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Abstract 

A coupled map lattice for convection is proposed, which consists of Eulerian and Lagrangian procedures. Simulations 

of the model not only reproduce a wide-range of phenomena in Rayleigh-BCnard convection experiments but also lead to 

several predictions of novel phenomena there: For small aspect ratios, the formation of convective rolls, their oscillation. 

many routes to chaos, and chaotic itinerancy are found, with the increase of the Rayleigh number. For large aspect ratios. 

the collective oscillation of convective rolls, travelling waves, coherent chaos, and spatiotemporal intermittency are observed, 

At high Rayleigh numbers, the transition from soft to hard turbulence is confirmed, as is characterized by the change of the 

temperature distribution from Gaussian to exponential. Roll formation in three-dimensional convection is also simulated, and 

found to reproduce experiments well. 

1. Introduction 

Rayleigh-Btnard convection has been extensively 

studied as a “standard”  experimental model for tem- 

porally and/or spatially complex phenomena. When 

the aspect ratio is small, it shows a variety of routes 

to chaos such as subharmonic, quasi-periodic and in- 

termittencies, depending on the Prandtl number. For 

large aspect ratios, spatiotemporal intermittency is ob- 

served, which provides one of the standard routes from 

localized to spatiotemporal chaos, as is common in 

spatially extended systems. When the Rayleigh num- 

ber is very large, the experiments provide a test-bed 

for turbulence theory. It includes the recent discovery 
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of the transition from soft to hard turbulence, found by 

Libchaber’s group. In cases with a large aspect ratio 

and a relatively low Rayleigh number, pattern forma- 

tion of rolls has been extensively studied. 

In principle, it is expected that these experiments 

can be described by the Navier-Stokes (NS) equa- 

tions, coupled suitably to an equation for the tempera- 

ture field. In a weakly nonlinear regime, for example, 

a set of equations comprising of the NS equations and 

a temperature field with Boussinesq approximation is 

in quantitative agreement with experimental observa- 

tions, with regard to the critical Rayleigh number and 

the onset of oscillation of rolls. In a highly nonlin- 

ear regime (chaotic and turbulent regime), one has 

to resort to numerical simulation, to study this set ol 

equations. 

Saltzman’s pioneering simulation with the Fourier 
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mode truncation from the NS equations with Boussi- 

nesq approximation for the temperature field leads 

Lorenz to study his celebrated equation [ 1,2]. Yahata 

has employed the Galyorkin method to obtain an or- 

dinary differential equation with about 100 variables. 

His sequence of numerical studies has revealed the 

onset of chaos as well as the spatiotemporal structure 

of rolls in Rayleigh-BCnard convection with low as- 

pect ratio [ 3,4]. A large scale direct numerical sim- 

ulation of the NS equations has become possible by 

using huge computational resources [ 5-71. 

However, it is often difficult to adopt the NS equa- 

tions there, because of the limitation of computational 

resources and numerical stability problems, practi- 

cally. Furthermore, it is sometimes not easy to under- 

stand the phenomenology for convection completely, 

even if we succeed in reproducing the phenomena. 

So far, we do not have a “simple” model which 

reproduces all of the above phenomena. Is it possi- 

ble, then, to construct a simpler (and coarse grained) 

model to study the phenomena? 

In this paper, we introduce a coupled map lattice 

model which reproduces almost all phenomena known 

for Rayleigh-Benard convection except those associ- 

ated with the long wavelength instabilities (see [8] 

for the rapid communication of the present paper). Al- 

though we have not studied such instabilities as Eck- 

haus, zigzag, and skewed varicose here, we believe 

that these long wavelength instabilities can be repro- 

duced with our model by adopting a larger system 

size 3 . Also, we can analyze the phenomena, in terms 

of dynamical systems, with the use of, for example, 

Lyapunov analysis. Another advantage of this model 

is its fast computation. All the simulations are carried 

out with the use of workstations, rather than a CRAY 

or Connection Machine, although our model fits with 

parallel computations very well. This numerical effi- 

ciency enables us to globally search a wide parameter 

space, to predict a new class of phenomena, and even 

to make some quantitative predictions. 

