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This paper describes an algorithm for ray 
tracing general parametric surfaces. After 

dividing the surface adaptively into small 

parts, a binary tree of these parts is built. 

For each part a bounding volume is cal- 

culated with interval arithmetic . From 

linear approximations and intervals for 

the partial derivatives it is possible to con- 

struct parallelepipeds that adapt the ori- 

entation and shape of the surface parts 

very well and form very tight enclosures. 

Therefore we can develop an algorithm 

for rendering that is similar to that used 
with B6zier and B-spline surfaces, where 

the bounding volumes are derived from 

the convex hull property. The tree of en- 

closures (generated once in a preprocess- 

ing step) guarantees that each ray that hits 

the surface leads to an iteration on a very 

small surface part; this iteration can be 

robustly (and very quickly) performed in 
real arithmetic. 
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1 Introduction 

Ray tracing is a very nice method for generating 

colored pictures of high quality. Its disadvantage, 

however, is the enormous amount of computing 

time that is necessary. Most of this time is spent 

searching for the point where a ray hits a part of 

the scene to be rendered. 

Many methods have been developed to speed up 

the calculations. The most popular approach is 

the use of bounding volumes. For scenes built up 

from geometric primitives like spheres, boxes, pyr- 

amids, etc., in a CSG tree, many authors construct 
bounding volumes, boxes, or spheres, for parts of 

the scene with the intention of enabling a faster 

search for those objects that might be hit (Whitted 

1980; Weghorst et al. 1984; Kay and Kajiya 1986). 

When only approximations for the surface parts 

and no enclosures (e.g., Lane et al. 1980) are used, 

it is possible that some rays that hit the surface do 

not hit the approximation, and therefore the algo- 

rithm cannot find an intersection. 

Similar methods can be developed for ray tracing 

B6zier and B-spline surfaces. The fact that the 

surface is enclosed by the convex hull of its con- 

trol points makes constructing a bounding vol- 

ume very easy. Some authors use rectangular 

boxes for this purpose (Sweeney and Bartels 

1986), the boxes may be oriented (Yen et al. 1991) 

to match the direction of the surface parts. In 

Barth (1990), Giger-Hofmann (1992) and Barth 

and Stfirzlinger (1993) much effort has been 

undertaken to construct very tight bounding vol- 

umes. In these papers parallelepipeds are used. 

Their orientation and the angles between their 

edges are chosen in such a way that they enclose 

the part as tightly as possible; in general these 

parallelepipeds are not rectangular. 

There is no convex hull property with the general 

parametric surfaces we treat in this paper. There- 

fore other methods must be found for calculating 

tight bounding volumes. We use interval arithme- 

tic. Again we choose parallelepipeds, now com- 

puted from values of the parameter functions and 

enclosing intervals for their partial derivatives. 
Section 2 gives a detailed description of the con- 

struction method. An implementation of this 

method has been given by Lieger (1992). 

In Sect. 3 we describe the tools - -  interval arithmetic 

and automatic differentiation - -  that serve for the 
calculation of inclusion intervals required in Sect. 2. 
The application to ray tracing is shown in Sect. 4. 
We use a binary tree of bounding volumes for 
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parts of the surfaces, similar to that of Barth 

(1990). Additionally, the leaves of this tree contain 

approximations of the small surface parts to allow 

the computation of a very accurate starting point 

for the Newton-Raphson iteration. Details of the 
partition procedure for the surface and of the 

iteration method are omitted. They are very simi- 

lar to those used by Barth and Sttirzlinger (1993) 

for B6zier and B-spline surfaces. 

Toth (1985), Giger (1989), and Mitchell (1990 and 

1991) use interval arithmetic for the iteration. This 

prevents any failures, but it is very time consum- 

ing. We prefer to employ interval arithmetic only 

in the preprocessing step for calculating bounding 

volumes, but iteration is performed in faster real 

arithmetic. Robustness comes from careful subdi- 

vision and from good starting points. Nishita et 

al. (1990) use a very different method, B6zier clip- 

ping. It combines subdivision and calculation of 

ray-patch intersection performed with interval 

arithmetic. However, this method is restricted to 

B6zier surfaces. Another completely different in- 

terval method is proposed by Enger (1992). He 

calculates an interval for the color of a surface 

part, and if this interval is small enough, all pixels 

belonging to this part get the calculated color. 

