
 omputcr

Ray tracing general
parametric surfaces
using interval arithmetic

Wilhelm Barth 1, Roland Lieger,
and Michael Schindler

Technical University Vienna,
Department of Computer Graphics,
Karlsplatz 13/186, A-1040 Vienna, Austria.
1e-mail: barth @eichow.t uwien.ac.at

This paper describes an algorithm for ray
tracing general parametric surfaces. After

dividing the surface adaptively into small

parts, a binary tree of these parts is built.

For each part a bounding volume is cal-

culated with interval arithmetic . From

linear approximations and intervals for

the partial derivatives it is possible to con-

struct parallelepipeds that adapt the ori-

entation and shape of the surface parts

very well and form very tight enclosures.

Therefore we can develop an algorithm

for rendering that is similar to that used
with B6zier and B-spline surfaces, where

the bounding volumes are derived from

the convex hull property. The tree of en-

closures (generated once in a preprocess-

ing step) guarantees that each ray that hits

the surface leads to an iteration on a very

small surface part; this iteration can be

robustly (and very quickly) performed in
real arithmetic.

Key words: Ray tracing - Parametric sur-

faces - Interval arithmetic - Bounding
volumes

Correspondence to: W. Barth

1 Introduction

Ray tracing is a very nice method for generating

colored pictures of high quality. Its disadvantage,

however, is the enormous amount of computing

time that is necessary. Most of this time is spent

searching for the point where a ray hits a part of

the scene to be rendered.

Many methods have been developed to speed up

the calculations. The most popular approach is

the use of bounding volumes. For scenes built up

from geometric primitives like spheres, boxes, pyr-

amids, etc., in a CSG tree, many authors construct
bounding volumes, boxes, or spheres, for parts of

the scene with the intention of enabling a faster

search for those objects that might be hit (Whitted

1980; Weghorst et al. 1984; Kay and Kajiya 1986).

When only approximations for the surface parts

and no enclosures (e.g., Lane et al. 1980) are used,

it is possible that some rays that hit the surface do

not hit the approximation, and therefore the algo-

rithm cannot find an intersection.

Similar methods can be developed for ray tracing

B6zier and B-spline surfaces. The fact that the

surface is enclosed by the convex hull of its con-

trol points makes constructing a bounding vol-

ume very easy. Some authors use rectangular

boxes for this purpose (Sweeney and Bartels

1986), the boxes may be oriented (Yen et al. 1991)

to match the direction of the surface parts. In

Barth (1990), Giger-Hofmann (1992) and Barth

and Stfirzlinger (1993) much effort has been

undertaken to construct very tight bounding vol-

umes. In these papers parallelepipeds are used.

Their orientation and the angles between their

edges are chosen in such a way that they enclose

the part as tightly as possible; in general these

parallelepipeds are not rectangular.

There is no convex hull property with the general

parametric surfaces we treat in this paper. There-

fore other methods must be found for calculating

tight bounding volumes. We use interval arithme-

tic. Again we choose parallelepipeds, now com-

puted from values of the parameter functions and

enclosing intervals for their partial derivatives.
Section 2 gives a detailed description of the con-

struction method. An implementation of this

method has been given by Lieger (1992).

In Sect. 3 we describe the tools - - interval arithmetic

and automatic differentiation - - that serve for the
calculation of inclusion intervals required in Sect. 2.
The application to ray tracing is shown in Sect. 4.
We use a binary tree of bounding volumes for

The Visual Computer (1994) 10:363-371
,'~ Springer-Verlag 1994 363

 mlputer

parts of the surfaces, similar to that of Barth

(1990). Additionally, the leaves of this tree contain

approximations of the small surface parts to allow

the computation of a very accurate starting point

for the Newton-Raphson iteration. Details of the
partition procedure for the surface and of the

iteration method are omitted. They are very simi-

lar to those used by Barth and Sttirzlinger (1993)

for B6zier and B-spline surfaces.