The present paper is organized as follows: In Sec- 

tion 2, we construct a CML model for convection 

’ Preliminary simulations on 3-dimensional lattices show the Eck- 

haus instability. 

by introducing the Lagrangian procedure which ex- 

presses the advection for the flow. Numerical results 

of the model are presented through Section 3 to Sec- 

tion 9. The onset of convection (i.e., the Rayleigh- 

Benard instability point) and the onset of periodic os- 

cillations is studied in Section 3. With the increase 

of the Rayleigh number, the periodic oscillations are 

replaced by chaotic ones. In Section 4, a variety of 

routes to chaotic oscillations is found, in agreement 

with experiments. It is also argued that the interrup- 

tion of period-doubling bifurcations, experimentally 

observed, may not be due to external noise, but inher- 

ent to the dynamics of convection, which originally 

involve many degrees of freedom. After these low di- 

mensional attractors collapse with the increase of the 

Rayleigh number, chaotic itinerant motion between the 

collapsed attractors is often observed, as is studied in 

Section 5. 

For large aspect ratios, spatial degrees of freedom 

are no longer suppressed. High-dimensional chaos is 

observed whose dimension increases with the system 

size. We note that the spatial structure is still sustained 

here, leading to coherent chaos, as is studied in Sec- 

tion 6. With the increase of the Rayleigh number, a 

transition to a state with spatial disorder is seen univer- 

sally. This route to turbulence, characterized by spa- 

tiotemporal intermittency (STI), is confirmed in our 

model in Section 7, with a detailed statistical analysis. 

The transition from soft to hard turbulence is studied 

in Section 8. Experimental observations regarding the 

change of distributions are reproduced, while a mech- 

anism for the transition is proposed with the visual- 

ization of plumes. A prediction on the Prandtl number 

dependence of the transition is also given. The pattern 

formation process in convective rolls is given in Sec- 

tion 9, as well as the inclusion of a rotation effect. A 

summary and discussions are given in Section 10. In 

Appendix A, we discuss the stability of our model, by 

showing that the salient feature does not depend on 

the detailed procedure of our model. 
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2. Model 

Coupled map lattices (CML) are useful for study- 

ing the dynamics of spatially extended systems [9- 

121. Originally, the CML was proposed as a model for 

studying spatiotemporal chaos at a rather abstract and 

metaphorical level. However, the results derived from 

this model are often strongly connected with those 

found in natural phenomena. For example, spatiotem- 

poral intermittency (STI) was first found in a class of 

CML, and is observed in a wide range of CML models 

when the system loses spatial coherence and moves 

towards turbulence. Later ST1 was also discovered 

in systems with partial differential equations (PDE) 

such as the Kuramoto-Sivashinsky equation and the 

Ginzburg-Landau equation. In nature, such ST1 be- 

havior is observed, e.g, in Rayleigh-BCnard convec- 

tion, electric convection of liquid crystals and rotating 

viscous fluids. 

As far as we see from the examples of STI, the 

qualitative features do not depend on the details of the 

models. Some other features, found in abstract CML 

models are also found widely in PDE systems and in 

experiments. These observations lead us to believe in 

the existence of qualitative universality classes in na- 

ture. Without bothering about the details of the equa- 

tions involved, we may construct a simple model for 

some given spatially extended dynamics. Here we pro- 

vide an example of the construction of a simple model 

which potentially belongs to the same “universality 

class”  as Rayleigh-Btnard convection. 

CML modeling is based on the separation and suc- 

cessive operation of procedures, which are represented 

as maps acting on a field variable on a lattice. Be- 

sides the above mentioned abstract case, this approach 

has successfully been applied to spinodal decomposi- 

tion [ 131, the boiling transition [ 14,151, pattern for- 

mation of sand ripples [ 161, and so on. In particu- 

lar, the pattern formation process derived from a CML 

model of spinodal decomposition has been shown to 

form a universality class including the time dependent 

Ginzburg-Landau equation, and agrees with experi- 

mental observations, even in a quantitative sense with 

regard to scaling relationships. 

