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ABSTRACT

Context. Weak-lensing surveys need accurate theoretical predictions for interpretation of their results and cosmological-parameter
estimation.
Aims. We study the accuracy of various approximations to cosmic shear and weak galaxy-galaxy lensing and investigate effects of
Born corrections and lens-lens coupling.
Methods. We use ray-tracing through the Millennium Simulation, a large N-body simulation of cosmic structure formation, to calcu-
late various cosmic-shear and galaxy-galaxy-lensing statistics. We compare the results from ray-tracing to semi-analytic predictions.
Results. (i) We confirm that the first-order approximation (i.e. neglecting lensing effects beyond first order in density fluctuations)
provides an excellent fit to cosmic-shear power spectra as long as the actual matter power spectrum is used as input. Common fitting
formulae, however, strongly underestimate the cosmic-shear power spectra (by >30% on scales � > 10 000). Halo models provide
a better fit to cosmic shear-power spectra, but there are still noticeable deviations (∼10%). (ii) Cosmic-shear B-modes, which are
induced by Born corrections and lens-lens coupling, are at least three orders of magnitude smaller than cosmic-shear E-modes. Semi-
analytic extensions to the first-order approximation predict the right order of magnitude for the B-mode. Compared to the ray-tracing
results, however, the semi-analytic predictions may differ by a factor two on small scales and also show a different scale dependence.
(iii) The first-order approximation may under- or overestimate the galaxy-galaxy-lensing shear signal by several percent due to the
neglect of magnification bias, which may lead to a correlation between the shear and the observed number density of lenses.
Conclusions. (i) Current semi-analytic models need to be improved in order to match the degree of statistical accuracy expected for
future weak-lensing surveys. (ii) Shear B-modes induced by corrections to the first-order approximation are not important for future
cosmic-shear surveys. (iii) Magnification bias can be important for galaxy-galaxy-lensing surveys.
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1. Introduction

During the past few years, weak gravitational lensing has devel-
oped rapidly from mere detection to an important cosmological
tool (Munshi et al. 2008). Measurements of cosmic shear help us
to constrain the properties of the cosmic matter distribution (e.g.
Semboloni et al. 2006; Hoekstra et al. 2006; Simon et al. 2007;
Benjamin et al. 2007; Massey et al. 2007b; Fu et al. 2008), the
growth of structure (e.g. Bacon et al. 2005; Massey et al. 2007c),
and the nature of the dark energy (e.g. Taylor et al. 2007; Schimd
et al. 2007; Amendola et al. 2008). Weak galaxy-galaxy lens-
ing can be used to study the properties of galactic dark-matter
halos and the relation between luminous and dark matter (e.g.
Mandelbaum et al. 2006; Simon et al. 2007; Gavazzi et al. 2007).

The accuracy that can be reached in weak-lensing sur-
veys is determined by several factors. On the observational
side, high accuracy requires large field sizes and deep obser-
vations with a high number density of galaxies with measur-
able shapes. Moreover, it is crucial to obtain an accurate and
unbiased measurement of galaxy ellipticities. Finally, for the in-
terpretation of the resulting data and the inference of cosmo-
logical parameters, an accurate theoretical model is needed. A
thorough understanding of systematic effects in weak lensing
will become particularly important with the advent of very large

weak-lensing surveys such as CFHTLS1, KIDS2, Pan-
STARRS3, and LSST4, or the planned Dark Energy Survey5,
DUNE (Réfrégier et al. 2006), and SNAP6. For these surveys,
the statistical uncertainties will be very small, so the accuracy
will be limited by the remaining systematics in the data reduc-
tion and theoretical modeling.

While significant improvement on image-ellipticity mea-
surements are expected in the near future (Massey et al. 2007a),
one still needs to investigate, how uncertain current theoretical
predictions are, and how much improvement can be expected
for these. Presently, the most accurate way to obtain predic-
tions for weak-lensing surveys is to perform ray-tracing through
large high-resolution N-body simulations of cosmic structure
formation (see, e.g., Wambsganss et al. 1998; Jain et al. 2000;
White & Hu 2000; Van Waerbeke et al. 2001; Hamana & Mellier
2001; Vale & White 2003; White 2005). The drawback of this

1 http://www.cfht.hawaii.edu/Science/CFHLS
2 http://http://www.astro-wise.org/projects/KIDS
3 http://pan-starrs.ifa.hawaii.edu
4 http://www.lsst.org
5 http://www.darkenergysurvey.org
6 http://snap.lbl.gov
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approach is that large N-body simulations are computationally
demanding, so using them to explore the whole parameter space
of cosmological models is currently unrealistic. On the other
hand, ray-tracing simulations enable one to check the approxi-
mations and assumptions made in computationally less demand-
ing (semi-)analytic models, and adjust and extend these models
where necessary.

Numerous ray-tracing methods have been developed to study
the many aspects of gravitational lensing. Tree-based ray-tracing
methods (Aubert et al. 2007) that adapt to the varying spatial
resolution of N-body simulations have been used to study the
impact of substructure on strong lensing by dark matter halos
(Peirani et al. 2008). Cluster strong lensing simulations, which
require good mass modelling of galaxy clusters, usually ignore
the matter distribution outside clusters and use the thin-lens ap-
proximation in the ray-tracing (e.g. Bartelmann & Weiss 1994;
Meneghetti et al. 2007; Rozo et al. 2008).

Many simulations of weak lensing by clusters and large-
scale structure (e.g. Wambsganss et al. 1998; Jain et al. 2000;
Vale & White 2003; Pace et al. 2007) employ algorithms that are
based on the multiple-lens-plane approximation (Blandford &
Narayan 1986) to trace light rays through cosmological N-body
simulations. Others (e.g. Couchman et al. 1999; Carbone et al.
2008) perform ray-tracing though the three-dimensional grav-
itational potential. In a simpler approach (e.g. White & Vale
2004; Heymans et al. 2006; Hilbert et al. 2007a), the matter in
the N-body simulation is projected along unperturbed light paths
onto a single lens plane, which is then used to calculate lensing
observables. Recent simulations of CMB lensing use generali-
sations of the single- or multiple-plane approximation that take
the curvature of the sky into account (e.g. Das & Bode 2008;
Teyssier et al. 2008; Fosalba et al. 2008).

In this work, we employ multiple-lens-plane ray-tracing
through the Millennium Simulation (Springel et al. 2005) to
study weak lensing. One of the largest N-body simulations avail-
able today, the Millennium Simulation provides not only a much
larger volume, but also a higher spatial and mass resolution than
simulations used for earlier weak-lensing studies. In order to
take full advantage of the large simulation volume and high res-
olution, the ray-tracing algorithm used here differs in several as-
pects from algorithms used in previous works (e.g. Jain et al.
2000). Here, we give a detailed description of our ray-tracing
algorithm.

Semi-analytic weak-lensing predictions are usually based on
the first-order approximation, in which light deflections are only
considered to first order in the peculiar gravitational potential
and hence, to first order in the matter fluctuations. The ray-
tracing approach allows us to look at effects neglected in the
first-order approximation such Born corrections and lens-lens
coupling. Here, we investigate the cosmic-shear B-modes in-
duced by these effects and compare the ray-tracing results to
semi-analytic estimates (Cooray & Hu 2002; Hirata & Seljak
2003; Shapiro & Cooray 2006), whose accuracy has not been
confirmed by numerical simulations yet. Moreover, we inves-
tigate how well fitting formulae (Peacock & Dodds 1996;
Eisenstein & Hu 1999; Smith et al. 2003) and halo models
(Seljak 2000; Cooray & Sheth 2002) reproduce cosmic-shear
power spectra. Finally, we investigate the accuracy of the first-
order approximation for weak galaxy-galaxy lensing.

