where each
step of the search tests whether p intersects a segment in some contiguous subsequence
of t segments of g. If p were a full line g, then such an intersection could be easily
detected in O(log t) time after O(t log t) preprocessing (in whichwe construct the convex
hull of the right endpoints of these t segments). However, no equally fast procedure is
known to detect an intersection between a ray and such a set of segments. To overcome
this problem, we next show how to reduce the intersection detection problem to one
involving the line containing p rather than p itself.

For any point q in the plane, let eh eh(q) denote the first segment of g whose
left endpoint lies to the right of (or above) q (see Fig. 7), and let e e,(q) denote the
segment in g lying immediately above q, that is, the vertical ray emanating from q in the
upward direction hits e, before any other segment. If eh (respectively, e) is not defined,
we put h m + 1 (respectively, u m + 1). Finally, put bq min{h, u}.

To compute eh, construct a balanced binary tree L whose leaves store the segments
of in their order in g. For each interior node z ofL we store the rightmost left endpoint
of the segments stored at the subtree rooted at z. L can be constructed in O(m log m)
time, and eh can be determined, by searching for q through L, in O(log m) time. As for
e,, we can easily calculate it in time O(log m) after O(m log m) preprocessing, as in [ST].
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e. eh

eu

ecp eh

FIG. 7. Segments eh, eu, and e.

LEMMA 3.7. The query ray p emanatingfrom a point p cannot intersect any segment
ei for < Cp. Moreover, p intersects ei for i > Cp ifand only if its right endpoint lies
below the line containing p.

Proof. If the first part of the lemma were not true, then there would exist a segment
ei for < Cp, intersecting the ray p. In this case the left endpoint ofe must lie to the left
of p, so the vertical ray 7 from p in the upward direction must intersect e. But then the
first segment e, hit by must satisfy k u k Cp (because e <. e and by definition of
Cp), a contradiction that proves the first half of Lemma 3.7.

The "only if" part of the second half ofLemma 3.7 follows from the fact that if both
the left and the right endpoints of a segment e lie above , then e cannot intersect . For
the "if" part let e be a segment of
does not intersect p. If the left endpoint l, of e lies to the right of p, then obviously e
intersects p, so l, must lie to the left of p. Since e does not intersect p, the intersection
point ofe and lies to the left of p. Moreover if x(r,) < x(l() ), then by Lemma 3.5
e < e(p). If x(r,) > x(l()), then ei and e,(p) must have x-projections that overlap
at some point between and p; since e lies below eu(p) at this point, we again have
e <.. e(p). Similarly we can show that e < e(p). Hence i < min{u, h), contradicting
the assumption that i _>

Lemma 3.7 implies that the binary search technique proposed above will work, pro-
vided we can detect quickly whether the right endpoint of any segment in some contigu-
ous subsequence of lies below . In other words, the problem now has been reduced to
that of detecting an intersection between a set of points and a query half plane. Clearly,
this is equivalent to detecting an intersection between the convex hull of these points
and the half plane (see Fig. 8).

We are now ready to describe how to preprocess so that el(p), the first segment
of hit by p, can be computed quickly, for any ray p with the above properties. Let ri
denote the right endpoint of ei e , and let R {r, ..-, rm}. We construct a binary
tree T on R in the same way as we constructed B, i.e., the points r are stored at the
leaves of 7" in order, and each node w of 7- is associated with the subsequence Ro ofR
containing all points stored at the leaves of the subtree rooted at w.

At every node w of T, we store the convex hull of Ro. Using T we can determine
el(p) in time O(log2 m) as follows: We first find Cp, as described above, in O(logm)
time. Then we treat the suftK {r, r,} of R as the union of logm subsets Ro,
w e T, which we can compute in O(logm) time. We test each Ro in increasing, left-to-
right order, to find the first w for which the line g containing p intersects the hull of Ro.
Thenwe do a binary search within Ro until we find el(p). All this takes O(log2 m) time.
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e

FIG. 8. Convex hull CH(gp) intersecting -.

However, we can easily reduce the time to O(log m), using fractional cascading. This
is possible since, as in [CGc], detecting intersection between and a convex polygon
amounts to searching for the slope of in the sequence of slopes of the edges of the
polygon (see [CGb] and [CGc] for more details). We thus have the following lemma.

LEMMA 3.8. Given a set ofm nonintersecting line segments in the plane, we can
preprocess it, in time O(m log m), into a data structure ofsize O(m log m) so that, given a
(rightward-directed) query ray p whose containing line lies below the left endpoints ofall the
segments in , we can compute the first segment of hit by p in time O(log m).

Returning to the original problem, Lemma 3.8 and the preceding discussion imply
that we can compute (,, p) for each v E Vt(e), in time O(log n). Equation (3.1) and
Lemma 2.2 then imply the following theorem.

THEOREM 3.9. Given a set ofn nonintersecting line segments, we can preprocess it
in time O(na/2 log n)for some a; < 4.33 into a data structure of size O(n logan), using
O(na/2) working storage, so that, given a query ray p, its first intersection (, p) with can
be computed in time 0( log2 n).

Remark 3.10.
(i) The space used can be reduced to O(n log2 n) without affecting the query time

if we use a single tree structure instead of a family of O(log n) trees. But then
the preprocessing time increases to O(na log n) (see [EGH*]).

(ii) If we allow randomization, the (expected) preprocessing time of the algorithm
can be reduced to O(n4/a log2 n) using Matouek’s algorithm for computing a
family of spanning trees [Mab], but then the query time bound increases by a
factor of log n.

4. Trade-off between space and query time. In this section we show that the query
time for the ray shooting problem in arrangements of nonintersecting segments can be
improved ifwe allow ourselves more storage. Similar trade-offs have been obtained for
several related problems, such as computing a face in an arrangement of lines [EGH*]
and simplex range searching [Agc], [Chd]. The main result of this section is an algorithm
for computing (, p) with O( log7/2 + logn) query time, using O(m) space,
where n logan < m < n2.

4.1. The case of quadratic storage. First, we show that ifwe allow O(n2) space, the
query time can be reduced to O(log n).
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FIG. 9. A segment e and its dual e*.

Let {el, en} be a collection of n nonintersecting segments. The dual of
a segment e ab is a double wedge e* formed between the dual lines a*, b* of a, b,
respectively, and not containing any vertical line (see Fig. 9). Dualize all segments e
obtaining a set* ofn double wedges. Let E* denote the set of lines bounding the double
wedges of* (i.e., the duals of the endpoints of segments in ). Let A(E*) denote the
arrangement of E*, and let wf be the set of segments dual to the double wedges of
containing the face f E 4(E*). Standard duality arguments yield the following lemma
(see, e.g., [CGL]).