Let us start with the construction of a CML model 

for convection in 2-dimensional space. For this, tirst 

we choose a two dimensional square lattice (x, y ) with 

y as a perpendicular direction, and assign the velocity 

field u’( X, y) and the internal energy E’( x, y ) as field 

variables at time f. The dynamics of these field vari- 

ables consists of Lagrangian and Eulerian parts. The 

latter part is further decomposed into the buoyancy 

force, heat diffusion and viscosity, which are carried 

out by the conventional CML modeling method [ 17 1. 

In constructing procedures, we assume that E’(s, y) 

is associated with the temperature. 

2.1. Euler procedure 

To construct the procedures in the Eulerian part we 

take into account the following properties in convec- 

tion phenomena: ( 1) Heat diffusion leads to diffusion 

of E’(x,y); (2) The velocity field v’(s,y) is also 

subject to the diffusive dynamics, due to the viscosity: 

(3) A site with higher temperature receives a force in 

the upward direction (buoyancy) ; (4) The gradient of 

a pressure term (which depends on the velocity field ) 

gives rise to a change of the velocity fields. 

The procedures for ( 1) and (2) are rather transplu-- 

ent, since we can just adopt the discrete Laplacian pro- 

cedure of diffusively coupled map lattices. The con- 

struction of (3) and (4) is more subtle and difficult. 

For the buoyance procedure, we assume that the verti-- 

cal velocity is incremented linearly with the horizon- 

tal Laplacian of the energy term. Indeed we have tried 

some other procedures also, such as a Laplacian term 

also including the vertical direction. In so far as we 

have studied, our choice here fits best with known re- 

sults on the convection (see Appendix A). 

To take (4) into account, we note that the pressure 

term requires div u to be 0, in an incompressible fluid, 

We do not use this condition here, since the inclusion 

of pressure variables requires more complicated mod- 

eling, and often makes it difficult to construct a model 

with local interaction only. Instead, we borrow a term 

from compressible fluid dynamics, which brings about 

this pressure effect, and refrains from the growth 01’ 

divv. This term is given by the discrete version 01‘ 

grad(divv). 
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Combining these dynamics, the Eulerian part is 

written as the successive operations of the following 

mappings (hereafter we use the notation for discrete 

Laplacian operator: AA(x,y) = b{A(x - 1,~) + 

A(x+l,y)+A(x,y-l)+A(x,y+l)-4A(x,y)} 

for any field variable A > : 

(4 

(b) 

(cl 

Buoyancy procedure 

o.;(x,y) =u_,,(x,Y) + +{2E’(x,y) 

-E’(x+ 1,y) - E’(x - l,y)}, 

(1) 

o;(x,y) =u:(x*y) (2) 

Heat diffusion 

E’(x, y) = E’(x, y) + AAE’(x, y) 

Viscosity and pressure effect 

(3) 

u:tx,y) = u:(x,y) + vAu:(x,y) 

+rl{&Qx + l,Y) +0:(x - l,y)l 

-$(x,y) + $;(x + 1,y + 1) 

+$(x - l,y - 1) - u,*(x - 1,y + 1) 

-$(x + l,Y - 1)1} (4) 

and the equation with [x +-+ y] . 

The above three parallel procedures complete the 

Eulerian scheme. 

2.2. Lagrange procedure 

The Lagrangian scheme expresses the advection of 

velocity and temperature. To take advection into ac- 

count, it is often useful to introduce a quasi-particle 

on each lattice site (x, y) . The particle has a velocity 

o(x,y) and moves to (x + Sx,y + Sy) by the La- 

grangian scheme, where Sx = uX(x, y), Sy = u,(x, y). 