Toth (1985), Giger (1989), and Mitchell (1990 and

1991) use interval arithmetic for the iteration. This

prevents any failures, but it is very time consum-

ing. We prefer to employ interval arithmetic only

in the preprocessing step for calculating bounding

volumes, but iteration is performed in faster real

arithmetic. Robustness comes from careful subdi-

vision and from good starting points. Nishita et

al. (1990) use a very different method, B6zier clip-

ping. It combines subdivision and calculation of

ray-patch intersection performed with interval

arithmetic. However, this method is restricted to

B6zier surfaces. Another completely different in-

terval method is proposed by Enger (1992). He

calculates an interval for the color of a surface

part, and if this interval is small enough, all pixels

belonging to this part get the calculated color.

Results are given only for cubic B-spline surfaces.

Other methods for acceleration of ray tracing, e.g.,

voxel or octree methods and ray coherence, may

be used in combination with bounding volumes,

but are not treated in this paper see e.g. Lischinski
and Gonczarowski (1990).

2 Calculation of bounding volumes

This paper deals with parametric surfaces s(u, v)
described by three parametric functions x,y, and

z depending on two parameters u and v. The

parameter domain is rectangular:

s(u, v) = [y(u , v) u 9 = [u_, ~i] (2.1)

\ z (u , v) v 9 v = [v_,

In our discussion we always assume that the para-
meter functions are continuous, and that the par-
tial derivatives exist and are also continuous in
the whole domain. Additionally we are restricted
to the case in which the normal vector s, x sv is
uniquely defined at each point in the domain. This
means that we only use regular parametrizations.

Repeatedly we need intervals of real numbers. We

denote them with capitals; a bar below/above an

identifier means its lower/upper bound.

For calculating bounding volumes we require in-

tervals that include the set of values of a para-

meter function and intervals including its partial

derivatives:

x(u, v) 9 X

x,(u, v) 9 X, for all u 9 U, v 9 V (2.2)

xv(u, v) 9 Xv

Such intervals are calculated by interval arithme-

tic as described in Sect. 3.1. It is a well known

disadvantage of interval arithmetic that the result-

ing intervals may overestimate the true range by

a significant amount. In our application such in-

tervals are used only for small parts of the surface

with a small rectangular parameter domain. In

this case the disadvantage is tolerable. Addition-

ally, we discuss some methods of reducing the

effects of this disadvantage.

We begin with a 2D curve c(t) given by the para-

metric representation

\y(t)/ t 9 T = [b (2.3)

Under premises equivalent to those already men-

tioned, we may apply the mean value theorem of

differential calculus, e.g., for x(t)

For all t, t o 9 T exists a z 9 [t, to] so that

x(t) =x(t0) +(t - to)X'("c) (2.4)

Note that arithmetic expressions containing inter-

vals must be evaluated by interval arithmetic, and

the results are intervals; see Sect. 3.1 of this paper

or Moore (1966), Alefeld and Herzberger (I974),

Neumaier (1990).
With an inclusion interval X' for the derivative
(defined according to equation 2.2) we get:

x(t) 9 +(t -to)X' for all t, to 9 (2.5)

and a corresponding equation for y(t). Taking
f for t this yields:

c(r) 9 =C(to) + (f - t o) y, (2.6)

The endpoint c(f) of the curve lies within the
shaded rectangle R(f) of Fig. 1.

364

. O | g | l a |

q, mlputer

i

i - to)~

R(t)

; : > X

i" (i - t o)x-
i- (i - to)X 7

Fig. 1. Bounding area for a 2D curve

For each other point of the curve, an inclusion

rectangle can be constructed by proportionally

reducing all distances. This construction may be

extended in the other direction as far as t. The

result is:

The curve of Eq. 2.3 is completely included in

the bounding area consisting of the two outer-

most rectangles R(r) and R(t_) and the angular

region connecting them.

For our application we require the following

corollary:

Each convex area, e.g., each parallelogram, en-

closing the 2 x 4 vertices of the outermost rec-

tangles is a bounding area for c(t).