LEMMA 4.1. Letp be apoint lying in the interiorofaface f ofA(*). Then p* intersects
each segment e wy transversally at an interiorpoint, and is disjointfrom any othersegrnent
of.

LEMMA 4.2. Ifthe segments of are nonintersecting, thenfor allpoints p in a face f of
.A(*), the line p* intersects the segments ofwy in the same order.

Proof. Suppose there are two points and in a face f such that the lines
intersect the segments of w, in two different orders. Since the segments in are nonin-
tersecting, rotating* towards * (in the direction that avoids a vertical orientation) we
must reach a line p* that either contains a segment of wy, or passes through an endpoint
of a segment of wy. (Note that this claim does not hold if the segments can intersect.)
The dual p of p* is a point that lies on the segment --, hence in f. This, however, con-
tradicts Lemma 4.1, thus showing that the duals of all points in f intersect the segments
of wy in the same order.

Sort the segments in w/, in the order provided by Lemma 4.2. For a ray p, let the
image ofp be the dual ofthe line containing p. Ifthe image ofp lies in the face f E 4(E*),
then (, p) can be computed in O(log n) time by a binary search on wy. Therefore, it
suffices to show how to store all the lists wy using only O(n2) space, so that binary search
in each of them can still be done in O(log n) time.

Let 7) denote the dual graph of 4(E*), i.e., the graph whose nodes represent faces
of .A(*) and whose edges connect pairs of nodes representing adjacent faces. Let
denote a spanning tree of 7). We can convert 7" into a path II by tracing an Eulerian tour
around the tree. Observe that if two vertices vl, v2 in II represent faces f, fz sharing an
edge "),, which is a portion of a line g, then w/, w/, is the set of segments having the
dual of g as an endpoint. Let 6. denote this set of segments. The set wy can be obtained
from w/,1 by deleting the segments of 6. fq w/, and inserting the segments of
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Therefore, we can maintain all lists wf using a persistent data structure (see [Co], [ST]
and [DSST]). Since at each edge " of II only the segments of 6-r are inserted or deleted,
the total space required to store all ws is O(n + ’]-ren and the total preprocessing
time is O((n + -]-rerI I[) log n). Moreover, using the persistent data structure, (, p)
can be computed in O(log n) time (see [ST]). Thus, it suffices to prove that --r
O(n2). Suppose the segments of have t < 2n distinct endpoints and us segments are
incident to the ith endpoint. It is easy to check that if ,,/is a portion of the line dual to

)-]S=l vs 2n and each line of* is split intothe ith endpoint, then 16.r[ < vs. Obviously,
< t / 1 edges, which implies that

16:,1 < + l)vs < 2n(2n + 1).
q,T i=1

Hence, we have the following theorem.
THEOREM 4.3. Given a collection ofn nonintersecting segments, we can preprocess

it, in O(n2 log n) time, into a data structure ofsize O(n2) so that, forany query ray p, (G, p)
can be computed in O(log n) time.

4.2. The general case. Theorems 3.9 and 4.3 represent roughly two extremes of the
spectrum, because we need at least O(n) space, and we cannot hope to answer a query
in o(log n) time. The general case where the allowed storagem assumes an intermediate
value between n log3 n and n2 is handled as follows. For technical reasons we assume
for the time being that no endpoint of a segment in G has degree > 3 (that is, incident to
more than three segments of G). In 4.3 we show how to handle degenerate cases (i.e.,
when there are endpoints of degree > 3).

Using the algorithm of [Agb], partition the dual plane, in time O(nr log n log- r),
into M O(r) triangles/Xl, ,/XM, each meeting at most lines dual to the end-
points of the given segments, where r is a parameter to be chosen later. Let’ denote

n For eachthe set of dual lines that intersect the triangle/s for 1 ..., M; _<
/s, define the subset Gs of to consist of all segments e having at least one endpoint
whose dual is in. Obviously [!Ts[ <_ -. We define Ws c as

LEMMA 4.4. For eachpointp lying inside the line p* does not intersect any segment
of

Lemma 4.4 implies that

(4.1) if(G, p) min{(Ws, p), (Gs, p)},

where/ks is the triangle containing the image of p. Using the same argument as in
Lemma 4.2, we can prove

LEMMA 4.5. All lines whose dual points lie inside/Xs intersect the segments of Ws in
the same order.

We can thus order the segments of Ws in the order provided by Lemma 4.5, and
compute (Ws, p), for any ray p whose image lies in/ks, in O(log n) time, using binary
search. Let/X and/ be two adjacent triangles and let

(4.2) G2 { I( e )/ (/ c *)).

It follows from the definition of Wi thatW (W tO Gz) -Ge. Since [GI[, I[ O(.),
we have [W WI O(). As earlier, we define a graph 79, whose vertices are the
triangles A and whose edges connect pairs of vertices representing adjacent triangles.
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Now an edge between vl and v2 has the set1 t32 associated with it. Again,we construct
a path II on a spanning tree of 79, and obtain a persistent data structureT() to store
Wi for all triangles. It can be easily shown that T t() requires O(nr) space, and can
be constructed in O(nr log n) time. For any ray p, (Wi, p) can still be computed in
O(log n) time, wherei is the triangle containing the image of p.

We preprocess each i into a data structure T(i) of size O(lil log I1) for ray
shooting queries, as described in 3, so that for any ray having its image in, we can
find (i, p) inO( log ) time.

To compute (, p), for a given ray p, we first find the triangle that contains
its image; this can be done in O(log n) time, using an ecient point location algorithm
[EGS], [ST]. It follows from (4.1) that(, p) can be computed by calculating (Wi, p)
and (i, p), as described above; therefore the quew time is

)+ log n

As for the space complefi S(n), we will need O(r) space to store the triangle
logz) to store each i (cf. eo-,... ,, O(nr) space to store Tx and O(

rem 3.9). us,

Ifwe choose r m/n log3, then S(n) O(m) and the que time becomes

Q(n) 0
m/(n log3

O log/+log
Neg, we bound the preprocessing time P(n). We can compute 1, , in

O(nr log n. logw-1 r) time (see [Agb]). Since can be constructed in O(r log n) time
and each can be preprocessed in O(()a/ log ) time (cf. Theorem 3.9), we have

( o(ogog-1 ) + o

( )O n log n logw-
m m n

n logz

O mlogn+nlog-a/
Since we need O(nr) space to compute 1, , and O() to preprocess

each, the total space required for preprocessing is

o + o g + //(og )/
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(0 m+ m./2 log9/9

Hence, we can conclude the following theorem.
THEOREM 4.6. Given a collection of n nonintersecting segments in the plane with

the property that no endpoint has degree > 3, and a parameter n log3n < m < n, we can
preprocess , in O(m log n+n log-a/ n) time, into a data structure ofsize O(m) so

that, forque ray p, we can compute (, p) in O((n/) logT/Z(n/) + logn) time.
The working storage requiredforpreprocessing is O(m + (rialto/) log9/ (n/) ).