All field variables (velocity and internal energy) are 

carried by this particle. Since there is no lattice point 

at the position (x + Sx, y + Sy) generally, we allocate 

the field variable on its four nearest neighbor sites. 

The weight of this allocation is given by the lever 

rule: (1 - 8x)( 1 - 6y), Sx( 1 - 6y), (1 - Sx)Gy, 

andSx8yforthesites ([x+Sx],[y+6yl),([x+ 

8x1 + 1, [y + Syl),([x + 6x1, [y + Syl + 1) and 
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Fig. I. Lagrangian procedure. Schematic figure illustrating the 

Lagrangian procedure. A quasi-particle sets at each site (x, .v) 

moves to (x, y) + ( ux, L+,), following the velocity field at the 

original site. Then the field values are allocated to the nearest 

neighbor’s sites, according to the lever rule. 

([~+8x]+l,[y+Sy] +l)respectively,with [z_] 

the largest integer smaller than z (see Fig. 1 for the 

explanation). By this rule, the energy and momentum 

are conserved in the Lagrangian procedure. 

The total dynamics of our model is given by suc- 

cessive applications of the above procedures: 

This completes one step of the dynamics. 

For the boundary, we choose the following condi- 

tions: 

( 1) Top and bottom plates: Assuming a correspon- 

dence between E and the temperature, we choose the 

boundary condition E(x,O) = AT = -E(x, NY). For 

the velocity field we have used either the fixed bound- 

ary or free boundary. For the Lagrangian scheme, we 

use either the fixed or the reflection boundary. 

(2) Sidewalls at x = 0 and x = NX: We use ei- 

ther fixed, reflective, or periodic boundary conditions. 

Hereafter we mostly choose the fixed boundary for top 

and bottom plates and the periodic boundary condi- 

tion for the x-direction. The change to a fixed bound- 

ary at the wall alters our velocity pattern at least in the 

small size case, but most of the transition sequences 
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of patterns (to be reported) remain invariant. 

The basic parameters in our model (and in experi- 

ments) are the Rayleigh number (proportional to AT), 

the Prandtl number (ratio of viscosity to heat diffu- 

sion v/h), and the aspect ratio (N,/N,,). Here we 

study in detail the dependence of convection patterns 

on the Rayleigh number and the aspect ratio, and men- 

tion the effect of Prandtl number for each transition. 

For simulations we take the diffusion coefficient 7 as 

v/3 < 7 2 v [ 181, although our results are repro- 

duced, as long as 7 is in the same order of magnitude 

as V, where divv is kept small numerically. 

2.3. Defense of our CML approach 

One might ask why we do not use a set of PDE with 

the Navier-Stokes (NS) equations and a suitable heat 

equation for the temperature field. There are several 

reasons for this. First, one has to resort to numerical 

simulations to solve the NS equations, since it cannot 

be treated analytically at least in a high Rayleigh num- 

ber regime. The numerical scheme for solving it is also 

complicated and often it is unstable. To stabilize the 

numerical scheme, we often have to add artificial vis- 

cosity, for example; a higher order term than the Lapla- 

cian. Without such a method, we cannot avoid the nu- 

merical viscosity which is due to the discreteness of 

our computation. Such an “artificial viscosity”  drasti- 

cally changes the functional analytical property of the 

NS equations [ 19,201. For example, it is not proven 

that the NS equations have a physically or mathemat- 

ically unique solution, while inclusion of the higher 

order viscosity leads to a unique global solution. So 

it is not clear whether the numerical solution (even if 

it is carried out with high accuracy) retains the math- 

ematical structures of the NS equations. On the other 

hand, it may be appreciate to note that the NS equa- 

tions are not derived from a microscopic level with a 

complete rigor, and thus the equations can be regarded 

as a kind of phenomenological equation [ 20,2 1 ] 4 . 

4 It is not completely sure if the NS equations are the only equa- 

tions for fluid dynamics. As is clear from the above argument, nu- 

merical solutions in agreement with experiments do not justify the 

NS equations, while one may argue that the functional analytical 

properties of the NS equations may not fit our physical intuitions. 