A tight enclosure may be constructed using a par-

allelogram with two edges parallel to the tangent

of c(t) in to or parallel to a secant.

It is very easy to extend this result to 3D curves:

Eqs. 2.3 and 2.6 with an additional z(t) now lead

to three intervals that define two boxes B(t-) and

B(O, orthogonal and parallel to the axes. Con-

necting these two boxes linearly, we get a pyr-

amidal volume that is guaranteed to form

a bounding volume for the 3D curve. Figure 2

shows a u and a v line of a surface, together with

the four boxes enclosing the endpoints. Figure 3

contains complete bounding volumes (yellow) for

the u and v line. The corollary is now:

Each convex volume, e.g., each oriented and

nonrectangular parallelepiped enclosing the

2 x 8 vertices of the two outermost boxes Bff)

and B(_t) is a bounding volume for the para-

metric 3D curve c(t).

Now we construct bounding volumes for surfaces.

With the mean value theorem for two indepen-

dent variables, we can derive (similarly to Eq. 2.5)

the inclusion

x(u, v) e X(Uo, Vo) +(u -uo)X . +(v - vo)Xv

for all u, uo e U and v, vo e V (2.7)

and corresponding equations for y and z, where

X, and X v are intervals as defined by Eq. 2.2.

We first construct the four bounding boxes

B(uo, g), B(uo, v), B(~, Vo), B(u_, Vo) at the endpoints

of the u and v lines crossing (u0,v0) (yellow in

Fig. 2) with the method for curve inclusion as

explained before. Then we follow the edges to

reach the four corners of the surface part; the four

boxes B(u, v), B(u_, ~), B0i, v_), B(~i, ~) containing the

corner points (red in Fig. 3) are constructed by

starting at the vertices of the yellow boxes and

taking the bounds of the intervals X, and X~ as

gradients, e.g., for s(~i, ~), so that

s(gt, ~) e B((~, g) =S(Uo, %) +(~ --Uo)

(z +(~ -Vo) Y~,

t)

Y.

u

(2.8)

365

iNisual omputer

2 3 4

Fig. 2. Surface part with u and v lines and boxes including their endpoints

Fig. 3. Pyramidal bounding volumes for u and v lines and comer boxes

Fig. 4. The wreath

Fig. 5. The enclosing parallelepiped

With the same arguments as used in the simpler

cases, we prove that all points on the border of the

surface lie within the so constructed wreath (Fig.

4). The whole surface is enclosed by each convex

volume that encloses the four corner boxes (Fig.

5). From this follows the theorem:

Each convex volume, e.g., each oriented and

nonrectangular parallelepiped enclosing the

4 x 8 vertices of the four corner boxes B(u_, v__),

B(u_, f), B(ti, v), B(li, ~) is a bounding volume for

the surface s(u,v) from Eq. 2.1.

This theorem allows the following simple con-

struction of a bounding volume for a surface part.

First construct an approximating nonrectangular

parallelogram by taking the tangential plane at

(u0, v0) and cutting out that part belonging to the

actual (u, v) domain. This may be interpreted as

the bottom and top plane of a parallelepiped of
zero height. Then, in a second step, expand this

volume until all vertices of the four corner boxes
are included. This expansion is mainly done in the
height direction, but the other two directions
must also be considered. For details of these cal-

culations see Barth and Stfirzlinger (1993).

In the case of a small surface part, that is, after

subdividing finely enough, this yields a very tight

enclosure. The parallelogram is a linear approxi-

mation; deviations from the surface are caused
only by higher order terms of the Taylor expan-

sion. Interval arithmetic leads to small intervals

for the derivatives (if not, we must make further

subdivisions); this yields small corner boxes and

therefore a thin parallelepiped.