The paper is organised as follows. In the next section, we
introduce the theoretical background and notation used in our
lensing analysis. In Sect. 3, we discuss our ray-tracing algorithm.
The results from our ray-tracing analysis are presented in Sect. 4.
We conclude our paper with a summary in Sect. 5.

2. Theory

2.1. Gravitational light deflection

In this section, we introduce the formulae relating the “apparent”
positions of distant light sources to their “true” positions. In or-
der to label spacetime points in a model universe with a weakly
perturbed Friedmann-Lemaître-Robertson-Walker (FLRW) met-
ric, we choose a coordinate system (t, β, w) based on physical
time t, two angular coordinates β = (β1, β2), and the line-of-sight
comoving distancew relative to the observer. The spacetime met-
ric of the model universe is then given by (see, e.g., Bartelmann
& Schneider 2001):

ds2 =

(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
a2

×
{

dw2 + f 2
K(w)

[
dβ2

1 + cos2(β1)dβ2
2

] }
. (1)

Here, c denotes the speed of light, a = a(t) denotes the scale fac-
tor, and Φ = Φ(t, β, w) denotes the peculiar (Newtonian) grav-
itational potential. The comoving angular diameter distance is
defined as:

fK (w) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1/
√

K sin
(√

Kw
)

for K > 0,
w for K = 0, and
1/
√−K sinh

(√−Kw
)

for K < 0,
(2)

where K denotes the curvature of space. The particular choice
for the angular coordinates β = (β1, β2) is convenient for the ap-
plication of the “flat-sky” approximation, where the metric near
β = 0 is approximated using cos2(β1) ≈ 1.

Consider the path, parametrised by comoving distance w, of
a photon eventually reaching the observer from angular direc-
tion θ. The angular position β(θ, w) of the photon at comoving
distance w is then given by (see, e.g., Jain & Seljak 1997, for a
sketch of a derivation):

β(θ, w) = θ − 2
c2

∫ w

0
dw′

fK(w − w′)
fK(w) fK(w′)

×∇βΦ
(
t(w′), β(θ, w′), w′

)
(3)

with ∇β = (∂/∂β1, ∂/∂β2), and t(w′) denoting the cosmic time of
events at line-of-sight comoving distance w′ from the observer.
By differentiation this equation w.r.t. θ, we obtain the distortion
matrix A, i.e. the Jacobian of the lens mapping θ �→ β = β(θ, w):

Ai j(θ, w) =
∂βi(θ, w)
∂θ j

= δi j − 2
c2

∫ w

0
dw′

fK(w − w′)
fK(w) fK(w′)

×
∂2Φ

(
t(w′), β(θ, w′), w′

)
∂βi∂βk

Ak j(θ, w′). (4)

Due to the matrix products in Eq. (4), the distortion matrix A is
generally not symmetric. However, it can be decomposed into a
rotation matrix (related to a usually unobservable rotation in the
source plane) and a symmetric matrix (Schneider et al. 1992):

A(θ, w) =

(
cosω sinω
− sinω cosω

)

×
(

1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
. (5)

The decomposition defines the rotation angle ω = ω(θ, w), the
convergence κ = κ(θ, w), and the two components γ1 = γ1(θ, w)
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and γ2 = γ2(θ, w) of the shear, which may be combined into the
complex shear γ = γ1 + iγ2.

The shear field γ(θ, w) can be decomposed into a rotation-
free part γE(θ, w) and a divergence-free part γB(θ, w). For infinite
fields, the decomposition into these E/B-modes is most easily
written down in Fourier space:

γ̂E(�, w) =
�2

|�|4
[
(�2

1 − �2
2)γ̂1(�, w) + 2�1�2γ̂2(�, w)

]
, (6a)

γ̂B(�, w) =
�2

|�|4
[
(�2

1 − �2
2)γ̂2(�, w) − 2�1�2γ̂1(�, w)

]
. (6b)

Here, hats denote Fourier transforms, � = (�1, �2) denotes the
Fourier wave vector, and � = �1 + i�2. Care must be taken when
decomposing the shear in fields of finite size, where the field
boundaries can cause artifacts (Seitz & Schneider 1996). These
artifacts can be avoided by using aperture masses to quantify
the shear E- and B-mode contributions (Crittenden et al. 2002;
Schneider et al. 2002).

Equations (3) and (4) are implicit relations for the light path
and the Jacobian. The solution of Eq. (3) to first order in the po-
tential is obtained by integrating along undisturbed light paths:

β(θ, w) = θ − 2
c2

∫ w

0
dw′

fK(w − w′)
fK (w) fK(w′)

×∇θΦ
(
t(w′), θ, w′

)
. (7)

The distortion to first order reads:

Ai j(θ, w) = δi j − 2
c2

∫ w

0
dw′

fK(w − w′)
fK (w) fK(w′)

×
∂2Φ

(
t(w′), θ, w′

)
∂θi∂θk

· (8)

The first-order approximation to the distortion contains the Born
approximation, which ignores deviations of the actual light path
from the undisturbed path on the r.h.s. of Eq. (4). Moreover,
lens-lens coupling is neglected, i.e. the appearance of the dis-
tortion on the r.h.s. of Eq. (4). The neglected lens-lens coupling
and corrections to the Born approximation account for the ef-
fect that light from a distant source “sees” a distorted image of
the lower-redshift matter distribution due to higher-redshift mat-
ter inhomogeneities along the line-of-sight. Thus, the first-order
approximation works well in regions where larger matter inho-
mogeneities are absent or confined to a small redshift range, but
fails in regions where noticeable distortions arise from matter
inhomogeneities at multiple redshifts.

Born corrections and lens-lens coupling effects may cre-
ate shear B-modes. The perturbative calculation of the shear
B-modes by iteratively solving Eq. (4) is possible (Cooray &
Hu 2002; Hirata & Seljak 2003), but tedious, and the accuracy
of this approach is not known. However, multiple deflections and
lens-lens coupling effects are fully included in the multiple-lens-
plane approximation as described below. We will thus use this
approximation to investigate these effects and assess the quality
of perturbative calculations of these effects.

2.2. The multiple-lens-plane approximation

In the multiple-lens-plane approximation (see, e.g., Blandford &
Narayan 1986; Schneider et al. 1992; Seitz et al. 1994; Jain et al.
2000), a series of lens planes perpendicular to the central line-of-
sight is introduced into the observer’s backward light cone. The

continuous deflection that a light ray experiences while propa-
gating through the matter inhomogeneities in the light cone is
then approximated by finite deflections at the lens planes. The
deflections are calculated from a projected matter distribution on
the lens planes. This corresponds to solving the integral Eqs. (3)
and (4) by discretisation (and using the impulse approximation).