In Rayleigh-BCnard convection, we also have to 

adopt some approximation for the coupling with the 

temperature field. Thus the PDE equations there re- 

main approximate and phenomenological. 

The CML model we adopt here is constructive in 

nature. For this construction we assume that the salient 

features of the phenomena do not depend on the details 

of a model. A model, at any rate, cannot he exact11 

identical with nature herself, and we have to assume 

some kind of universality among the model classes. 

Most important macroscopic (coarse grained) prop- 

erties such as the flow patterns and statistical quanti- 

ties must be robust against some changes of models. 

Thus we can hope that our CML modelling belongs 

to the same “universality”  class as convection in nil- 

ture. Conversely, by modifying or removing the proco- 

dures in our model, we can see what parts arc essential 

to a given feature. Numerical results of other models 

(with modification and removal of some procedures I 

are given in Appendix A, where the predominance 01 

the present model is discussed. as well as the stability 

against the change of models. 

Since our model is much more efficient lhan the 

PDE approach, it is easy to explore the phenomenol- 

ogy globally with changing parameters. A Rayleigh-- 

Btnard system has at least three basic parameters. Wc 

do not know as yet how long it takes to explore all 

the phenomenology in convection with the use of the 

PDE approach, even if’ we use the fastest computer in 

the world. In our model. we can easily study the phc- 

nomena interactively with work-stations, by exploring 

the three-dimensional parameter space. Surprisingly. 

the model reproduces almost all phenomenology 1‘01 

convection as is shown in the following sections. Fur- 

thermore we can even get some predictions for future 

experiments. In particular, we can predict some fea- 

tures of the turbulence regimes, which are rather clil‘~ 

ficult to study by PDE simulations, so far. 

Of course, another merit of our approach is its easy 

accessibility of dynamical systems theory. For all 

classes of convection patterns to be studied. consider- 

ations are made from the point of dynamical systems 

theory, by which we can proceed to the understanding 

of convection patterns. 
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3. Pre-chaos 

3.1. The onset of convection 

When AT is sufficiently small, there is no convective 

motion; the fluid is completely fixed in time, where 

the Fourier law of the temperature is numerically con- 

firmed. As AT is increased, the heat transfer by the 

diffusion is no longer enough to sustain the temper- 

ature difference, and convective rolls start to appear 

(Fig. 2). The critical temperature difference AT, for 

the appearance of convection corresponds to the criti- 

cal Rayleigh number in experiments. The critical value 

depends on the boundary condition at small aspect ra- 

tios. Slightly above AT,, the convective rolls are fixed 

in time. In this subsection, we investigate several fea- 

tures at the onset of convection. 

In Fig. 3 the vertical velocity in the middle of the 

container vr( N,/2, N,/2) is plotted vs AT. At AT = 

AT, the vertical velocity rises from zero. To see the 

critical property here, we have to determine AT, nu- 

merically with accuracy. Here we use the following 

method: Let us measure the time evolution of the total 

kinetic energy 

K(t) = -&(r,y)2+ L+,y)2) (5) 
x=1 g=l 

starting from a random initial condition with small 

amplitudes. If the total kinetic energy decreases with 

time then AT is lower than AT,, otherwise AT > AT,. 

By measuring the time derivative for the total kinetic 

energy dK/dt, the critical value AT, can be deter- 

mined by the condition dK/dt = 0. By using this crit- 

ical value, and the following normalized temperature 

difference (corresponding to the normalized Rayleigh 

number) : 

AT - AT, 
E= 

AT, ’ 
(6) 

the vertical velocity vY is found to scale as 

112 DJE) NE . (7) 

The exponent l/2 is, of course, expected from the 

bifurcation analysis, and agrees with experiments 

Fig. 2. Vector field of convective rolls near the onset of con- 

vection. The snapshot of the vector field of convective rolls 

near the onset of convection. These rolls are fixed in time. 