Remark 4.7.
(i) Ifwe allow randomization, then using Matouek’s algorithm i can be prepro-

cessed in 0 (()4/ log n) time, but the que time increases by a factor of

O(log n). erefore, following the same analysis we obtain

P(n) O (m/n/ + m log n)
Q(n) O log9/2+logn

(ii) If we maintain a single tree data structure for each Gi, the queu time can be
reduced toO( log3 n), but the preprocessing time increases considerably.

4.3. Copingth degenerate eases. The analysis of the algorithm described in the
previous subsection breaks down if the segments of G have endpoints of arbitrarily large
degree, because then we cannot guarantee that lGi] O(), and the analysis to bound
the total space required to storeT relies heavily on this bound for ]Gi . In this subsection
we overcome this difficul by showing that, given a set G of n nonintersecting segments,
we can transform it into another set G of at most 3n (nonintersecting) segments such
that no endpoint of a segment inG has degree > 3, and (G, p) can be determined from
(G’, p) in O(1) time.
t Gp {e, et} be a subset of segments of G all having a common endpoint

p. t 6 be the minimum distance from p to its closest neighbor in G Gp, and let c be
the circle of radius with p as center. For a segment ei Gp, let qi denote the intersec-
tion point of c and ei. Assume that the segments of Gp are ordered in counterclocise
direction along p. There areo cases to consider:

(i) There esto consecutive segments in Gp, say et and e, such that the angle
beeen et and e is > 180. For I < i < t, we remove the portion ofe that lies
in the interior of c (i.e., ), and add the segments qq2, qt-qt to G (see
Fig. 10(a)).

(ii) e angle beeen eveo consecutive segments of Gp is < 180. For each
e Gp, we remove the portion of e that lies in the interior of c, and add the
segments qlq2, qt-qt, qtq to G (see Fig. 10(b)).

We repeat this process for each endpoint of the segments of G whose degree is
greater than 3.tG be the new set of segments; obviously IGI 3n, and each endpoint
has degree 3. If the ray origin s of p lies inside one of the newly created little polygons,
say in pqi-lqi of the polygon created around the endpoint p, then (G, p) lies on one
of the segments incident to qi_, qi, and can be determined in O(log n) time by locating
s in A(G). On the other hand, if s does not lie in any of the newly created polygons
and (G, p) lies on a segment of G, then (G, p) (G’, p). Finally, if s lies outside all
newly created polygons but (G, p) lies on a segment qi_q and ei_x (respectively, e)
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q6
q5

q

(b)

q6

ql
q4

FIG. 10. Modifying segments having a common endpoint ofdegree > 3.

is the segment of G incident, to q_ (respectively, q), then ,I,(6, p) lies on either e_x or
ei. Therefore, I,(G, p) can be computed from I,(G’, p) in O(1) time. Moreover, for each
endpoint p, the minimum distance 6p can be computed in O(n log n) time by construct-
ing the closest point Voronoi diagram of G [Ya]. Hence by Theorem 4.6, we have the
following theorem.

THEOREM 4.8. Given a set ofn segments and a parameter n log3 n < m < n2, we
canpreprocess it, in time O m log n+nv/- log-3/2 n/x/’-) ), into a data structure ofsize
O(m) so that, for a query ray p, we can compute (, p) in O((n/x/-) logT/2(n/x/-) +
log n) time.

5. Reporting all intersections. In the last two sections we gave algorithms to com-
pute I,(, p) for a collection of nonintersecting segments. We now extend these algo-
rithms to solve the following problem:

Given a set of n nonintersecting segments, preprocess it so that, for a
query ray p, we can quickly report all intersections Zp between and p in
their order along p.

Dobkin and Edelsbrunner [DE] have given an algorithm that preprocesses 6 into a
data structure of linear size so that, for a query ray p, 2- can be computed in O(n0"695

I:ZoI) time. (In fact, their algorithm works for an arbitrary collection of segments.) We
first present an algorithm that uses roughly linear space, by generalizing the algorithm
described in 3.

Preprocess G, as in 3, in O(n3/2 log n) time using O(n log3 n) space. For a given
ray p, we compute 2- as follows. Let g denote the line containing the ray p, and let
be a spanning path in C that intersects g in O(x/) edges. As described in 2, compute
Vt(g) in O(x/ log n) time. Now we report all intersection points in Zp by walking along
the ray p and stopping at each point of2. For a point q 6 p, let pq be the ray emanating
from q and contained in p.

The algorithm maintains the following invariant: When we are at a point q 6 p, we
maintain a list of all points ,I,(,,, pq) for v Vt(g), as a priority queue Q (with respect to
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their order along p). Observe that Q remains the same between two consecutive points
of Zp and that the root of Q stores the point of Zp that we are going to encounter next.
Therefore, it suffices to show how to update Q after visiting a point ofZp. Suppose, when
we are at a point q, the root of Q stores a (, pq) for some u E VB(g). It is easily
seen that when we cross a, the next intersection point of p and ., for v Vt(g) {u}
does not change. Thus Q can be updated by deleting a from Q and inserting(, p)
in Q provided(, p) . Continue this process until Q becomes empty. It is easily
seen that this procedure reports all intersection points ofp and the segments of in their
order along p.

In order to bound the running time of the algorithm, observe that initiallywe spend
O(x/- log2 n) time to construct the queue Q for q p, and then spend O(log n) time in
updating Q after each intersection. Hence, we have the following theorem.

THEOREM 5.1. Given a collection ofn nonintersecting segments, we can preprocess
it, in time O(n3/2 log n), into a data structure ofsize O(n log3 n) so that, given a query ray
p, Ip can be computed in O(x/- log2 n + IZpl logn) time.