The deflection α(k)(β(k)) of a light ray intersecting the kth lens
plane (here, we count from the observer to the source) at angu-
lar position β(k) can be expressed as the gradient of a lensing
potential ψ(k):

α(k)(β(k)) = ∇β(k) ψ(k)(β(k)). (9)

The differential deflection is then given by higher derivatives of
the lensing potential. The second derivatives can be combined
into the shear matrix

U(k)
i j =

∂2ψ(k)(β(k))

∂β(k)
i ∂β(k)

j

=
∂α(k)

i (β(k))

∂β(k)
j

· (10)

The lensing potential ψ(k) is a solution of the Poisson equation:

∇2
β(k)ψ

(k)(β(k)) = 2σ(k)(β(k)). (11)

The dimensionsless surface mass density σ(k) is given by a pro-
jection of the matter distribution in a slice around lens plane:

σ(k)(β(k)) =
3H2

0Ωm

2c2

f (k)
K

a(k)

∫ w(k)
U

w(k)
L

dw′δm

(
β(k), w′

)
. (12)

Here, H0 denotes the Hubble constant, Ωm the mean matter
density in terms of the critical density, f (k)

K = fK(w(k)) and
a(k) = a(w(k)), with w(k) denoting the line-of-sight comoving dis-
tance of the plane. Furthermore, δm

(
β(k), w′

)
denotes the three-

dimensional density contrast at comoving position
(
β(k), w′

)
rel-

ative to the mean matter density. The slice boundaries w(k)
L and

w(k)
U have to satisfy w(k)

L < w(k) < w(k)
U and w(k)

U = w(k+1)
L . They

are usually chosen to correspond to the mean redshifts (e.g. Jain
et al. 2000) or comoving distances (e.g. Wambsganss et al. 2004)
of successive planes7. These conditions ensure that every region
of the light cone contributes exactly to one lens plane, which is
the closest plane in redshift or comoving distance.

Given the deflection angles on the lens planes, one can
trace back a light ray reaching the observer from angular po-
sition β(1) = θ on the first lens plane to the other planes:

β(k)(θ) = θ −
k−1∑
i=1

f (i,k)
K

f (k)
K

α(i)(β(i)), k = 1, 2, . . . (13)

Here, f (i,k)
K = fK

(
w(k) − w(i)

)
.

Equation (13) is not practical for tracing rays through many
lens planes. An alternative expression is obtained as follows (see,
e.g., Hartlap 2005; or Seitz et al. 1994 for a different derivation):
the angular position β(k) of a light ray on the lens plane k is re-
lated to its positions β(k−2) and β(k−1) on the two previous lens
planes by (see Fig. 1):

f (k)
K β

(k) = f (k)
K β

(k−2) + f (k−2,k)
K ε − f (k−1,k)

K α(k−1)
(
β(k−1)

)
, (14)

where ε =
f (k−1)
K

f (k−2,k−1)
K

(
β(k−1) − β(k−2)

)
.

7 The exact choice for the projection boundaries becomes unimportant
for sufficiently small spacings between the lens planes.
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Fig. 1. Schematic view of the observer’s backward light cone in the multiple-lens-plane approximation. A light ray (red line) experiences a deflec-
tion only when passing through a lens plane (solid blue lines). The deflection angle α(k−1) of a ray passing through the lens plane at distance f (k−1)

K

from the observer is obtained from the matter distribution between f (k−1)
K,U and f (k−1)

K,L projected onto the plane. Using the deflection angle α(k−1) of
the light ray at the previous lens plane and the ray’s angular positions β(k−1) and β(k−2) on the two previous planes, the angular position β(k) on the
current plane can be computed.

Hence,

β(k) =

⎛⎜⎜⎜⎜⎜⎝1 − f (k−1)
K

f (k)
K

f (k−2,k)
K

f (k−2,k−1)
K

⎞⎟⎟⎟⎟⎟⎠ β(k−2) +
f (k−1)
K

f (k)
K

f (k−2,k)
K

f (k−2,k−1)
K

β(k−1)

− f (k−1,k)
K

f (k)
K

α(k−1)
(
β(k−1)

)
. (15)

For a light ray reaching the observer from angular position θ on
the first lens plane, one can compute its angular position on the
other lens planes by iterating Eq. (15) with initial values β(0) =
β(1) = θ.

Differentiating Eq. (15) with respect to θ, we obtain a recur-
rence relation for the distortion matrix:

A(k)
i j =

⎛⎜⎜⎜⎜⎜⎝1 − f (k−1)
K

f (k)
K

f (k−2,k)
K

f (k−2,k−1)
K

⎞⎟⎟⎟⎟⎟⎠ A(k−2)
i j +

f (k−1)
K

f (k)
K

f (k−2,k)
K

f (k−2,k−1)
K

A(k−1)
i j

− f (k−1,k)
K

f (k)
K

U(k−1)
ik A(k−1)

k j . (16)

With the knowledge of the involved distances and shear matri-
ces, this equation allows us to iteratively compute the distortion
matrix of a light ray from the observer to any lens plane. This
equation requires in practice much fewer arithmetic operations
and memory than the commonly used relations (e.g. by Jain et al.
2000) based on Eq. (13).

For comparison and testing, we will also use the multiple-
lens-plane algorithm to calculate the distortion in the first-order
approximation by:

A(k)
i j (θ) = δi j −

k−1∑
n=1

f (n,k)
K

f (k)
K

U(n)
i j (θ). (17)

3. The ray-tracing algorithm

The methods we use for ray-tracing through N-body simula-
tions to study lensing are generally similar to those used by, e.g.,

Jain et al. (2000) or Vale & White (2003). First, the matter distri-
bution on the past light cone of a fiducial observer is constructed
from the simulation data. Then, the past light cone is partitioned
into a series of redshift slices. The content of each slice is pro-
jected onto a lens plane. Finally, the multiple-lens-plane approx-
imation is used to trace back light rays from the observer through
the series of lens planes to the sources.

The purpose of our ray-tracing algorithm is to simulate
strong and weak lensing in a way that takes full advantage of the
unprecedented statistical power offered by the large volume and
high spatial and mass resolution of the Millennium Simulation8.
Therefore, our ray-tracing method differs in many details from
previous works. Most notably, we use a multiple-mesh method
and adaptive smoothing to calculate light deflections and distor-
tions from the projected matter distribution on the lens planes.
This allows us to simulate lensing on the full range of scales cov-
ered by the Millennium Simulation, ranging from strong lens-
ing on scales >∼1 arcsec to cosmic shear on scales <∼1 deg. A
brief outline of our algorithms for the construction of the past
light cones and the lens planes has been given in an earlier work
(Hilbert et al. 2007b). Here, we extend the discussion and pro-
vide a more detailed description.

3.1. The Millennium Simulation

The Millennium Simulation (Springel et al. 2005) is a large
N-body simulation of cosmic structure formation in a flat
ΛCDM universe. The following cosmological parameters were
assumed for the simulation: a matter density of Ωm = 0.25 in
units of the critical density, a cosmological constant with ΩΛ =
0.75, a Hubble constant h = 0.73 in units of 100 km s−1 Mpc−1,
a spectral index n = 1 and a normalisation parameter σ8 = 0.9
for the primordial linear density power spectrum. These cho-
sen parameters are consistant with the 2dF (Colless et al. 2003)
and WMAP 1st-year data analysis (Spergel et al. 2003). The

8 This work concentrates on weak lensing, but the algorithm is also
used for strong-lensing studies (Hilbert et al. 2007b, 2008; Faure et al.
2009).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811054&pdf_id=1
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simulation followed the evolution of the matter distribution in
a cubic region of L = 500 h−1 Mpc comoving side length
from redshift z = 127 to the present using a TreePM ver-
sion of gadget-2 (Springel 2005) with 21603 particles of mass
mp = 8.6 × 108 h−1 M
 and a force softening length of 5 h−1 kpc
comoving.