AT = 0.01, A = 0.4, v = 11 = 0.2, NX = 34, NY = 17 with periodic 

boundary conditions after the transients have died out. A random 

initial condition is adopted. 

[ 22,231. 

When there is convection (i.e., AT > AT,), the 

effective thermal conductivity A,% of the convective 

layer is greater than the static thermal conductivity A. 

The Nusselt number 

Nu 5 &r/h (8) 

equals 1 for E < 1, and is known to satisfy Nu - 1 CC 

E [23,24]. This relationship of the Nusselt number 

is confirmed in our simulation, while the proportion 

coefficient A (s.t. Nu -1 = AE) depends on the as- 

pect ratio and the condition of the side walls of the 

container. At the onset of instability, critical slowing 

down is commonly observed when a constant heat flux 

is supplied. To study this, we define the heat current 

as a constant increment (decrement) of energy at the 

bottom (top) plate of the container. 

We have measured the time evolution of the temper- 

ature difference AT(t) between the top and the bot- 

tom plates. When a heat current is turned on at time 

0, heat is initially carried only by thermal diffusion. 

Before AT(t) reaches its maximum value, the temper- 

ature difference exceeds the critical value AT,. Then 

the fluid starts the convection by which the tempera- 

ture difference starts to decrease. The final decay to 

equilibrium can be represented by 

AT(t) =Dexp(--t/7) +AT(co). (9) 

We have fitted our data with the above form in order 

to determine r. Fig. 4 shows the heat flux dependence 
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0 0.5 1 1.5 

(AT-AT,) /ATc 

Fig. 3. The AT dependence of the vertical velocity. The vertical ve- 

locity L’!, (N,/2, N,/2) in the middle of the container as a function 

of the normalized temperature difference. AT is gradually incre- 

mented form 0.007 to 0.02 per 0.00013. Each uY( N,/2, NY/2) is 

obtained after 1000 transients. Above AT, - 0.007, L’? suddenly in- 

creases with some power. A = 0.4, Y = 7 = 0.2, Nx = 34, N, = 17. 

l/TX:C-5 
6.0 

4.c 

2.c 

C 

. 

. 

1.0 1.1 1.2 1.3 

flux x10-5 

Fig. 4. The heat flux dependence of the relaxation time. Applying 

a constant flux, we calculate AT(r) until 2 x IO5 time steps 

starting from a random initial condition. We fit the time evolution 

of the temperature difference AT(t) by EQ. (9). The inverse of 7 

increases with the heat flux linearly which vanishes at the onset 

of convection. A = 0.4, v = 71 = 0.2, N, = 34, NY = 17. 

of the decay time 7. The inverse of the decay time 

linearly increases with the heat as is expected, and 

agrees with experiments and theory [ 231. 

3.2. The onset of oscillations 

By further increasing AT, the rolls are no longer 

fixed, but start to oscillate. The amplitude of the oscil- 

lation increases in proportion to AT - AT,,, near the 

onset of the oscillation AT,,,. The critical temperature 

difference at the onset of the oscillation AT,,, depends 

on Pr, r and the boundary conditions. First, AT,,, is 

proportional to the Prandtl number. Changing A from 

0.05 to 0.4 by fixing v = 7 = 0.2, N, = 34, N,. = 17. 

the critical value of the onset of oscillation AT,,, IS 

fitted as; 

AT,,,(A) = 1.8A + 0.3. 

The aspect ratio dependence is, on the other hand, 

nonmonotonic. When the aspect ratio I’ is close to an 

integer, the rolls start to oscillate at a small tempera- 

ture difference. If r is far from any integer, the mo- 

tion of the convective rolls should be restricted by the 

unmatched size of the container. 

At the onset, the oscillation is periodic without any 

higher harmonics of the fundamental frequency. The 

characteristic frequency of the oscillation also depends 

on AT, Pr and the aspect ratio r. We have studied the 

dependence of the frequency on AT, near the onset of 

the oscillation. To estimate the power spectrum of the 

velocity, the AutoRegressive (AR) model is adopted 

(see Appendix B) [ 251. 