Results are given only for cubic B-spline surfaces. 

Other methods for acceleration of ray tracing, e.g., 

voxel or octree methods and ray coherence, may 

be used in combination with bounding volumes, 

but are not treated in this paper see e.g. Lischinski 
and Gonczarowski (1990). 

2 Calculation of bounding volumes 

This paper deals with parametric surfaces s(u, v) 
described by three parametric functions x,y, and 

z depending on two parameters u and v. The 

parameter domain is rectangular: 

s(u, v) = [y(u ,  v) u  9  = [u_, ~i] (2.1) 

\ z ( u ,  v) v  9 v = [v_, 

In our discussion we always assume that the para- 
meter functions are continuous, and that the par- 
tial derivatives exist and are also continuous in 
the whole domain. Additionally we are restricted 
to the case in which the normal vector s, x sv is 
uniquely defined at each point in the domain. This 
means that we only use regular parametrizations. 

Repeatedly we need intervals of real numbers. We 

denote them with capitals; a bar below/above an 

identifier means its lower/upper bound. 

For calculating bounding volumes we require in- 

tervals that include the set of values of a para- 

meter function and intervals including its partial 

derivatives: 

x(u, v)  9 X 

x,(u, v)  9 X, for all u  9 U, v  9 V (2.2) 

xv(u, v)  9 Xv 

Such intervals are calculated by interval arithme- 

tic as described in Sect. 3.1. It is a well known 

disadvantage of interval arithmetic that the result- 

ing intervals may overestimate the true range by 

a significant amount. In our application such in- 

tervals are used only for small parts of the surface 

with a small rectangular parameter domain. In 

this case the disadvantage is tolerable. Addition- 

ally, we discuss some methods of reducing the 

effects of this disadvantage. 

We begin with a 2D curve c(t) given by the para- 

metric representation 

\y(t)/ t  9 T = [b  (2.3) 

Under premises equivalent to those already men- 

tioned, we may apply the mean value theorem of 

differential calculus, e.g., for x(t) 

For all t, t o  9 T exists a z  9 [t, to] so that 

x(t)  =x(t0) +(t - to)X'("c) (2.4) 

Note that arithmetic expressions containing inter- 

vals must be evaluated by interval arithmetic, and 

the results are intervals; see Sect. 3.1 of this paper 

or Moore (1966), Alefeld and Herzberger (I974), 

Neumaier (1990). 
With an inclusion interval X' for the derivative 
(defined according to equation 2.2) we get: 

x(t)  9 +(t -to)X' for all t, to  9  (2.5) 

and a corresponding equation for y(t). Taking 
f for t this yields: 

c(r)  9  =C(to) + ( f - t o )  y, (2.6) 

The endpoint c(f) of the curve lies within the 
shaded rectangle R(f) of Fig. 1. 
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Fig. 1. Bounding area for a 2D curve 

For each other point of the curve, an inclusion 

rectangle can be constructed by proportionally 

reducing all distances. This construction may be 

extended in the other direction as far as t. The 

result is: 

The curve of Eq. 2.3 is completely included in 

the bounding area consisting of the two outer- 

most rectangles R(r) and R(t_) and the angular 

region connecting them. 

For our application we require the following 

corollary: 

Each convex area, e.g., each parallelogram, en- 

closing the 2 x 4 vertices of the outermost rec- 

tangles is a bounding area for c(t). 

A tight enclosure may be constructed using a par- 

allelogram with two edges parallel to the tangent 

of c(t) in to or parallel to a secant. 