An immediate corollary of Theorem 5.1 is the following.
COROLLARY 5.2. Given a collection ofn nonintersectingsegments, we canpreprocess

it, in time O(n3/2 log n), into a data structure of size O(n log3 n) so that, given a query
segment e, we can compute all K intersections between e and in time O(v/- log2 n +
K log n).

Next we show that, as in 4, the query time can be improved ifwe allow more space.
Now preprocess G as described in 4 (if the segments of G have endpoints with degree
> 3, we modify the set G, as described in 4.3). Recall that in 4 we maintain two data
structures: (i) the persistent data structure T1 to store Wi for each triangle/i, and (ii)
T2(Gi) for ray shooting queries. For a query ray p, we compute 2-p as follows.

Suppose the ray origin p lies in the triangle/i; let the sorted Wi be (el, e2, em)
and suppose (W, p) E e. Then by Lemma 4.2, e, e, intersect p in that order
along p, and we thus obtain all intersections betweenW and p. The intersections be-
tween Gi and p are obtained by the procedure described above, except that the the size
of is now onlyO( log ) because IGil -< . 2-p is then obtained by merging the two
output lists of intersections withW and G. Hence, following the same analysis as in 4,
we can conclude the following theorem.

THEOREM 5.3. Given a collection of nonintersecting segments and a parameter
n log3 n < m < n2, we can preprocess it, in time O(m log n + nv/ log-3/2(n/)),
into a data structure of size O(m) so that, given a query ray p, Zp can be computed in

O((n//-) logT/2(n/v/--) + logn + IZ, log(n/-)) time.
COROLLARY 5.4. Given a collection ofn nonintersecting segments and a parameter

w w 3/2n log3 n <m < n2, we canpreprocess it, in O(m log n+nv/- log (n/x/)) time, into
a data structure ofsize O(m) so that, given a segment e, we can compute allK intersections
between e and G in O((n/v/-) logT/2(n/v/-) + logn + glog(n/v/-)) time.

6. Ray shooting in general arrangements of segments. In this sectionwe extend our
algorithm to arrangements of possibly intersecting segments. The section is organized as
follows. In 6.1 we describe how to preprocess G for ray shooting queries, and in 6.2 we
show how to answer a query. We analyze the time and space complexity of our algorithm
in 6.3 and finally, in 6.4, we derive a trade-off between space and query time, similar
to that of 4.

6.1. Preprocessing the segments. In this section G denotes an arbitrary collection
of n segments in the plane. To simplify the exposition, we assume that the segments of
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are bounded. The preprocessing of is done as follows. We construct a partition
tree T, and associate with each node v E T a collection v c_ of nv segments, a

segments. If n < c, for some fixedtriangle/, and another auxiliary set ’ of ,n
constant c, then v is a leaf of 7". Otherwise it is an internal node of T, which is further
processed as follows. For some fixed constant r > 2, partition/. into M O(r:)
triangles/x, ...,/u, using the algorithm of [Agb] (or of [Maa]), so that the interior
of each triangle/i intersects at most lines containing the segments of v. CreateM
children wl, ...,WM of v, and associate with each child wi the corresponding triangle
/o, =/. We put a segment e E in o, if at least one of the endpoints of e lies in
/. We also .associate with w an auxiliary set, of all segments of that intersect
the interior of/k. For the sake of convenience we regard each element of, as the
subsegment e f/o, of the corresponding segment e. Let M. be the planar map formed
by the triangles/1, "",/XM. The root u of 7" is associated with itself, and/ is a
triangle that contains all the segments of. Moreover,’ , by definition.

We preprocess each node v 7" as follows. Preprocess the planar map 3// for point
location queries (see [EGS] and [ST]) and store the resulting data structure at v. Let.

’. Preprocess vdenote the set of lines containing the segments of’ levi < n.
into a data structure TI(E) for computing (v, p) as described in Edelsbrunner et al.
[EGH*] (see also [Agc]). If(E, p) lies outside/k, then we reset it to +c.

DEFINITION 6.1. The zone of a triangle/k in an arrangement 4() of a set of
segments is the collection of the face portions ffq, for all faces f E A(), that intersect
0/ (see Fig. 11).

FIG. 11. Zone ofa Mangle/Xi;somefaces are nonsimplepolygons.

Using the same argument as in [EGP*], it can be proved that the total number of
edges in the zone of a triangle in an arrangement of n segments is O(na(n)), where
a(n) is a functional inverse of Ackermann’s function. Let denote the zone of/ in
4(’); 7-/ has O(n’a(n)) edges. 7-/ can be computed using the algorithm of Guibas
et al. [GSS] because under the assumption that the segments of’ have been clipped to
/v, is the unbounded face of A(’). Since the edges of. are nonintersecting, we
preprocess 7% into a data structureT(’) for computing(, p), using the algorithm
described in 3.

We repeat this preprocessing for every node v of 7". The resulting collection of data
structures is the output of the preprocessing stage.

6.2. Answering a query. Let p be a query ray emanating from a point p in direction
d. The query is answered by traversing a path IIp of 7" and computing tr (, p) at



RAY SHOOTING 557

each node v E IIa in a bottom-up fashion. At the end of this process we obtain at the
root u, cr (,, p) O(, p).

The path IIa is defined so that for each node v along IIa the ray origin p lies in/v.
At each node v E IIa we compute cry as follows. LetWa be the set of children w of v for
which p intersects/o. Obviously,

(6.1) av min { (w, P)}.

Ifw IIa, that is, p lies in/o, thenwe have already computed (Go, p). Concerning
is the sameao’ ( , p), since the segments of completely cross,a

as (E, p) (we are assuming that (E, p) and a, are set to+ if they do not lie in
the interior of). Thusa can be computed usingT (E).

For all other children z E Wp, the fact that p lies outside implies that (G, p) is
the same as (z, p), and therefore it can be computed using T(G) (see Fig. 12).

FIG. 12..A(w); shaded re#on is a face ofT-Go.