The question arises: why use such a complicated

construction of bounding volumes instead of
using the intervals generated by evaluating the

arithmetic expressions for the three parameter

functions X, Y, Z? The latter method indepen-
dently calculates one inclusion interval for each

coordinate direction, yielding a rectangular
bounding box parallel to the axes for every sur-
face part. Figure 1 explains the 2D case: it is

clear that in the case of small parts this box

is much larger than our bounding area, because
it must contain at best the whole c(t), and
overestimation will also occur with this interval
evaluation. The 3D case is similar: a thin and
sloping parallelepiped with an acute angle is much
tighter than a rectangular box parallel to the

axes.

366

. ~ l l S l l f l l
{ All l lpl l{r

Note that the approximating parallelograms of all

surface parts do not necessarily build a continu-

ous surface without cracks (Fig. 7 - - right hand
side). However, the union of the bounding vol-

umes includes the whole surface. Therefore each

ray that hits the surface also hits at least one
parallelepiped, which in turn leads to the start of

an iteration (Sect. 4).

Normally both operands of these binary operators

are intervals. The case of a scalar operand may be
included by simply taking an interval with equal

lower and upper bounds, e,g., A = I-a, a]. Division

by an interval containing zero must be avoided

since the result is no longer a finite interval.

For basic functions b(t), e.g., square root, square,

sine, etc., the interval B(T) for the function value is

defined by

3 Interval arithmetic and automatic

differentiation

In the previous section we needed enclosing inter-

vals for the derivatives of parameter functions and

used them for building bounding volumes for sur-

face parts. Now we will explain the method for

calculating such intervals.

B(T) ={b(t)lt ~ T}, (3.4)

which can be easily computed for monotonic

functions (the bounds are the function values at

t =t_ and t =i) , but computation may be more

complicated if b is not monotonic.

The following method allows the calculation of an

enclosing interval

I _F(U, V) (3.5)

3. 1 Interval ar i thmetic

We consider real-valued functions depending on

one or two independent variables. Normal arith-

metic solves the problem of calculating the real

function value at a single point in parameter

space. Interval arithmetic generates bounds for
the set of function values that belong to all para-

meter values contained in given intervals. We de-

fine the set of function values, e.g., for a parameter

function of a surface, by

F(U,V) ={f(u,v)lu eU, v eV} (3.1)

In the case of continuous functions such a set is an

interval. The definitions for the partial derivatives

are similar and need not be written down explicit-

ly. A single operation of interval arithmetic is

defined by

A op B = {a op b[a ~ A, b ~ B} (3.2)

Especially for the basic arithmetic operations we
have the explicit definitions

A + B = [a + b , a + b]

a - B = [a_- b , 5 - b]

A • B = [rain{a_ • b, a • b, ~ • b, ~ • b}, (3.3)

max{a_ x b_,a x b,a x b,d x b-}]

A / B = A x [l/b-, I/b_] if 0 r B

for every function f(u, v) given in the form of an

arithmetic expression of the parameters, constants

[c,c] and basic functions: Beginning with the

components we must apply (3.3) or (3.4) repeated-

ly to get enclosing intervals for parts of the expres-

sion until the final result is obtained.
In general this method does not yield the tightest

interval possible, i.e., F(U, V). It only generates an

enclosure I (see Eq. 3.5), which might be a large

overestimation. We discuss this disadvantage and

some methods to cope with it in Sect. ~ 4. It should

be mentioned here that some effort is required to

write subroutines for all commonly used basic

functions that calculate inclusions according to

Eqs. 3.4 and 3.5 as tightly as possible.