Snapshots of the simulation were stored on disk at 64 out-
put times. These snapshots contain, among other data, the posi-
tions, SPH smoothing lengths and friend-of-friend (FoF) group
data of the particles. The storage order for the particle data
is based on a spatial oct-tree decomposition of the simulation
cube (see Springel 2005; Springel et al. 2005, for details), which
facilitates access to the particle data for small subvolumes of
the simulation.

Complex physical processes of baryonic matter such as the
formation and evolution of stars in galaxies has not been incor-
porated directly into the Millennium Simulation. However, sev-
eral galaxy-formation models have been used to predict the prop-
erties of galaxies in the simulation (Springel et al. 2005; Croton
et al. 2006; Bower et al. 2006; De Lucia & Blaizot 2007). The
ray-tracing methods presented in this paper will allow us (in fu-
ture work) not only to study cosmic shear in great detail, but
also to make predictions for galaxy-galaxy lensing (and related
higher-order statistics) for the various galaxy-formation models.

3.2. The construction of the matter in the backward light
cones

Even with a comoving size of L = 500 h−1 Mpc, the simula-
tion box is too small to trace back light rays within one box. We
therefore exploit the periodic boundary conditions of the simula-
tion by arranging replicas of the simulation box in a simple cubic
lattice with a lattice constant equal to the box size L to fill space.
We refrain from randomly shifting or rotating the content of the
lattice cells, because the simulation box is far too large to be pro-
jected onto a single lens plane. In addition, this allows us to keep
the matter distribution continuous across the cell boundaries.

In this periodic matter distribution, light rays would en-
counter the same structures many times at different epochs be-
fore reaching relevant source redshifts if one chose the line of
sight (LOS) parallel to the box edges. Hence, the LOS must be
chosen at a skewed angle relative to the box axes. On the other
hand, the application of Fourier methods for the calculation of
the light deflection at the lens planes requires a matter density
that is periodic perpendicular to the LOS. Choosing a LOS par-
allel to n = (n1, n2, n3) with suitable coprime ni ∈ Z, one can
obtain a large enough repetition length of |n|L along the LOS
(see Appendix A). At the same time, the matter distribution is
periodic perpendicular to the LOS with an area of periodicity
given by |n|L2. Our choice for n = (1, 3, 10) yields a LOS pe-
riodicity of 5.24 h−1 Gpc (corresponds to z = 3.87) and a rect-
angular unit cell of 1.58 h−1 Gpc × 1.66 h−1 Gpc for the lens
planes. Moreover, any directions with shorter periodicity are at
least 1.81 deg away from n, and a light cone with a 1.7 deg ×
1.7 deg field of view does not intersect with itself up to redshift
z = 3.87 when folded back into the simulation cube9. The result-
ing orientation of the LOS and the lens planes w.r.t. the simula-
tion box are illustrated in Fig. 2.

9 We often use a larger field of view – in particular, if only lower source
redshifts are considered. Even for high source redshifts, where the re-
sulting light cone may cover the same simulation region more than once,
a large field of view can be used with due care (Hilbert et al. 2007a).

Fig. 2. Schematic view of the orientation of the line-of-sight (red line)
and the lens planes (blue area) relative to the simulation box (indicated
by black lines).

We partition the observer’s backward light cone into red-
shift slices such that each slice contains the part of the light
cone that is closer in redshift to one of the snapshots than any
other snapshot (with exceptions near the boundaries discussed
below). The boundary between two redshift slices with snap-
shot redshifts z(k) and z(k+1) is thus a plane at comoving distance
w(k)

U = w(k+1)
L = w

[(
z(k) + z(k+1)

)
/2

]
. In addition, w(0)

L = 0. The
particle data of the snapshot closest in redshift is then used to
approximate the matter distribution in each of these slices. Fast
box-intersection tests (Gottschalk et al. 1996) and the spatial-
oct-tree storage order of the simulation are utilised to minimise
reading of the particle data (which reduces run time by fac-
tors 5−10).

In the construction of the matter distribution in the light
cone, special care is taken for the particles near the boundary of
two slices. In the simulation, particle concentrations represent-
ing dark matter halos of galaxies or clusters were identified by
a friend-of-friend (FoF) group finding algorithm. Some of these
halos are located on the slice boundaries with particles on either
side10. In order to avoid that such a halo is only partially in-
cluded into a slice (and hence would be only partially projected
onto a lens plane), a halo is either included as a whole if its cen-
tral particle is inside the slice as defined by boundary planes, or
completely excluded otherwise.

If the matter structure in the simulation were static, this pro-
cedure would suffice to prevent parts of the same halo from being
projected onto adjacent lens planes, which would create artificial
close pairs of halos on the sky. Halos, however, may have moved
across a slice boundary between two snapshots. We therefore
amend the above inclusion criterion for halos near the boundary:
if a halo is included in (excluded from) the slice of the later snap-
shot, its progenitors in the earlier snapshot are excluded from
(included in) the “earlier” slice even if their centres lie on the
“early” (“late”) side of the slice boundary. These inclusion crite-
ria for halos are illustrated in Fig. 3.

3.3. The lens planes

The matter content of each redshift slice of the backward light
cone is projected along the LOS direction onto a lens plane.

10 Approx. 0.5% (5%) of halos with virial masses M200 ≥ 1012 h−1 M

(≥1015 h−1 M
) are affected by this procedure. Though not essential for
cosmic shear simulations (test show a relative difference ∼0.1% for the
shear power spectra), the proper treatment of halos near slice boundaries
is important for group-galaxy lensing and strong lensing simulations.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811054&pdf_id=2
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Fig. 3. Schematic view of the adaptive slice boundaries to avoid the
truncation or double inclusion of halos that are located near a slice
boundary. Halos near the boundary of slice k and k + 1 are either
included as a whole in slice k or completely excluded depending on
the positions of their centres (a). Halos that are included (excluded) in
slice k, are excluded (included) from slice k+1 even if they have crossed
the slice boundary between redshift k and k + 1 (b).
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Fig. 4. The number NL of lens planes used for the ray-tracing as a
function of the source redshift zS.

Each lens plane is placed at the comoving distance of the cor-
responding snapshot’s redshift. The lens planes serve also as
source planes for the ray-tracing. The resulting number of lens
planes as a function of the source redshift is shown in Fig. 4.

The light deflection angles and distortions resulting from
the projected matter density on the lens planes are computed
by particle-mesh (PM) methods (Hockney & Eastwood 1981).
Mesh methods have the advantage that, once the deflection and
distortion are computed on a mesh (e.g. by Fast Fourier meth-
ods), the computation of the deflections and distortions for many
light rays intersecting the plane is very fast (compared to, e.g.,
direct-summation or tree methods). One disadvantage is that the
used mesh spacing limits the spatial resolution of the projected
matter distribution. However, any N-body simulation providing
the matter distribution for the ray-tracing has a limited reso-
lution as well. In dense regions, the spatial resolution of the
Millennium Simulation is effectively determined by the force
softening, which is 5 h−1 kpc comoving. Thus, a mesh spacing of
2.5 h−1 kpc comoving is required to avoid resolution degradation
for the projected matter density. However, a single mesh cover-
ing the full periodic area of the lens plane (i.e. 1.58 h−1 Gpc ×
1.66 h−1 Gpc comoving) with such a small mesh spacing would
be too demanding, in particular regarding the memory required
both for its computation and storage. We therefore use a hierar-
chy of meshes instead.