Repeating the above step for all w Wp and using (6.1) we can compute

6.3. Analysis of the algorithm. The correctness of the algorithm follows from the
above discussion, so we only have to analyze the time and space complexity of the al-
gorithm. First, consider the query time Q(n). Let Ha be the path followed by the algo-
rithm as it computes (G, p). We bound the time spent at each node v Ha. We spend
O(log r) time to find the triangle &o containing the ray origin p. It follows from [EGH*]
(see also [Aga] and [Agc]) that(, p) can be computed in O(logn) time. At
other triangles &, intersected by p, we spend O(n(n)log2 n) time to compute
(G, p), for, has at most O(n(n)) edge (cf. Theorem 3.9). Since n n. for all
children of v, the time spent at v is O(r2n,(n,) log2 n.). Summing over all nodes of

Ha and using the fact that r O(1), we obtain

(6.2) Q(n) X O(n(nv)log2n).
For a node v at level i, nv (n/r); therefore,

(i )O
n

i=0
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because r _> 2. Next, let us analyze the space complexity S(n) and the preprocessing
time P(n) of our algorithm. At each node v 6 7" we store the following data structures:

(i) /" The node v is partitioned into O(r) triangles in O(nr logn log’- r)
time [Agb], therefore by [EGS], j4,, can be preprocessed, in time O(rz log r),
into a data structure of size O(rz) for point location queries. Since r is chosen
to be constant, the time bound is just O(n log n,,) and the space required is

(ii) T()" It follows from the result of Edelsbrunner et al. [EGH*] (see also
[Agc]) that T() requires O(n log n) space and O(n’/ log nv) prepro-
cessing time.

r(iii) T2() Since 7-/v has O(n,a(n,))edges, 2() requires O(na(n)log
space and O(n’3/2az/2(n) log n) preprocessing time (which subsumes the
time O(na(n) logz n) needed to compute 7-/ [GSS]).

Thus, the space used at v is O(na(n,) logz n). Summing over all nodes of T, we get

S(n) Z (nva(nv) lg3 nv )"

Observe that each triangle ofM intersects 0() segments of, so Y’own
O(nr). Consequently,

Since each endpoint of a segment e 9 falls in the interior of only one triangle,/, for
each level of T, e appears in of at most two nodes of the same level. Let l(v) denote
the level of the node v in 7". Then for every _< log n we have

(6.3) n, < 2n.
t(,)=i

Hence,
log r

S(n) O(na(n) log3 n) O(na(n) log4

i=1

Finally, we bound the preprocessing time P(n) of our algorithm. The above discus-
sion implies that the total time spent in preprocessing is at most

P(n) O(n3/2a3/2(n’v) logw n)

(6.4) a/ a/O( (og.
Since is a constant less than 4.33, we can write a/(n)log n in (6.4) as log n,
where is a different constant but whose value is still less than 4.33. Thus

log

o( y
i=1 l(v)=i
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)-O r
n

log n
i--1

log n
1

0 n3/2 log n

<_ O(na/ log

because r > 2. Hence, we can conclude the following theorem.
THEOREM 6.2. Given a collection ofn (possibly intersecting) segments, we can pre-

process , in time O(n3/2 log n), into a data structure ofsize O(na(n) log4 n) so that, for
any query ray p, we can compute (, p) in o( v/na(n) log n) time.

Remark 6.3. If contains unbounded segments, then the triangle/k associated
with the root u of T should be a triangle that contains all intersection points and all
bounded segments of. Sucha/ can be easily computed in O(n log n) time. Now for
each segment e E , we compute e e N/k and apply our algorithm to the new set
of segments. The portions of the segments lying in the exterior of/X do not intersect
each other, and are ordered in the nondecreasing order of their slopes along 0/X, in
counterclockwise direction. Therefore, if a query ray does not hit a segment of inside
/X, we can determine, in additional O(log n) time, the first segment hit by the ray outside
/X, which shows that our algorithm works for unboundedjsegments as well.

{.4. Trade-offbetween space and query time. In this subsectionwe establish a trade-
off between space and query time for ray shooting in general arrangements of segments.
As in4we first give avery simple algorithm that preprocesses 6, in time O(n2a2(n) log n),
into a data structure of size O(n2a2(n)) so that, given a query ray p, O(G, p) can be com-
puted in O(log n) time.

Compute the arrangement A(g;) in time O(n2 log n) using the line sweep method
[PSI (or in time O(n) using a more involved algorithm [EOS]), and preprocess A(6)
for point location queries lEGS], [ST]. Since the edges of A() are nonintersecting, we
can preprocess each face f E fl,(G) into a data structure T] for logarithmic-time ray
shooting queries, using O(Inz[ 2) space, where n] is the number of edges bounding f, as
described in 4.

To compute (6, p), for a query ray p, first locate the face f of ,4() containing
the ray origin p. Obviously (, p) lies on the boundary of f, and therefore (6, p)
O(Of, p) can be computed in O(log n) time, using Tz. Thus, the overall query time is
O(log n).

As for the storage, A(G) can be preprocessed for point location queries using O(n2)
space (cf. [EGS] and [ST]). The total space required to store all T] is O(- n}). The-
orem 4.3 implies that the preprocessing time isO( n} log n). It has been shown in
[EGP*] that

Hence, we have the following theorem.
THEOREM 6.4. Given a collection ofn segments in the plane, we can preprocess ,

in time O(n2a2(n) log n), into a data structure ofsize O(n2a2(n)) so that, for a query ray
p, (G, p) can be computed in O(log n) time.

Next we give an algorithm for the general case, where n1+’o < m < n2-’1, for some
constants eo, el > 0. Let m f(n). To preprocess into a data structure of size O(m),
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we proceed in the same way as in 6.1 except that at each node v E 7" we are allowed
more space, so we construct larger-size data structures that facilitate faster ray shooting
in ,,, ’,,, etc.

Edelsbrunner et al. [EGH*] (see also [Agc]) have shown that, given a set of n
lines and a parameter 1 < /3 < n, E can be preprocessed, in O(nS/2x/-log n) time,
into a data structure T() of size O(n/31ogz n) so that, for any query ray p, we can
compute (/, p) in O(x/-n-logn time. At each node v of level i, we store
with an appropriate value of/3 =/3i (to be specified later).

Similarly, we have shown in 4 that, given a set of n nonintersecting segments and
a parameter/3, we can preprocess g, in time O(na/zx/’log n), into a data structure
T(g) of size O(n/3 log n) so that, for a query ray p, we can compute (g, p) in time
O(x/-n- log n). For a node v at level i, we store Tz (7’) with/3 13i. (Recall thatif
has a vertex of degree > 3, then the segments of 7-t,, need to be modified, as described
in 4.3.)