3.2 Automatic differentiat ion

If a function f(t) is defined by an arithmetic ex-

pression, then it is possible to compute the deriv-

ativef'(t) during the evaluation off(t) for a single
value of t_ with little extra effort. This is performed

by a special arithmetic for the tuples

(f f ') (3.6)

This arithmetic serves for the simultaneous
calculation of such tuples beginning with the
basic operands. Neumaier (1990) calls it recursive

367

("31Stl tt
,~(} l r l l l) l l i [[@ t"

differentiation. The four basic operations are:

(f , f ') + (g,g') = (f + g , f ' + g')

(f f ') - (g,g') = (f - g , f ' - g') (3.7)

(f , f ') x (g , g ') = (f x g , f x g' + f ' x g)

(f , f) / (g,g') = (f /g , (f ' x g - f x g')/(g x g))

As with interval arithmetic, rules for basic func-

tions are derived easily, e.g.,

sin (f ,f ') =(sin(f), cos(f) x f ')

I') =t,/s, f ' l t2,/-f)) 13.8)

Again we begin evaluation with the components

(t, i) for the independent variable, (v,O) for any

other variable, and (c, O) for a constant. Then we

repeatedly compute tupels for partial expressions

until we reach the complete function. Expanding

this to our parameter functions, e.g., x(u, v), with

two partial derivatives is an easy task.

We have incorporated this method into our sys-

tem for ray tracing parametric surfaces. It works

as an interpretative system on the parameter func-

tions. Therefore the user only needs to provide the
formula for these functions; he is not required to

perform the differentiation of the formula.

3.3 Combin ing interval a r i thmet ic with
automat ic d i f ferent iat ion

Now we want to describe how to calculate inter-

val enclosures for a parameter function and its

two partial derivatives for a rectangular para-

meter domain, i.e., how to get (X, X,, X~,) (see Eq.

2.2). The description is very short: take intervals in

Sect. 3.2 instead of reals and use interval arithme-
tic.

4 Ray tracing parametric surfaces

We use our method to speed up ray tracing when
applied to parametric surfaces. When doing so,
one must shoot a large number of rays (1,000,000
or more) into a computer-modeled scene to gene-
rate a realistic picture of the scene. Each of these

rays must be intersected with objects of the scene.
Some objects allow explicit calculation of inter-

sections (e.g., boxes and spheres), while others,

especially the so-called free form surfaces and

parametric surfaces require an iterative calcu-

lation of intersections. These iterations are very

time consuming. Therefore efforts must be made

to speed up the calculations; it is extremely im-

portant to reduce the number of necessary itera-

tions. This can be achieved by finding suitable,

very accurate starting points for all rays that hit

the surface and by finding out which rays do not

hit the surface at all at a very early stage in the
computation.

For this purpose we use a preprocessing step

similar to that of Barth and Sttirzlinger (1993) for

B6zier or B-spline surfaces. This step has to be

performed before the first ray-surface intersection

is calculated. Because of the huge number of rays

and because preprocessing is executed only once,

even a very time-consuming preparation that

yields only a tiny saving per intersection may

reduce the total time significantly.

During preprocessing we adaptively subdivide the

surface into parts. Each subdivision is done by

halving the surface or a part of it, parallel to the

u or the v axis. Subdivisions are repeated for all

parts that cannot be accurately approximated by

plane parallelograms. Whether a surface part is

small enough can be seen from our inclusion

method (see Sect 2): The red corner boxes of Fig.

3 must be small against the other dimensions of

the part.

Each leaf contains a linear approximation for the

small surface part belonging to it. By intersecting

the rays with these approximations we get very
good starting points for the Newton-Raphson

iteration. Each intermediate node and each leaf of

the tree contains an enclosing parallelepiped for

its surface part; it is constructed by the method of

Sect. 2. We choose parallelepipeds because they
are tightly bounding volumes adapting well to the
orientation and form of the surface parts.