It is very easy to extend this result to 3D curves: 

Eqs. 2.3 and 2.6 with an additional z(t) now lead 

to three intervals that define two boxes B(t-) and 

B(O, orthogonal and parallel to the axes. Con- 

necting these two boxes linearly, we get a pyr- 

amidal volume that is guaranteed to form 

a bounding volume for the 3D curve. Figure 2 

shows a u and a v line of a surface, together with 

the four boxes enclosing the endpoints. Figure 3 

contains complete bounding volumes (yellow) for 

the u and v line. The corollary is now: 

Each convex volume, e.g., each oriented and 

nonrectangular parallelepiped enclosing the 

2 x 8 vertices of the two outermost boxes Bff) 

and B(_t) is a bounding volume for the para- 

metric 3D curve c(t). 

Now we construct bounding volumes for surfaces. 

With the mean value theorem for two indepen- 

dent variables, we can derive (similarly to Eq. 2.5) 

the inclusion 

x(u, v) e X(Uo, Vo) +(u -uo )X .  +(v - vo)Xv 

for all u, uo e U and v, vo e V (2.7) 

and corresponding equations for y and z, where 

X, and X v are intervals as defined by Eq. 2.2. 

We first construct the four bounding boxes 

B(uo, g), B(uo, v), B(~, Vo), B(u_, Vo) at the endpoints 

of the u and v lines crossing (u0,v0) (yellow in 

Fig. 2) with the method for curve inclusion as 

explained before. Then we follow the edges to 

reach the four corners of the surface part; the four 

boxes B(u, v), B(u_, ~), B0i, v_), B(~i, ~) containing the 

corner points (red in Fig. 3) are constructed by 

starting at the vertices of the yellow boxes and 

taking the bounds of the intervals X, and X~ as 

gradients, e.g., for s(~i, ~), so that 

s(gt, ~) e B((~, g) =S(Uo, %) +(~ --Uo) 

(z +(~ -Vo) Y~, 

t) 

Y. 

u 

(2.8) 
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Fig. 2. Surface part with u and v lines and boxes including their endpoints 

Fig. 3. Pyramidal bounding volumes for u and v lines and comer boxes 

Fig. 4. The wreath 

Fig. 5. The enclosing parallelepiped 

With the same arguments as used in the simpler 

cases, we prove that all points on the border of the 

surface lie within the so constructed wreath (Fig. 

4). The whole surface is enclosed by each convex 

volume that encloses the four corner boxes (Fig. 

5). From this follows the theorem: 

Each convex volume, e.g., each oriented and 

nonrectangular parallelepiped enclosing the 

4 x 8 vertices of the four corner boxes B(u_, v__), 

B(u_, f), B(ti, v), B(li, ~) is a bounding volume for 

the surface s(u,v) from Eq. 2.1. 

This theorem allows the following simple con- 

struction of a bounding volume for a surface part. 

First construct an approximating nonrectangular 

parallelogram by taking the tangential plane at 

(u0, v0) and cutting out that part belonging to the 

actual (u, v) domain. This may be interpreted as 

the bottom and top plane of a parallelepiped of 
zero height. Then, in a second step, expand this 

volume until all vertices of the four corner boxes 
are included. This expansion is mainly done in the 
height direction, but the other two directions 
must also be considered. For details of these cal- 

culations see Barth and Stfirzlinger (1993). 

In the case of a small surface part, that is, after 

subdividing finely enough, this yields a very tight 

enclosure. The parallelogram is a linear approxi- 

mation; deviations from the surface are caused 
only by higher order terms of the Taylor expan- 

sion. Interval arithmetic leads to small intervals 

for the derivatives (if not, we must make further 

subdivisions); this yields small corner boxes and 

therefore a thin parallelepiped. 