The lensing potential ψ is split into a long-range part ψlong
and a short-range part ψshort. The split is defined in Fourier
space by:

ψ̂long(�) = ψ̂(�) exp
(
−β2

split�
2
)

, and (18)

ψ̂short(�) = ψ̂(�)
[
1 − exp

(
−β2

split�
2
)]
. (19)

The splitting angle βsplit = rsplit/ fK(w), with comoving splitting
length rsplit and comoving angular diameter distance of the lens
plane fK(w), quantifies the spatial scale of the split. Different
meshes are then used to calculate ψlong and ψshort.

First, the particles in each slice are projected onto a coarse
mesh of 16 384 × 16 384 points covering the whole periodic
area of the lens plane using clouds-in-cells (CIC) assignment
(Hockney & Eastwood 1981). The long-range potential ψlong is
then calculated on this mesh by means of fast Fourier trans-
form (FFT) techniques (Cooley & Tukey 1965; Frigo & Johnson
2005). The splitting length rsplit = 175 h−1 kpc is chosen slightly
larger than the coarse mesh spacing (96 h−1 kpc and 101 h−1 kpc
comoving, respectively), so the coarse mesh samples ψlong with
sufficient accuracy. For each lens plane, the long-range potential
is calculated once, and the result is stored on disk for later use
during the ray-tracing.

The short-range potential ψshort is calculated “on the fly”, i.e.
during the actual ray-tracing. The area where the light rays in-
tersect the plane is determined and, if larger than 40 h−1 Mpc
comoving, subdivided into several patches up to that size.
Each patch is covered by a fine mesh with a mesh spacing of
2.5 h−1 kpc comoving and up to 16 384 × 16 384 mesh points.
The fine meshes are chosen slightly larger than the patches in
order to take into account all matter within the effective range
of ψshort, for which we assume 875 h−1 kpc (=5 rsplit). The lim-
ited range of ψshort ensures that the matter distribution outside the
mesh affects only mesh points close to its boundary (i.e. within
the effective range), but not the interior mesh points used for the
subsequent analysis. Periodic boundary conditions can therefore
be used for the FFT on the patches without “zero padding”.

In order to reduce the shot noise from the individual parti-
cles, either a fixed or an adaptive smoothing scheme is used for
the matter distribution on the fine meshes. In case of the fixed
smoothing, the particles in the slice are projected onto the fine
mesh using CIC. The resulting matter density on the fine mesh is
then smoothed in Fourier space with a Gaussian low-pass filter

K̂s(�; βs) = exp

(
−β

2
s

2
�2

)
(20)

whose filter scale βs = ls/ fK(w) is determined by the lens plane’s
comoving distance w and a fixed comoving filter scale ls. This
is done during the calculation of the short-range potential ψshort
with FFT methods.

In case of the adaptive smoothing, the mass associated with
each simulation particle contributes

Σp(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3mp

πr2
p

(
1 − |x−xp |2

r2
p

)2
, |x − xp| < rp,

0, |x − xp| ≥ rp,
(21)

to the surface mass density on the fine mesh. Here, x denotes co-
moving position on the lens plane, xp is the projected comoving
particle position, and rp denotes the comoving distance to the
64th nearest neighbour particle in three dimensions (i.e. before
projection). The adaptive smoothing is essentially equivalent to
the assumption that, in three-dimensional space, each simulation
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Fig. 5. The deflection angle |α| as a function of the comoving distance r
to a point mass computed by our mesh method. a) Short-range com-
ponent (dashed line) and long-range component (dotted line) of the de-
flection angle (full line). b) Fractional difference between the value α
calculated by our mesh method and the theoretical value αth. For the
plots, we placed 10 point masses of 8.6 × 108 h−1 M
 randomly on the
lens plane at z = 0.5 and calculated the resulting deflection at 1000 ran-
dom positions around each of them.

particle represents a spherical cloud with a Gaussian density pro-
file and an rms radius that is half the distance to its 64th near-
est neighbour. From the resulting surface mass density on the
fine mesh, the short-range potential ψshort is then calculated by
FFT methods.

The long- and short-range contributions to the deflection an-
gles and shear matrices are calculated on the coarse and fine
mesh by finite differencing of the potentials11. The values be-
tween mesh points are obtained by bilinear interpolation. The
resulting deflection angles and shear matrices at the ray positions
are then used to advance the rays and their associated distortion
matrices from one plane to the next.

The ray-tracing algorithm reproduces the deflection angles
and distortions caused by a single point mass very accurately,
as is shown in Figs. 5 and 6. For the deflection angle, the rel-
ative deviation from the known analytical result is at most one
percent, with a much smaller rms error. Apart from scales below

11 The ray-tracing algorithm has to compute 5 derivatives of the lens-
ing potential (2 deflection angle components and 3 shear matrix com-
ponents) starting from the matter distribution. On large meshes, lower-
order finite differencing operations (FDs) are much faster than FFTs.
Using FFT derivatives would require 6 FFTs, whereas our approach re-
quires only 2 FFTs and 5 FDs.
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Fig. 6. The magnification |μ| for sources at z = 2 as a function of the
angular separation θ to a point mass of 1014 h−1 M
 at redshift z = 1
computed by our mesh method. a) Numerical values (symbols) com-
pared to the analytical result (solid line). b) Fractional difference be-
tween the measured magnification |μ| and its theoretical value |μth|. The
magnification diverges at the Einstein radius θE = 16′′ (dashed vertical
line). For the plots, we placed 10 point masses of 1014 h−1 M
 randomly
on the lens plane at z = 1 and calculated the resulting magnification at
1000 random positions around them.

10 h−1 kpc comoving, where discreteness of the fine mesh be-
comes important, the largest relative errors occur on the scale of
the split between short- and long-range potential. If desired, an
even smaller error in this region could be obtained by increasing
the splitting scale.

In this work, we do not consider the effects of the stellar mass
in galaxies. Note, however, that the ray-tracing algorithm can be
extended to include the gravitational effects of the stars in galax-
ies as described in Hilbert et al. (2008): the positions and stellar
masses of the galaxies are inferred from semi-analytic galaxy-
formation models implemented within the evolving dark-matter
distribution of the Millennium Simulation (Springel et al. 2005;
Croton et al. 2006; De Lucia & Blaizot 2007). The light deflec-
tion induced by the stellar matter is then calculated using an-
alytic expressions for the projected stellar mass profiles on the
lens planes. The error made by adding the stellar matter onto the
lens planes, although the dark-matter particles of the simulation
represent the total matter, can then be compensated using ex-
tended analytic profiles with negative masses (as was done, e.g.,
by Wambsganss et al. 2008).
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interpolation

image plane source plane

ray−tracing

Fig. 7. Interpolation scheme used for determining image positions of
galaxies. The regular grid of rays in the image plane (left filled circles)
is used to partition the image plane into triangles (right blue lines). The
image position (left open circle) of a source inside a triangle (right blue
lines) formed by the backtraced rays on the source plane (right filled
circles) is then determined by linear interpolation.

3.4. Lensing maps and image positions

To produce lensing maps, we set up rays starting from a fiducial
observer on a regular grid in the image plane with an angular
field size and resolution suitable for the particular application.
The resulting shear and convergence maps may be used directly
to obtain, e.g., the shear correlation functions and power spectra.