Next, we analyze the complexity of this algorithm. First, consider the space used by
and O(nc(n)), the space used by a node v ofour algorithm. Since IZ: l _<

n’ n’c(n’)t3i logs n’) O(n’vc(n) logs n’) The total spaceat level i is O( / log2 n,, +
used is therefore

log n

Z Z O(nva(n)fli lgs
=o ()=

log

i=0

where n is the maximum value of I’1 for a node v at level i. The last equality follows
from (6.3) and the fact that n’ < rn. Ifwe choose/3 (f(n)/(nc(n) loga n)), which
is easily seen to satisfy 3i > 1, then

logn

( f(ni) nc(n) log3 ni)o
i=0

\ i=0

O(f(n)) because f(n) > n1+’

As for the query time,

Q(’O

1Actually, the preprocessing time is O((m3 + ns/ V/-) log" n), but it can be verified that for our choice

of/3 the first term never dominates, so for simplicity we only write the second term.
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log2

because f(n) < n2-’

Finally, the preprocessing time at a node v of level i is O(n’a/x/-,c3/ (n’) log n’,,).
The total preprocessing time is thus

log n

P(n) Y Z O(n’123/2(n) log n)
=o ()=i

0 n v ).a/2(n,)logn,
=o

i=0 V5 na/2(n) logw n)
o

i=0

O(n(n)log-a/

Using the same argument as for (6.5), we can ignore the term (n) in the above
equali. Hence, we can conclude the following theorem.

EOREM 6.5. Given a set of n seents and a parameter nl+e _< m n2-q,
for some constants eo, el > O, we can preprocess , in O(n logw-a/= n) time, into a
data stcture of size O(m) so that, for any que ray p, we can compute (, p) in time

Remark 6.6.e algorithm of [EGH*] actually constructsT (), in time

using O(n log ) space, and answers a que in timeO( log ). Similarly the
algorithm described in 4 constructs T=(), in time

using O(n5 log) space, and answers a que in O(log= ) time. Using these
bounds in the above analysis, we can improve the que time (n) to

(no(n) (no(n)O
k logr/Z\ ,]

+log
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The preprocessing time is now

O (m log" n + na(n)x/- log"-3/2 ( na(n) ] )
7. Implicit point location. The planar point location problem is a well-studied prob-

lem in computational geometry [Ki], [EGS], [ST]. In this problem we are to preprocess
a given planar subdivision so that, for a query point, we can quickly determine the face
of the subdivision containing it. Guibas et al. [GOS] have considered a generalization of
this problem, in which the map is defined as the arrangement of n possibly intersecting
polygonal objects of some simple shape, and the goal is to compute, for a query point
p, certain information related to its position within the arrangement of the objects; for
example, to determine whether p lies in the union of the objects. For simplicitywe break
the given objects into a collection of segments, and consider the following formal state-
ment of the problem:

We are given a collection {el, en } ofn segments, and with each
segment e we associate a function be defined on the entire plane, which
assumes values in some associative and commutative semigroup S (denote
its operation by +). Define (x) (x). We want to preprocess
so that, for any querypoint p, we can quickly compute (p).

We assume that and satisfy the following conditions:
(i) For any given point x, (x) can be computed in 0(1) time.
(ii) Any two values in S can be added in 0(1) time.
(iii) Given a set ofn segments in the plane, we can preprocess it in time O(n logk n),

for some constant k > 0, into a linear-size data structure 79(G) so that, given a
point x lying either above all the lines containing the segments of G, or. below
all these lines, (x) can be calculated in O(log n) time.

It is shown in [GOS] that many natural problems including the problem of deter-
mining whether p lies in the union of the given objects, or of counting how many objects
contain p, fall into this scheme. See also the following section for details.

The goal is to come up with an algorithm that uses O(n log(1) n) space and com-
putes I,(p), for any query point p, in sublinear time. Guibas et al. [GOS] gave a ran-
domized algorithm, with O(n logk+ n) expected running time, to construct a data struc-
ture of O(n) size so that, for a query point p, (p) can be computed in O(n/z+) time
for any > 0. In this section we present an algorithm that improves the query time
to O(x/’logz n), and makes the preprocessing deterministic (albeit no longer close
to linear).

Let/ denote the set of lines containing the segments of . Dualize the lines of/
to obtain a set Z* of n points. Let C {C1, C} denote a family of k O(log n)
spanning paths on/* with a(C) O(x/-). We show how to preprocess a single path
CC.

First, construct a binary tree/3 B(C) as in 2. With each node v of B we associate
a set of segments e such that the dual of the line containing e belongs to S
(as defined in 2). At each node v we store D() so that, for any query point p lying
either above all the lines containing the segments of or below all of them, (p)
v (P) can be computed in O(log n) time.
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For a given query point p, we compute (p) as follows. Let p* denote the dual of p.
Obviously,

i--1 vYB(p*

Therefore, it suffices to show how to compute v(p), for a node v E VB(p*). Observe
that for any v VB(p*), p* lies either above all the points of Sv, or below all of them,
say below. Since duality preserves the above-below relationship, p lies below all the lines
containing the segments of G.. Therefore, (p) can be easily computed in O(log n)
time using

Next, let us analyze the complexity of our algorithm. First consider the time spent
in answering a query. By Theorem 2.1, we can determine, in O(log n) time, a path C C
that intersects p* in at most O(x/-) edges, and it follows from the discussion in 2 that
Vt(p*), for a given line p*, can be computed in O(x/-log n) time. By property (iii), for
each v Vt(p*), Y,(p) can be calculated in. O(log n) time. The total time spent is thus
O(v/-log2 n). As for the space complexity, 79() requires O(lvl) space. Since the
segments associated with the nodes ofB at the same level are pairwise disjoint, the total
space required to store/3 is O(n log n). Finally, the preprocessing time is bounded by
the time spent in computing C plus the time spent in preprocessing G. for all v B.
Hence, the total preprocessing time is O(n3/2 log n + n logk+2 n) O(n3/2 log n).

Therefore, we can conclude the following theorem.
THEOREM 7.1. Given a collection of n segments, and function c associated with

each segment satisfyingproperties (i)-(iii), we canpreprocess , in O(n3/2 log n) time, into
a data structure ofsize O(n log2 n) so that, for any querypoint p, (p) can be computed in
O( log2 n) time.

Remark 7.2.
(i) As in 3, we can reduce the space complexity to O(n log n) by maintaining a

single tree structure instead of a family of O(log n) trees. Also, ifwe allow ran-
domization, then the (expected) preprocessing time is O(n4/3 log2 n), but the
query time increases by a factor of log n.

(ii) In some applications, where calculation of (x) in (iii) above is accomplished
by a binary search, it is possible to reduce the query time toO( log n), using
fractional cascading.