When calculating the intersection of a ray with

the surface we must first search the surface parts

(leaves of the tree) that may be hit. Beginning at

the root we follow only those paths where the
parallelepipeds are hit. This test can be performed
very quickly. Additionally, if the enclosures are
tight enough, only those paths are followed where
a hit actually occurs. Rays that miss the surface
are excluded from further consideration very
early. Finally we reach all leaves the enclosures of

3 6 8

I

. lsum
 omputer

6 7 8

9 10

Fig. 6. Parallelopipeds for fine and coarse subdivisions

Fig. 7. Surface and approximating parallelograms

Fig. 8. Rain:
X(u, v) = cos(u)*sin(v)*(1-cos(v))/2
Y(u, v) = sin(u)*sin(v)*(l -cos(v))/2

Z(u, v) = cos(v)
Ux v=[-,] x [0,]

11

Fig. 9. Cycloid surface:

X(u, v) = u + cos(u)
l~(u, v) = v + cos(v)
Z(u, v) = - 0.5.(1 - sin(u))*(1 - sin(v))

U x V = [0,5] x [0,5]

Fig. 10. Errors caused by too coarse subdivision

Fig. 11. Errors caused by stopping iteration too early

which are hit. As mentioned earlier for each of

these parts an iteration must be performed.

The method described in previous paragraphs

works very well, but experiments show that there

is still one remarkable disadvantage. Due to

overestimation by the interval arithmetic, the

bounding volumes of the surface parts calculated

according to the rules of Sect. 2 tend to be much

larger than the optimal enclosures. This effect is

stronger the larger the parts, i.e., the nearer to the

root of the tree of parallelepipeds. Therefore, ex-

cluding parts of the tree from further considera-

tion because the corresponding surface part is not

hit takes place too seldom in the upper part of the

tree. Much time is wasted in this way for searching

the leaves hit by the ray.

We solve this problem in the following way: first,

bounding volumes for all surface parts are cal-

culated by interval arithmetic, i.e., the tree of

bounding volumes is built top down. After this,

but still in the preprocessing step, we exploit the

fact that every surface part is enclosed by the

union of the enclosures of its halves. That means

we perform - - bot tom up - - a reduction of all

369

(3'immt omputcr

enclosing parallelepipeds by cutting those slices

that do not belong to the parallelepiped of one of

its successors. Our experiments show that this

method leads to much tighter enclosures.

5 Experiences

seeing the background (blue) or another part of

the surface from the shadowed side (black).
Similar results can be recognized in Fig. 11, where

we used finer subdivision (256 parts), but we

restricted the maximal number of iterations

to two.

On the right side Fig. 6 shows the enclosing parallel-

epipeds of a very coarse subdivision (64 parts) for

a goblet. The surface parts are too large for our
method. The finer subdivision (512 parts) shown

on the left side allows efficient iteration with cor-

rect results.

On the right side Fig. 7 shows the approximating

parallelograms for the finer subdivision of Fig. 6.

In general these approximations do not form

a continuous surface without gaps, but the parallel-

epipeds do. The surface on the left side was

rendered from the finer subdivision. Only an ave-

rage of 2.7 iterations per ray was required. The

preprocessing step, i.e., calculating all 512 parts,

their approximating parallelograms, their enclo-
sures, and building up the binary tree of the sur-

face parts took only a few seconds. Ray tracing,
however, i.e., calculating the intersections of the

rays with the surface for 1000 x 750 pixels, inclu-

ding antialiasing, required more than 2 h on

a VAX Station 3100. For Fig. 8 every drop of the

rain has been subdivided adaptively into 420

parts; the average for the iteration was 2.36.

The cycloid surface of Fig. 9 shows that our itera-

tion procedure is stable enough to cope with sur-

faces containing folds also. The subdivision

method automatically divides more finely near

the critical folds and then iteration has no prob-
lems. Note that the instability of the Newton-

Raphson iteration in some extraordinary cases

has been overcome by drawing back all values to

the parameter domain of the surface part. In the

case of Fig. 9 we used a subdivision into 3437

parts; the average number of iterations was again

very low (2.36).
In Figs. 10 and 11 we demonstrate the effect of

carelessly using the method. The result of a too
coarse subdivision of a difficult surface such as
our cycloid can be seen. No more than 64 surface
parts were generated in Fig. 10. Therefore the
iteration fails for many pixels, mainly near the
folds and the brink. This failure is interpreted by
the program as "no hit", therefore it works like