The question arises: why use such a complicated 

construction of bounding volumes instead of 
using the intervals generated by evaluating the 

arithmetic expressions for the three parameter 

functions X, Y, Z? The latter method indepen- 
dently calculates one inclusion interval for each 

coordinate direction, yielding a rectangular 
bounding box parallel to the axes for every sur- 
face part. Figure 1 explains the 2D case: it is 

clear that in the case of small parts this box 

is much larger than our bounding area, because 
it must contain at best the whole c(t), and 
overestimation will also occur with this interval 
evaluation. The 3D case is similar: a thin and 
sloping parallelepiped with an acute angle is much 
tighter than a rectangular box parallel to the 

axes. 
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Note that the approximating parallelograms of all 

surface parts do not necessarily build a continu- 

ous surface without cracks (Fig. 7 - -  right hand 
side). However, the union of the bounding vol- 

umes includes the whole surface. Therefore each 

ray that hits the surface also hits at least one 
parallelepiped, which in turn leads to the start of 

an iteration (Sect. 4). 

Normally both operands of these binary operators 

are intervals. The case of a scalar operand may be 
included by simply taking an interval with equal 

lower and upper bounds, e,g., A = I-a, a]. Division 

by an interval containing zero must be avoided 

since the result is no longer a finite interval. 

For basic functions b(t), e.g., square root, square, 

sine, etc., the interval B(T) for the function value is 

defined by 

3 Interval arithmetic and automatic 

differentiation 

In the previous section we needed enclosing inter- 

vals for the derivatives of parameter functions and 

used them for building bounding volumes for sur- 

face parts. Now we will explain the method for 

calculating such intervals. 

B(T) ={b(t)lt ~ T}, (3.4) 

which can be easily computed for monotonic 

functions (the bounds are the function values at 

t =t_ and t =i) ,  but computation may be more 

complicated if b is not monotonic. 

The following method allows the calculation of an 

enclosing interval 

I _F(U, V) (3.5) 

3. 1 Interval ar i thmetic 

We consider real-valued functions depending on 

one or two independent variables. Normal arith- 

metic solves the problem of calculating the real 

function value at a single point in parameter 

space. Interval arithmetic generates bounds for 
the set of function values that belong to all para- 

meter values contained in given intervals. We de- 

fine the set of function values, e.g., for a parameter 

function of a surface, by 

F(U,V) ={f(u,v)lu eU,  v eV} (3.1) 

In the case of continuous functions such a set is an 

interval. The definitions for the partial derivatives 

are similar and need not be written down explicit- 

ly. A single operation of interval arithmetic is 

defined by 

A op B = {a op b[a ~ A, b ~ B} (3.2) 

Especially for the basic arithmetic operations we 
have the explicit definitions 

A + B =  [ a + b , a + b ]  

a - B = [a_- b , 5 -  b] 

A • B = [rain{a_ • b, a • b, ~ • b, ~ • b}, (3.3) 

max{a_ x b_,a x b,a x b,d x b-}] 

A / B = A x [l/b-, I/b_] if 0 r B 

for every function f(u, v) given in the form of an 

arithmetic expression of the parameters, constants 

[c,c] and basic functions: Beginning with the 

components we must apply (3.3) or (3.4) repeated- 

ly to get enclosing intervals for parts of the expres- 

sion until the final result is obtained. 
In general this method does not yield the tightest 

interval possible, i.e., F(U, V). It only generates an 

enclosure I (see Eq. 3.5), which might be a large 

overestimation. We discuss this disadvantage and 

some methods to cope with it in Sect. ~ 4. It should 

be mentioned here that some effort is required to 

write subroutines for all commonly used basic 

functions that calculate inclusions according to 

Eqs. 3.4 and 3.5 as tightly as possible. 

3.2 Automatic differentiat ion 

If a function f(t) is defined by an arithmetic ex- 

pression, then it is possible to compute the deriv- 

ativef'(t) during the evaluation off(t) for a single 
value of t_ with little extra effort. This is performed 

by a special arithmetic for the tuples 

( f f ' )  (3.6) 

This arithmetic serves for the simultaneous 
calculation of such tuples beginning with the 
basic operands. Neumaier (1990) calls it recursive 
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differentiation. The four basic operations are: 

( f , f ' )  + (g,g') = ( f  + g , f '  + g') 

( f f ' )  - (g,g') = ( f  - g , f '  - g') (3.7) 

( f , f ' )  x ( g , g ' ) =  ( f  x g , f  x g' + f '  x g) 