We also wish to perform simulations of galaxy-galaxy lens-
ing. Not only are the image positions of distant source galaxies
affected by lensing. Also the apparent positions of galaxies and
halos that act as lenses for background galaxies (and are to be
correlated with the shear field) are affected by lensing due to
foreground matter. We therefore have to compute the image po-
sitions θg given the galaxies’ source positions β(k)

g (i.e. the pro-
jected galaxy positions on the lens planes) and the lens mapping
sampled on the grid of light rays in the ray-tracing algorithm. To
reach this, we make use of a triangle technique described, e.g.,
in Schneider et al. (1992). We partition the region of the image
plane that is covered by the grid of rays into triangles formed
by rays of adjacent grid points (see Fig. 7). On each lens plane,
we identify for each such triangle all galaxies with source posi-
tion inside the backtraced triangle. The image positions of these
galaxies are then computed by linear interpolation between the
rays. This method takes into account strong lensing, as a galaxy
might lie in more than one triangle on the lens plane, resulting
in multiple images of that galaxy.

Figure 8 illustrates how well the image positions obtained
by the triangle interpolation method are mapped back onto the
source positions by the ray-tracing. Shown is the difference be-
tween the true source positions and the positions obtained by
tracing back light rays starting from the interpolated image posi-
tions to the source plane. The difference is always much smaller
than the resolution of the matter distribution on the lens planes.
The slight anisotropy seen as a larger spread along one diagonal
is caused by the particular way the image plane was partitioned
into triangles. The diagonal coincides with the diagonal chosen
for splitting the square mesh pixels into triangles. If one used
the other diagonal for splitting the mesh pixels into triangles, a
larger spread along that diagonal would be seen instead.

4. Results

We compute various weak-lensing two-point statistics from a
set of ray-tracing simulations and compare the results to semi-
analytic predictions. If not stated otherwise, adaptive snoothing
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Fig. 8. Comparison of the true source positions and the source po-
sitions obtained by tracing back light rays through the Millennium
Simulation starting from the image positions computed by the interpo-
lation method. Shown is the difference Δx between true and traced-back
comoving source position for 1000 galaxy centres at z = 1. At this red-
shift, 0.010 h−1 kpc comoving correspond to an angle of 10−3 arcsec.
The right and upper frames sides are labelled by the corresponding an-
gular difference Δβ between true and traced-back source position in
units Δθmesh = 1′′ of the mesh spacing used for the rays.

of the matter distribution on the lens planes is applied for the
ray-tracing.

4.1. Power spectra

We start our discussion with the convergence power spec-
trum Pκ(�). In the first-order approximation (8), the convergence
power spectrum is given by (see, e.g., Schneider 2006):

Pκ(�) =
∫ ∞

0
dw q2(w) Pδ

(
t(w),

�

fK(w)

)
· (22)

Here,

q(w) =
3H2

0Ωm

2c2a(w)

∫ ∞

w

dw′ ps(w
′)

fK(w′ − w)
fK(w′)

, (23)

with the probability distribution ps(w) of visible sources in
comoving distance. Furthermore, Pδ(t, k) denotes the three-
dimensional power spectrum of the matter contrast δ at cosmic
time t and comoving wave vector k. For an accurate compari-
son with the results obtained by our ray-tracing algorithm, we
use Eq. (22) together with the three-dimensional power spec-
tra Pδ (k) measured from the Millennium Simulation (see also
Vale & White 2003). In the following, we will call the resulting
power spectra first-order prediction for brevity.

In Fig. 9, we compare the first-order prediction to the con-
vergence power spectra obtained from the ray-tracing. As has
already been observed by Jain et al. (2000) and Vale & White
(2003), the power spectra from the ray-tracing are in very good
agreement with the first-order prediction. For the considered
source redshifts, the difference <∼2% for � < 104. The larger de-
viations at wave numbers � > 2 × 104 are due to smoothing
effects discussed below.

In the first-order approximation, the power spectra of the
convergence and the shear are identical. As has already been
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Fig. 9. Convergence power spectra Pκ(�) for sources at redshift z = 1
(lower curves) and z = 2 (upper curves). The simulation results (from
∼30 random fields of 3 × 3 deg2) are shown as diamonds with errorbars
(indicating standard deviation calculated from the field-to-field vari-
ance), the corresponding first-order predictions as solid lines. The pre-
dictions using the Peacock & Dodds (1996) prescription together with
the transfer function from Eisenstein & Hu (1999) are given as dot-
ted lines, those obtained from the Smith et al. (2003) fitting formula as
dashed lines. The predictions of a halo model using the concentration
parameters of Neto et al. (2007) are shown as dash-dotted lines.

found, e.g., by Jain et al. (2000), the convergence and shear
power spectra from ray-tracing agree very well, too. On scales
� > 1000, the difference between both is well below one percent
in our ray-tracing results.

If the first-order prediction for the convergence power-
spectra is assumed to be correct to very high accuracy, the
smoothing tests can be considered as a test of the accuracy of
our ray-tracing algorithm. Then the results shown in Fig. 9 sug-
gest that the ray-tracing is able to reproduce weak-lensing effects
within ∼3% accuracy on scales 300 <∼ � <∼ 20 000.

The comparison of the ray-tracing power spectra with some
of the popular fitting formulae is less encouraging: Both the pre-
scriptions by Peacock & Dodds (1996) (with the transfer func-
tion by Eisenstein & Hu 1999) and Smith et al. (2003) strongly
underpredict the power on intermediate and small scales. These
fitting formulae are based on older simulations, whose matter
power spectra are noticeably different from the power spectra
of more recent, higher-resolution simulations. The deviations
from the simulated convergence power spectra exceed 30% for
� > 10 000, so these fitting formulae seem to be of limited use
for the interpretation of data from future weak-lensing surveys.

A prediction based on the popular halo model (Seljak 2000;
Cooray & Sheth 2002) and the halo concentration-mass relation
of Neto et al. (2007) provides a better fit to the convergence
power spectrum. There are, however, still deviations (≈10%), in
particular for higher source redshifts and intermediate scales (i.e.
� ≈ 1−2 × 103). This coincides with the transition region of the
one- and two-halo terms, which is difficult to model accurately
due to halo exclusion effects (see e.g. Tinker et al. 2005, and
references therein), which are not included in our prediction.

As mentioned above, the deviations of the measured power
spectra and the first-order predictions at large � are due to
smoothing effects. In Fig. 10, we present the convergence power
spectra from ray-tracing runs of the same set of fields (with a
cumulative area of 80 deg2 and sources at z = 1), but with
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Fig. 10. Convergence power spectra Pκ(�) for sources at redshift z = 1.
Compared are the results from ray-tracing (symbols) using various
smoothing schemes (none/Gaussian with fixed scale ls/adaptive) and
the corresponding first-order prediction (lines) obtained projecting and
smoothing the measured 3D power spectra of the actual mass distribu-
tion in the simulation.

different smoothing schemes. In addition to adaptive smooth-
ing, which is intractable analytically, we also employ smoothing
with a Gaussian kernel of fixed comoving size on the lens planes.
The ray-tracing simulations with Gaussian smoothing on the lens
planes show – apart from sampling variance – perfect agree-
ment with the first-order prediction if the smoothing is into taken
into account there. Only the spectrum for the smallest smooth-
ing length shows some aliasing effects on very small scales. The
spectrum of the adaptive-smoothing runs happens to match the
spectrum for a Gaussian smoothing length of 10 h−1 kpc comov-
ing quite well, but one should be cautious when considering this
as an “effective” smoothing length in a different context.