From the AR model one can estimate the oscillation 

frequency as well as the amplitude of the fundamental 

frequency by the difference between the maximum 

and minimum vertical velocities u!( N.,/2, N,.!2). The 

amplitude A,,, is found to be proportional to AT near 

the onset of oscillation (see Fig. 5). By increasing AT. 

the maximum peak of the power spectrum (i.e., the 

fundamental frequency) shifts to a higher frequency. 

Fig. 6 shows the AT dependence of the characteristic 

frequency. The fundamental frequency almost linearly 

increases with AT. 

4. Routes to chaos 

For smaller aspect ratios, the periodic oscillation 

may bifurcate to chaos via several routes as the 

Rayleigh number is changed. Such routes to chaos 

have been compared with dynamical systems theories. 

and have been observed in numerous experiments 

over the past few decades [ 26,271. The other system 

parameters, Prandtl number and the aspect ratio, arc 

known to be relevant to the nature of the bifurcation. 
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A 
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O.l/ 

0.08. 

0.06. 

0.04. 

0.02. 

AT 

Fig. 5. The AT dependence of the amplitude of oscillation. The 

amplitude of the oscillation vs AT is plotted. The amplitude is 

defined as the difference between maximum and minimum val- 

ues of uy( N,/2, Ny/2) after discarding lo4 initial transients. 

A = 0.4, v = 7) = 0.2, Nx = 34, NY = 17. 

f max 

0.04 

0.038. i ..+:.-. 

+--'*-- 

.".m.-..--* 

0.036. * ' . 
__"d=-5 

0.034' _/*** 
.% 

.."* 

0.032. 

o.o:I 
0.22 0.24 0.26 0.28 0.3 

AT 

Fig. 6. The AT dependence of the oscillation frequency. The 

fundamental frequency vs AT. Each fundamental frequency is 

estimated by a 100th order AR model (see Appendix B) using 

4ooO time series per 10 steps of the velocity uY ( N,/2, NY /2) after 

104 transients have died out. All the parameters are the same as 

in Fig. 5. 

At low Prandtl numbers, we have found a sub- 

harmonic route to chaos. With the increase of the 

Rayleigh number, the period of the oscillation dou- 

bles as is shown in Fig. 7. Here, we note that the dou- 

bling is interrupted after a finite number of times (so 

far the maximum periodicity we observed is 16). In 

experimental observations, it is believed that noise in- 

duces such an imperfect period-doubling bifurcation 

cascade. In our simulation, no external noise is added, 

and high dimensional dynamics possibly plays the role 

of a generator of “noise”, which, we believe, is the 

origin of the interruption of the doubling sequence. 

At high Prandtl numbers, we have found a quasiperi- 

odic route to chaos (see Fig. 8)) as well as the mode 

locking phenomena near the collapse of tori. At an 

even higher Prandtl number, torus doubling is often 

observed [ 281, while the route to chaos with intermit- 

tency is also observed by changing the aspect ratio. 

These changes of routes to chaos are consistent with 

experimental observations [ 291. 

These routes to chaos strongly depend on the system 

parameters, in particular, on the aspect ratio r. With 

the change of r, the number of convective rolls can 

also vary. For example, with the further increase of AT 

(after the oscillation of two convective rolls becomes 

chaotic), we have sometimes observed the periodic os- 

cillation of three rolls. This “window” is due to quite 

a different mechanism from that in low-dimensional 

chaotic dynamical systems. In the present case, the 

change of spatial degrees of freedom (the number of 

convective rolls) is a trigger for the bifurcation to a 

periodic state. Furthermore, the “window” here has a / __--*- __.-- 
0.2 ,f / r” __ 

; I 
i E 0.1; 
, 

i 

(a) (b) CC) 

Fig. 7. The projection of the orbit of the vertical velocity uY (N,/2, NY/2). The change of the oscillation of convective rolls with the increase 

of AT, from periodic to chaotic. The projection of the orbit onto the plane of vertical velocity I$( N,/2, NY/2) versus u;+~O( N,/2, NY/2). 