( f , f ) /  (g,g') = ( f /g , ( f '  x g - f x g')/(g x g)) 

As with interval arithmetic, rules for basic func- 

tions are derived easily, e.g., 

sin (f ,f ' )  =(sin(f), cos(f) x f ' )  

I' ) =t,/s, f ' l  t2,/-f ) ) 13.8) 

Again we begin evaluation with the components 

(t, i) for the independent variable, (v,O) for any 

other variable, and (c, O) for a constant. Then we 

repeatedly compute tupels for partial expressions 

until we reach the complete function. Expanding 

this to our parameter functions, e.g., x(u, v), with 

two partial derivatives is an easy task. 

We have incorporated this method into our sys- 

tem for ray tracing parametric surfaces. It works 

as an interpretative system on the parameter func- 

tions. Therefore the user only needs to provide the 
formula for these functions; he is not required to 

perform the differentiation of the formula. 

3.3 Combin ing  interval  a r i thmet ic  with 
automat ic  d i f ferent iat ion 

Now we want to describe how to calculate inter- 

val enclosures for a parameter function and its 

two partial derivatives for a rectangular para- 

meter domain, i.e., how to get (X, X,, X~,) (see Eq. 

2.2). The description is very short: take intervals in 

Sect. 3.2 instead of reals and use interval arithme- 
tic. 

4 Ray tracing parametric surfaces 

We use our method to speed up ray tracing when 
applied to parametric surfaces. When doing so, 
one must shoot a large number of rays (1,000,000 
or more) into a computer-modeled scene to gene- 
rate a realistic picture of the scene. Each of these 

rays must be intersected with objects of the scene. 
Some objects allow explicit calculation of inter- 

sections (e.g., boxes and spheres), while others, 

especially the so-called free form surfaces and 

parametric surfaces require an iterative calcu- 

lation of intersections. These iterations are very 

time consuming. Therefore efforts must be made 

to speed up the calculations; it is extremely im- 

portant to reduce the number of necessary itera- 

tions. This can be achieved by finding suitable, 

very accurate starting points for all rays that hit 

the surface and by finding out which rays do not 

hit the surface at all at a very early stage in the 
computation. 

For this purpose we use a preprocessing step 

similar to that of Barth and Sttirzlinger (1993) for 

B6zier or B-spline surfaces. This step has to be 

performed before the first ray-surface intersection 

is calculated. Because of the huge number of rays 

and because preprocessing is executed only once, 

even a very time-consuming preparation that 

yields only a tiny saving per intersection may 

reduce the total time significantly. 

During preprocessing we adaptively subdivide the 

surface into parts. Each subdivision is done by 

halving the surface or a part of it, parallel to the 

u or the v axis. Subdivisions are repeated for all 

parts that cannot be accurately approximated by 

plane parallelograms. Whether a surface part is 

small enough can be seen from our inclusion 

method (see Sect 2): The red corner boxes of Fig. 

3 must be small against the other dimensions of 

the part. 

Each leaf contains a linear approximation for the 

small surface part belonging to it. By intersecting 

the rays with these approximations we get very 
good starting points for the Newton-Raphson 

iteration. Each intermediate node and each leaf of 

the tree contains an enclosing parallelepiped for 

its surface part; it is constructed by the method of 

Sect. 2. We choose parallelepipeds because they 
are tightly bounding volumes adapting well to the 
orientation and form of the surface parts. 

When calculating the intersection of a ray with 

the surface we must first search the surface parts 

(leaves of the tree) that may be hit. Beginning at 

the root we follow only those paths where the 
parallelepipeds are hit. This test can be performed 
very quickly. Additionally, if the enclosures are 
tight enough, only those paths are followed where 
a hit actually occurs. Rays that miss the surface 
are excluded from further consideration very 
early. Finally we reach all leaves the enclosures of 
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Fig. 6. Parallelopipeds for fine and coarse subdivisions 

Fig. 7. Surface and approximating parallelograms 

Fig. 8. Rain: 
X(u, v) = cos(u)*sin(v)*(1-cos(v))/2 
Y(u, v) = sin( u)*sin(v)*( l -cos(v)  )/2 