References

Alefeld F, Herzberger J (1974) Einffihrung in die Intervallrech-
nung (in German). B.I. Wissenschaftsverlag, Mannheim

Barth W (1990) Effizientes Ray-Tracing fiir B~zier- und B- Spline
Fl~ichen. In: Encarnacao, Hoschek, Rix (eds): Geometrische
Verfahren der Graphischen Datenverarbeitung (in German).
Springer Berlin, pp 180-197

Barth W, Stiirzlinger W (1993) Efficient ray tracing for B6zier
and B-spline surfaces. Computers & Graphics 17:423-430

Enger W (1992) Interval ray tracing - a divide and conquer
strategy for realistic computer graphics. Visual Comput
9:91-104

Giger C (1989) Ray tracing polynomial tensor product surfaces.
In: Hansmann, Hopgood, Strasser (eds): Proc Eurographics,
North Holland, Amsterdam, New York, Oxford, Tokyo,
pp 125-136

Giger-Hofmann C (1992) Ein Ray-Tracing-Verfahren zur Vis-
ualisierung polynomialer Tensorproduktfl~ichen (in Ger-
man). Dissertation, Technische Hochschule Darmstadt,
Germany

Kay T, Kajiya J (1986) Ray tracing complex scenes. Comput
Graph proc SIGGRAPH 20:269 276

Lane J, Carpenter L, Whitted T, Blinn J (1980) Scan line methods
for displaying parametrically defined surfaces. Commun
ACM 23 : 23-34

Lieger R (1992) Ray Tracing allgemeiner Flfichen in Parameter-
Darstellung (in German). Diplomarbeit, Technische Univer-
sitfit Wien, Vienna

Lischinski D, Gonczarowski J (1990) Improved techniques
for ray tracing parametric surfaces. Visual Comput
6:134-152

Mitchell DP (1990) Robust ray intersection with interval arith-
metic, graphics interface, pp 68-74

Mitchell DP (1991) Three applications of interval analysis in
computer Graphics. Tutorial Notes SIGGRAPH

Moore RE (1966) Interval Analysis. Englewood Cliffs, New York
Neumaier A (1990): Interval Methods for Systems of Equations.

Cambridge University Press, New York
Nishita T, Sederberg T, Kakimoto M (1990) Ray tracing

trimmed rational surface patches. Comput Graph
24:337 345

Sweeney M, Bartels R (1986) Ray tracing free-form B-spline
surfaces. IEEE Comput Graph Appl 6:41-49

Toth D (1985) On ray tracing parametric surfaces. Proc SIG-
GRAPH 85:171-179

Weghorst H, Hooper G, Greenberg D (1984) Improved com-
putational methods for ray tracing. ACM Trans Graph
3:52 69

Whitted T (1980) An improved illumination model for shaded
display. Commun ACM 23:343 349

Yen J, Spach S, Smith M, Pulleyblank R (1991) Parallel
boxing in B-spline intersection. 1EEE Comput Graph Appl
11:72-79

370

.omputer

WILHELM BARTH received

his Dr. rer. nat. degree in mathe-

matics from the Technical Uni-
versity of Darmstadt, Germany.
He worked in numerical analysis
there, primarily in interval math-
ematics. Since 1973 he has
been a professor of computer

science at the Technical Univer-

sity of Vienna, Austria. His re-

search areas are computer
graphics, algorithms, and data

structures.

MICHAEL SCHINDLER recei-

ved his Diploma of Engineering
degree from the Technical Uni-

versity of Vienna in 1991 with a
thesis on real-time systems. He
currently works as a research as-
sistent in the Department for
Computer Graphics of that uni-

versity. His special interest is

locating and overcoming bottle-

necks.

ROLAND LIEGER received his
Diploma of Engineering degree
in computer science from the

Technical University of Vienna
in 1992. In his thesis he de-

veloped and implemented im-
portant parts of the algorithms

of this paper. Now he is working

on his Ph.D. thesis.

371