4.2. Aperture-mass statistics

A suitable cosmic-shear measure that allows one to decompose
the shear signal in a finite-sized field into E- and B-modes is the
aperture mass dispersion (Schneider et al. 1998, 2002). The E-
and B-mode aperture mass at position θ on the sky and scale ϑ
are defined by:

M2
E,B(θ, ϑ) =

∫
d2θ′ Q

(
θ′ − θ, ϑ) γt,×(θ′, θ′ − θ). (24)

In this work we use the polynomial filter function Q proposed
by Schneider et al. (1998):

Q (θ, ϑ) =
6|θ|2
πϑ4

(
1 − |θ|

2

ϑ2

)
· (25)

The tangential and cross components of the shear are defined by

γt(θ′, θ) = −�
(
γ(θ′)e−2iφ(θ)

)
, (26a)

γ×(θ′, θ) = −�
(
γ(θ′)e−2iφ(θ)

)
, (26b)

where φ(θ) is the polar angle for the direction defined by θ.
An estimate for the aperture mass dispersion

〈
M2

E,B

〉
(ϑ) as

a function of the filter scale ϑ can be computed from a given
shear field by a spatial average. Figure 11a shows the E-mode
aperture mass dispersion measured from our set of simulations.
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Fig. 11. Aperture mass dispersion
〈
M2

E

〉
(ϑ) a) and

〈
M2

B

〉
(ϑ) b) as a

function of filter scale ϑ for sources at z = 1 and z = 2. Compared
are the first-order prediction (solid lines, E-mode only) and the results
from ray-tracing (symbols with error bars indicating standard deviation,
obtained from 7 fields of 5 × 5 deg2).

The dispersion measured from the ray-tracing is in very good
agreement with the first-order prediction (Schneider et al. 1998):

〈
M2

E

〉
(ϑ) =

288
π

∫ ∞

0
d�
�J2

4(ϑ�)

(ϑ�)4
Pκ(�), (27)

where Pκ(�) is given by Eq. (22), and J4 denotes a Bessel func-
tion of the first kind. The deviations of the measured aperture
mass dispersion from the first-order prediction seen on scales
<∼0.5 arcmin can be attributed to smoothing.

In the first-order approximation, the B-mode aperture mass
dispersion

〈
M2

B

〉
(ϑ) vanishes. The measured B-mode dispersion

from the full ray-tracing is shown in Fig. 11b. The B-mode signal
is at least 3 orders of magnitude smaller than the E-mode. On
larger scales their ratio even drops below 10−5.

Theoretical predictions of the amplitude of the lensing-
induced B-modes have been made by Cooray & Hu (2002) and
Hirata & Seljak (2003), who calculated corrections to the E-
and B-mode shear power spectra by expanding Eq. (4) to sec-
ond order in the gravitational potential. As Fig. 12 illustrates,
the predictions based on their methods (and the measured three-
dimensional power spectra of the Millennium Simulation) are
of the correct order of magnitude and reproduce some quali-
tative features of the ray-tracing simulations, but the match is
far from being perfect. While the B-mode predictions are lower
by a factor of ≈2 on small scales, the signal measured from
the ray-tracing declines much more quickly on larger scales.
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Fig. 12. B-mode aperture mass dispersion
〈
M2

B

〉
for sources at z = 2

decomposed into the contributions by lens-lens coupling and Born cor-
rections. Ray-tracing results (symbols with error bars indicating stan-
dard deviation, calculated from 7 fields of 1 × 1 deg2): full ray-tracing
(squares), only Born corrections (diamonds), only lens-lens coupling
(triangles). Predictions by Cooray & Hu (2002): full signal (dashed
line), only Born corrections (dotted line), only lens-lens coupling (dash-
dotted line). Prediction by Hirata & Seljak (2003): full signal (solid
line).

However, the discrepancies are not large enough to challenge
the finding of Shapiro & Cooray (2006) that the lensing-induced
B-mode is unimportant even for an all-sky survey.

In order to determine their individual contributions to the to-
tal B-mode signal, we switch off ray deflections (i.e. we employ
the Born approximation by setting θ(k) = θ ∀k in Eq. (15)) and/or
lens-lens coupling (i.e. we set A(k−1) = 1 in the third term on the
r.h.s. of Eq. (16)). Again the predictions and the measured sig-
nal differ by factors ∼2 on small scales, and the measured signal
decreases much stronger with increasing scale.

We closely examined various steps involved in the calcula-
tions to exclude numerical artifacts as the reason for the discrep-
ancy. The smoothing tests show that the smoothing we applied
to the matter distribution on the lens planes can only account
for deviations on scales <∼0.5 arcmin. Examining the variance
between the different ray-traced fields, we can exclude “cosmic
variance” as a major source of the discrepancy.

The ray-tracing results did not change when different ways
of estimating M2

B in real and Fourier space, as well as differ-
ent methods of numerical integration for the theoretical curves
were used. Furthermore, only a tiny B-mode (at least 6 orders
of magnitudes smaller than the E-mode) remained, when both
ray deflections and lens-lens coupling were switched off in the
simulation (which is essentially equivalent to the first-order ap-
proximation). The origin of this tiny signal is found to be the
interpolation of the Jacobian matrix between the grid points to
obtain their values at the light ray positions. Sampling a B-mode-
free, continuous shear field on a grid and subsequent interpola-
tion yields again a continuous shear field. This, however, agrees
exactly with the original field only at the grid points. Therefore,
it may in general contain a small B-mode contribution, depend-
ing on the grid resolution and the interpolation scheme used.

4.3. Galaxy-galaxy lensing

We test the effect of Born corrections and lens-lens coupling on
galaxy-galaxy lensing (GGL) by producing a catalogue of unbi-
ased mock galaxies. We achieve this by first drawing a number of

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811054&pdf_id=11
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811054&pdf_id=12
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simulation particles on each lens plane at random and using their
positions as lens galaxy positions in the algorithm described in
Sect. 3.4. We then obtain a catalogue of source galaxies by ran-
domly sampling positions in the image plane assuming a uni-
form image distribution over the field-of-view.

The GGL signal we are interested in is given by the mean
tangential shear 〈γt〉 (ϑ) at the image positions of the source
galaxies as a function of angular separation ϑ to the positions
of the lens galaxies. In the simple case of unbiased galaxies con-
sidered here, the expected GGL signal can be computed in the
first-order approximation by:

〈γt〉 (ϑ) =
1

2π

∫
dw

pl(w)q(w)
fK(w)

×
∫

d��J2(ϑ�)Pδ

(
t(w),

�

fK(w)

)
, (28)

where J2 is a Bessel function of the first kind, pl(w) is the prob-
ability distribution of the lens galaxies’ distances, the lensing
weight q(w) is given by Eq. (23), and Pδ denotes again the
3D matter power spectrum. For simplicity, we will consider a
volume-limited sample of lens galaxies with constant comoving
density in the following.

Due to statistical parity invariance, the cross component γ× is
expected to vanish when averaged over many source-lens pairs.
The observed mean cross component 〈γ×〉 can therefore be used
as a test for systematic effects and “cosmic variance”. As shown
in Fig. 13, 〈γ×〉 is consistent with zero in our ray-tracing.