Z(u, v) = cos(v) 
Ux v=[-,]  x [0,] 

11 

Fig. 9. Cycloid surface: 

X(u, v) = u + cos(u) 
l~(u, v) = v + cos(v) 
Z(u, v) = - 0.5.(1 - sin(u))*(1 - sin(v)) 

U x V = [0,5 ] x [0,5 ] 

Fig. 10. Errors caused by too coarse subdivision 

Fig. 11. Errors caused by stopping iteration too early 

which are hit. As mentioned earlier for each of 

these parts an iteration must be performed. 

The method described in previous paragraphs 

works very well, but experiments show that there 

is still one remarkable disadvantage. Due to 

overestimation by the interval arithmetic, the 

bounding volumes of the surface parts calculated 

according to the rules of Sect. 2 tend to be much 

larger than the optimal enclosures. This effect is 

stronger the larger the parts, i.e., the nearer to the 

root of the tree of parallelepipeds. Therefore, ex- 

cluding parts of the tree from further considera- 

tion because the corresponding surface part is not 

hit takes place too seldom in the upper part of the 

tree. Much time is wasted in this way for searching 

the leaves hit by the ray. 

We solve this problem in the following way: first, 

bounding volumes for all surface parts are cal- 

culated by interval arithmetic, i.e., the tree of 

bounding volumes is built top down. After this, 

but still in the preprocessing step, we exploit the 

fact that every surface part is enclosed by the 

union of the enclosures of its halves. That means 

we perform - -  bot tom up - -  a reduction of all 
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enclosing parallelepipeds by cutting those slices 

that do not belong to the parallelepiped of one of 

its successors. Our experiments show that this 

method leads to much tighter enclosures. 

5 Experiences 

seeing the background (blue) or another part of 

the surface from the shadowed side (black). 
Similar results can be recognized in Fig. 11, where 

we used finer subdivision (256 parts), but we 

restricted the maximal number of iterations 

to two. 

On the right side Fig. 6 shows the enclosing parallel- 

epipeds of a very coarse subdivision (64 parts) for 

a goblet. The surface parts are too large for our 
method. The finer subdivision (512 parts) shown 

on the left side allows efficient iteration with cor- 

rect results. 

On the right side Fig. 7 shows the approximating 

parallelograms for the finer subdivision of Fig. 6. 

In general these approximations do not form 

a continuous surface without gaps, but the parallel- 

epipeds do. The surface on the left side was 

rendered from the finer subdivision. Only an ave- 

rage of 2.7 iterations per ray was required. The 

preprocessing step, i.e., calculating all 512 parts, 

their approximating parallelograms, their enclo- 
sures, and building up the binary tree of the sur- 

face parts took only a few seconds. Ray tracing, 
however, i.e., calculating the intersections of the 

rays with the surface for 1000 x 750 pixels, inclu- 

ding antialiasing, required more than 2 h on 

a VAX Station 3100. For Fig. 8 every drop of the 

rain has been subdivided adaptively into 420 

parts; the average for the iteration was 2.36. 

The cycloid surface of Fig. 9 shows that our itera- 

tion procedure is stable enough to cope with sur- 

faces containing folds also. The subdivision 

method automatically divides more finely near 

the critical folds and then iteration has no prob- 
lems. Note that the instability of the Newton-  

Raphson iteration in some extraordinary cases 

has been overcome by drawing back all values to 

the parameter domain of the surface part. In the 

case of Fig. 9 we used a subdivision into 3437 

parts; the average number of iterations was again 

very low (2.36). 
In Figs. 10 and 11 we demonstrate the effect of 

carelessly using the method. The result of a too 
coarse subdivision of a difficult surface such as 
our cycloid can be seen. No more than 64 surface 
parts were generated in Fig. 10. Therefore the 
iteration fails for many pixels, mainly near the 
folds and the brink. This failure is interpreted by 
the program as "no hit", therefore it works like 
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