(iii) As in the case of the ray shooting problem, the query time can be improved by
allowing more storage. Instead of describing the trade-off for the general case,
we will describe it in the next section for a specific example.

(iv) In a companion paper [Agc] we solve the batched version of this problem, where
all the query pointsp are given in advance. We present there a solution that runs
in time

0 m2/an2/a log/a n log/av t- n logk n log + m log n

where m is the number of given query points.

$. Ofler lpiefis. In this section we consider other applications of our tech-
nique. All these problems were studied in [GOS], who obtained algorithms with
O(n2/a+e) query time, for any > O. We show that using our approach the query time
can be reduced to roughly /.
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8.1. Polygon containment problem: Preprocessing version. First consider the fol-
lowing problem:

Given a setT ofn (possibly intersecting) triangles, we want topreprocess T
so that, given a querypoint p, we can quickly count the number oftriangles
in T containing p (orjust determine whether p lies in the union of these
triangles); see Fig. 13.

FIG. 13. Polygon containmentproblem.

We first present an algorithm that uses roughly linear space, and then show that
the query time can be improved by using more space. Our algorithm is based on the
following observation of [GOS]. Let denote the set of edges bounding the triangles
in T and, for each e E , let B(e) denote the semi-infinite trapezoidal strip lying below
e. Define a function in the plane so that (p) 0 for a point p outside B, and for
p E B, (p) 1, if the triangle corresponding to e lies below the line containing the
segment e, otherwise (p) -1. It can be checked that (p), for a point p, gives the
number of triangles of T containing p. Moreover, obviously satisfies properties (i)
and (ii). As to property (iii), if a point p lies above all lines containing the given edges
then (p) 0, by definition. On the other hand, if p lies below all these lines, we do
the following. Let denote the z-projection of an edge e of some triangle. It is easily
checked that

(P) E
P &

where px is the x-coordinate ofp and ej is the nonzero value of at p. Note that the
sum of the right-hand side remains the same between two consecutive endpoints of the
projected segments, and the constant values of over these intervals can be computed,
in overall time O(n log n), by scanning the projected segments from left to right. Hence,
we can preprocess T, in time O(n log n), into a data structure 79 so that, for a point p
lying below all lines of, 9 (p) can be computed in O(log n) time.

Thus, the observation of [GOS] and Theorem 7.1 imply that by preprocessing 7.
into the above data structure 7)v, for each node v of B, the number of triangles in T
containing a query point p can be counted in O(v/- logz n) time. But observe that each
of the data structures 73v is a sorted list, and at each node vwe do a binary search in 79, to
compute I%. We can therefore apply the fractional cascading technique of [CGb] to the
collection of lists 79, attached to the nodes v of/3. This will allow us to search through
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the lists 79,, of all nodes v E Vt(g) in overall time O(logn + IV (e)l) o(x/-logn).
Hence, we have the following theorem.

THEOREM 8.1. Given a set T ofn tKangles in the plane, we can preprocess T, in time
O(n3/2 log’ n), into a data structure of size O(n log2 n) so that, given a query point p, we
can determine, in time 0 log n), the number of triangles in T containing thepoint p.

We next establish a trade-offbetween space and query time for the polygon contain-
ment problem. If we allow O(n2) space, then we can construct the entire arrangement
7-/of Jee Be. It is easily seen that the value of does not change within a face of 7-/,
and while constructing 7-/we can compute for each of its face. Now given a point p,
we can compute I,(p) in O(log n) time by locating p in 7-/. Thus if we allow quadratic
storage, the query time can be reduced to O(log n). Next we give an algorithm for the
general case when n log2n < m < n9.

FIG. 14. Triangle/Xi and segments of: solid lines are dashed lines are.
Let F denote the set of lines bounding the trapezoidal strips Be, that is, the lines

containing the segments of and the vertical lines passing through the endpoints of
segments in. Partition the plane intoM O(r) triangles/, ...,/, each meeting
at most lines of F [Agb]. With each/i we associate a set i consisting of all segments
e E such that either e or one of the two downward-directed vertical rays emanating
from its endpoints intersects/ (see Fig. 14). Let . We can compute ,
for each i, in total time O(nr log n). Since/i does not intersect the boundary of
for e :,, be remains constant over xi. Moreover, -]eI be for every/i can be
computed in O(nr) time, as described in [Agc]. We preprocess i into a data structure
of size O( log2 ), using the method just mentioned. For answering a query, we first
locate the triangle/k containing the query point p. Once we know/k,
can be determined in O(1) time, and Y’eak Ce (p) can be computed as described above.
Since the query time is

Q(n) 0 (flg-n +lgn)"r
We need O(r2) space to store the planar map formed by/1, ,/M and 0( log2 )
to store the data structure constructed for each. Therefore, the total space used is

S(n) O(r2) q-0 (r2. n
log2)r
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O (nr log2 -)
Ifwe choose r (m/n log2 ’), which is easily seen to satisfy 1 < r < n, then S(n)
O(m), and the query time. is

0
m/(n log m + log n

0 log+logn

P(n) O(nr log n log-1 r) + 0 r. _n log n_
r r

O(mlg"n+na/2nlog
O m log n +n log-1

Hence, we can conclude the following theorem.
gogN 8.2. Given a collection ofn ossibly intersecting) tgangles in the plane,

we can preprocess , in time O(m log n +n log- ), into a data stcture ofsize
0(m) so that, for a quepointg we can count the number oftangles of containingp in
time0( log + log

Remark 8.3. The batched version of this problem, when all points are given in ad-
vance, can be solved, in time O(m/an/a log/a n log/a + (m + n)log n), using a

different technique [Agc]... Ilieiie sNeerel. Thene problem that we consider is the fol-
lowing version of hidden surNce removal problem:

Given a collection of opaque objects in three-dimensional space, and a
viewingpoint we wish to calculate the scene obtained by viewing these
objectsom a.

The hidden surface removal problem has been extensively studied by many research-
ers (see, e.g., [De] and [MK]), because of its applications in graphics and other areas. For
the sake of simplici let us restrict our attention to polyhedral objects, whose boundau
T is a collection {A, } of n nonintersecting triangles. In the case of implicit
hidden surface removal, we do not want to compute the scene explicitly, but only to pre-
process them so as to determine quicy the object seen at any particular que pkel
[CS], [GOS]. In this subsection, we consider the following special case of the implicit
hidden surface removal problem.t T {A, A } be a collection of n noninter-
secting triangles such that
are someed heights. Preprocess T so that, given a que point p on the xy-plane, one
can determine the lowest triangle A hit by the upward-directed vertical ray emanating
from p.