While the cross component γ× provides a test for system-
atic effects, the tangential shear γt contains the desired infor-
mation about the matter and galaxy distribution. As can be
seen in Fig. 13, the mean tangential shear 〈γt〉 is significantly
smaller (≈10−20% at an angular separation of 1 arcmin) in the
ray-tracing than expected from the first-order prediction (28).

The reason for this discrepancy is magnification bias: lenses,
i.e. dense matter structures such as galaxies or clusters with their
dark matter halos, magnify the regions behind them. The magni-
fication reduces the apparent number density of higher-redshift
lens galaxies around lower-redshift lenses in a volume limited
survey (as has been simulated here). Underdense regions, on the
other hand, demagnify the regions behind them, thereby increas-
ing the apparent number density of lens galaxies behind them.
The de-/magnification leads to an anticorrelation between the
positions of high-redshift lens galaxies and the tangential shear
induced by low-redshift structures. The anticorrelation reduces
the signal 〈γt〉 compared to the first-order approximation12. We
can suppress the magnification bias in the ray-tracing by switch-
ing off the deflections and using Eq. (17) to calculate the distor-
tions. In this case our simulations are fully consistent with the
first-order prediction, as is shown in Fig. 13.

The effect of the magnification bias on the GGL depends on
the redshift distribution of the sources and the lenses. Moreover,
the shape of the lens luminosity function may be important if the
lens population is selected using a magnitude limit. For example,
the first-order approximation may underestimate 〈γt〉 for a lens
population with a very steep luminosity function near the survey
magnitude limit. We reserve a more detailed investigation of this
effect with realistic source and lens distributions for future work.

12 Note that in the first-order approximation, magnification effects are
neglected. Thus, the positions of galaxies at any given redshift are un-
correlated with the shear induced by galaxies at different redshifts.
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Fig. 13. Galaxy-galaxy-lensing signal for sources at redshift z = 1
and unbiased lens galaxies with a constant comoving mean density
between z = 0 and z = 1. a) Shown are the measured tangential com-
ponent 〈γt〉 (ϑ) of the shear from full ray-tracing (diamonds) and ray-
tracing using the first-order approximation (17) (squares), and the first-
order prediction (28) (solid line). b) Measured cross component 〈γ×〉 (ϑ)
from full ray-tracing (diamonds) and first-order ray-tracing (squares).
Error bars denote the standard deviation calculated from a set of 24 sim-
ulated fields of 3 × 3 deg2.

5. Summary

In this work, we have described a new variant of the multiple-
lens-plane algorithm, which is particularly suited for ray-tracing
through very large cosmological N-body simulations. The al-
gorithm differs in some important details from previous works.
This allows us to take full advantage of the unprecedented sta-
tistical power offered by the large volume and high spatial and
mass resolution of the Millennium Simulation. The features dis-
cussed include: a tilted line-of-sight (to avoid periodic repetition
of structures along the line-of-sight), adaptive slice boundaries
(to avoid the slicing and duplication of bound structures), adap-
tive smoothing of the projected matter distribution on the lens
planes (to reduce shot noise from the particles), a mutliple-mesh
method for calculating the light deflections and distortions at the
lens planes (which takes into account the small-scale and large-
scale structure simultaneously), and a method to include galax-
ies (as lenses and sources) from semi-analytic galaxy-formation
models in the ray-tracing process.

We have used the ray-tracing code and the Millennium
Simulation to investigate the impact of lens-lens coupling and
multiple ray deflections on various cosmic shear two-point
statistics. We have computed convergence power spectra from
a set of ray-tracing realisations. For testing and comparison, we
have also computed a first-order prediction of the convergence

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811054&pdf_id=13
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power spectrum using the measured three-dimensional power
spectra of the mass distribution in the Millennium Simulation.
We find that this first-order prediction agrees very well with the
ray-tracing results except for very small scales (the difference is
>5% only for � > 20 000), where smoothing on the lens planes
becomes important.

Comparing the convergence power spectrum from the ray-
tracing to the predictions based on the fitting formulae for
the matter power spectrum by Peacock & Dodds (1996) and
Smith et al. (2003), we find significant discrepancies (>30% for
� > 10 000), casting the usefulness of these fitting formulae
for cosmological parameter estimation for future surveys into
doubt. A prediction based on the popular halo model and the
halo concentration-mass relation of Neto et al. (2007) fits better,
but there are still noticeable deviations, in particular for higher
source redshifts (∼10% for sources at zS = 2). This indicates a
need for more accurate descriptions of matter power spectra.

Furthermore, we have computed the E- and B-mode aper-
ture mass dispersion using our ray-tracing algorithm. We find
the B-mode to be finite, but at least three orders of magni-
tude smaller than the E-mode. The amplitude of the B-mode is
slightly larger and shows a different scale dependence than the
predictions of Cooray & Hu (2002) and Hirata & Seljak (2003).
We have performed various tests to exclude numerical artifacts
as the origin of the deviations. Despite these discrepancies, we
can confirm the finding of Shapiro & Cooray (2006) that the
lensing-induced B-mode can be safely neglected even in an all-
sky survey.

Corrections to the first-order approximation can have a con-
siderable impact on galaxy-galaxy lensing. In the simple case
of a volume-limited sample of unbiased lens galaxies and all
sources at redshifts z = 1, the first-order approximation over-
estimates the mean tangential shear around lenses by ≈10−20%
at an angular separation of 1 arcmin due to its failure to incor-
porate the magnification bias. The impact of the magnification
bias on the galaxy-galaxy lensing signal depends on the survey
selection criteria and the luminosity and redshift distribution of
the sources and the lenses. A detailed investigation of this effect
should be carried out in future work.

Note added in proof. We became aware recently that Ziour &
Hui (2008) discuss the impact of magnification bias on galaxy-
galaxy lensing power spectra.
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Appendix A: Lattice planes

The periodicity of our matter distribution along and perpendicu-
lar to the line-of-sight can be studied within the theory of crystal
lattices (see, e.g., Ashcroft & Mermin 1976). Here, we give a
practical explanation rather than a rigorous proof.

Consider an array of unit cubes forming a simple cubic lat-
tice with lattice constant unity. Choose two linearly indepen-
dent lattice vectors p and q with p = (p1, p2, p3) and q =
(q1, q2, q3) and pi, qi ∈ Z. These two vectors span a plane which
is perpendicular to the lattice vector n with n = (n1, n2, n3) =
(p1, p2, p3) × (q1, q2, q3), ni ∈ Z.

Since the plane-spanning vectors are lattice vectors, the
plane is itself periodic and therefore represents a plane lattice.
With p and q as basis vectors of the plane lattice, the plane is pe-
riodic along the direction of p and q with periodicity length |p|
and |q|, respectively. The parallelogram constructed from p and
q represents a unit cell of the plane lattice with a cell area of |p×
q| = |n|. One can show that there is no smaller unit cell if the in-
teger coefficients n1, n2, and n3 are coprime. Furthermore, there
is no shorter non-zero lattice vector perpendicular to the plane
than n in this case, and hence, the shortest periodicity along the
normal direction is |n|.

For the computational cube of the Millennium Simulation
with side length L = 500 h−1 Mpc, the lengths and areas above
have to be multiplied by L and L2, respectively. Our choices
p = L(3,−1, 0) and q = L(1, 3,−1) yield a LOS vector n =
L(1, 3, 10) with |n| = 5.244 h−1 Gpc and a rectangular area of
1.581 h−1 Gpc × 1.658 h−1 Gpc for the lens planes.
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