[GOS] have given an algorithm for this problem that uses randomized processing
and has O(n/3+6) que time, for any > 0. Their algorithm first projects all triangles

Finally, the preprocessing time is
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on the zy-plane, and then performs a binary search through the sequence (/k, ...,/)
of projected triangles to find the first index j such that/ contains the query point
p. Each step of the binary search tests whether p lies in the union of some contiguous
block of projected triangles, using the polygon containment algorithm. Therefore, the
preprocessing step consists of constructing a binary tree g on T whose leaves store the
triangles of T in increasing height, and each internal node w is associated with a set of
triangles To, stored at the leaves of the subtree rooted at w. For each node w of Z,
preprocess To for the polygon containment problem, using the algorithm described in
8.1. It now follows from the above discussion that a query can be answered by following
a path 7r in 2; and solving the polygon containment problem at each node of 7r. Hence
using Theorem 8.1, we can conclude with the following theorem.

THEOREM 8.4. The implicit hidden surface removal problem for an ordered collec-
tion of n triangles in three-dimensional space can be solved in O(x/ log2 n) query time,
O(n log3 n) space, and O(n3/2 log n) preprocessing.

Remark 8.5.
(i) Recently several algorithms for other variants of the implicit hidden surface re-

moval problem have been developed; see [SML], [Be].
(ii) As in the case of the polygon containment problem, the query time can be im-

proved if we allow more space. In particular, if we allow O(m) space, where
n < m < n, then Q(n) O(’ log ’ + log n) and P(n) O(m log n +
nv/ logO- n).

(iii) We can easily modify our algorithm without affecting its time complexity so that
the query point p lies anywhere in ]l:t3, rather than lying on the xy-plane. We
leave it for the reader to fill in the details.

8.3. Polygon placement problem. Finally consider the following problem:
Let P be a k-gon (not necessarily simple) and let z {/ 1, ,/, } be
a set of n (possibly intersecting) triangles. Preprocess so that, given a
(translated) placement of P, we can quickly determine whether P inter-
sects any ofthe obstacles at thatplacement.

Such a situation arises in several applications [Cha]. A special case, in which P is
convex and the triangles are non-intersecting, has been widely studied (see, e.g., [BZ],
[CD], [Fo], [LS]). But the best known solution for the general case is by [GOS], who
have given an algorithm with randomized preprocessing and O((kn)2/3+) query time,
for any 6 > 0, by reducing this problem to the polygon containment problem. Using
their technique, and applying Theorem 8.1, we can easily obtain the following theorem.

THEOREM 8.6. We can preprocess A and P, in O((kn)3/2 log kn) time, into a data
structure ofsize O(kn log2 kn) so that, given a translatedplacement of P, we can determine
in time 0 log kn), whether P collides with the obstacles at thatplacement.

Remark 8.7. The trade-off between space and query time described in 8.1 works
here as well. Therefore, if we allow O(m) space, where n < m < n2, then Q(n)
O( kn log2 kn + log kn) and P(n) O(m log kn + knv log-1 kn).

9. Conclusions. In this paper we presented efficient algorithms for various prob-
lems involving collections of segments in the plane, using spanning trees with low stab-
bing number. Since the submission of this paper there have been a number of significant
developments on these problems. We summarize some of the new results here:

(i) Matouek has proposed an O(n3/2 log2 n) algorithm to construct a single span-
ning tree of a set of n points in ]l:t2 with O(v) stabbing number [Mac]. It
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immediately improves the space complexity and the preprocessing time of all
the algorithms presented here by a factor of log n and log-2 n, respectively.

(ii) Cheng and Janardan [CJ] have shown that a set of n (possibly intersecting) seg-
ments can be preprocessed into a data structure of size O(n log3 n) so that a ray
shooting query can be answered in O(v/ log n) time. Their algorithm is based
on spanning trees with low stabbing number and therefore its space complex-
ity and preprocessing time can also be improved by incorporating Matouek’s
procedure.

(iii) Using an entirely different approach, Yehuda and Fogel [BF] have designed
another ray shooting algorithm for nonintersecting segments that requires
O(n log n) space and supports O(x/log n) time queries. The preprocessing
time of their algorithm is O(n3/2). Their algorithm can be extended to inter-
secting segments using the approach described in 6.

(iv) Another recent development in this area is by Chazelle et al. [CEGGSS], who
showed that a polygonal region with k holes can be preprocessed into a data
structure of size O(n log n) so that a ray shooting query can be answered in time
O(x/ log n). The preprocessing time of their algorithm is roughly n/.

(v) A drawback of all these algorithms is that unlike Guibas et al.’s algorithm [GOS]
their preprocessing time is not close to linear. Agarwal and Sharir [AS] have
shown that the preprocessing can be improved to O(nTM) without affecting the
query time significantly. In particular, their algorithm preprocesses a collection
of segments, in time O(nl+’), into a data structure of size O(nl+’), so that a
ray shooting query can be answered in O(n/+) time, where e is an arbitrarily
small positive constant. Their algorithm relies on a recent partitioning scheme
of Chazelle et al. [CSW]. It can be modified to report all k intersections between
a collection of n given segments and a query segment in time O(n/+ + k).

(vi) Another shortcoming of the above algorithms is that they do not extend to ar-
bitrary arcs (except the algorithm of [AS]). Some progress in this direction has
been made by Agarwal et al. [AKO], who have developed a ray shooting algo-
rithm for nonintersecting Jordan arcs that answers a query in timeO( log n)
and requires O(n log n) space.

In spite of these various developments, there are several interesting open problems:
1. The most challenging open problem is to give nontrivial lower bounds for the

ray shooting and the implicit point location problems. Recently Chazelle [Chb]
showed that ifwe allow only O(n) space, then a simplex range query (i.e., count-
ing the number of points of a given set contained in a query triangle) requires
f(x/-) time. We conjecture that similar lower bounds hold for these problems
as well.

2. Mark Overmars has posed the following problem, which is a generalization of
the polygon containment problem: Given a setT oftriangles, preprocess it so that,
for a query segment e, one can quickly determine if e is contained in the union of
triangles ofT. It will be interesting to come up with an efficient algorithm using
spanning trees of low stabbing number.

3. Finally, there remains the task of looking for other interesting problems that
can be solved efficiently using the spanning trees of low stabbing number.
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