4000 time series are plotted. (a) AT = 0.5:period 2 (b) AT = 0.55: period 8 (c) AT = 0.6:chaotic. A = 0.4, Y = 7 = 0.2, NX = 30, NY = 17. 
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Fig. 8. Quasiperiodic route to chaos. (a) At high Prandtl numbers, the motion of convective rolls is quasiperiodic. The time series of the 

vertical velocity L$ (N,/2, NY/2) is plotted at AT = 0.2, A = 0. I, v = 17 = 0.2, N.r = 34, N, = 17. (b) Power spectrum for the above time 

series (a). Two elementary frequencies exist. 

hysteresis with respect to the changes of AT and Pr. 

Thus the route to chaos can depend on the history 

of the variation of the parameters. The change of the 

number of rolls with the aspect ratio is rather abrupt. 

Once the number changes, the low-dimensional dy- 

namics governing the motion alters drastically, which 

can push the attractor from chaotic to periodic motion. 

Since the change of roll structures has a hysteresis 

with AT and Prandtl number, we can observe a differ- 

ent route to chaos for the same parameters, depending 

on the history. 

5. Chaotic itinerancy 

In the previous section, we have seen that the routes 

to low-dimensional chaos in our simulations agree 

well with experiments. In this section, we investigate 

how well the correspondence with experiments holds 

further into the high-dimensional region with spatial 

structures, and study how “turbulent”  motions appear 

after the low-dimensional “chaotic” behavior. Here we 

see how the change from low- to high-dimensional 

dynamics occurs as a change from low-dimensional 

chaos to turbulence, where the dimension of the at- 

tractor is much higher. In other words, turbulence is 

regarded to be chaotic not only in time but also in 

space, and can be called spatiotemporal chaos. We 

consider how the spatial structure of the convective 

rolls collapses, especially in a confined system with a 

relatively small aspect ratio. 

Here we study the chaotic change of roll patterns. 

observed by increasing AT beyond the chaotic regime. 

With this phenomenon, we see a switching behavior 

between low-dimensional and high-dimensional mo- 

tions. 

An example of the switching phenomena is given in 

Fig. 9, where the sign of the vertical velocity in each 

convective roll switches intermittently in time. Over 

a long time interval, the convection pattern remains 

regular, until a disorganized motion in space and time 

appears. After this “turbulent”  motion, a regular con- 

vective pattern comes back, while the direction of the 

flow is often reversed (Fig. 10). 

When AT is slightly lower than that for this switch- 

ing phenomenon, two attractors exist which corre- 

spond to the upward and downward streams of rolls. 

Depending on the initial conditions one of these at- 

tractors is selected (two different basins exist). These 

separate attractors are connected to form a single at- 

tractor when AT exceeds the threshold ATc.1 for the 

switching behavior. Beyond AT,-,, almost laminar spa- 

tial structures (corresponding to one of the attractors 

for AT < AT,l) suddenly break down and a turbu- 

lent motion (disordered in space) appears. Then ei-- 

ther one of the patterns corresponding to the attractors 

for AT < AT--[ is selected and the motion is lami- 

nar again. This process of switching continues forever, 

as far as we have observed. If the state between two 

“laminar” regions were described by low-dimensional 

chaos, this phenomenon would be described as a bifur- 

cation with symmetry breaking (restoration), which is 
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Low Dimesional Chaotic 

State(Down Flow) 

291 

Fig. 9. Switching between collapsed attractors. Snapshots of the vector field during chaotic itinerancy. Almost laminar convective rolls 

suddenly collapse and am replaced by turbulent motions, until a new direction of convective rolls is selected after the turbulence. The 

switching between upstream and downstream occurs intermittently. AT = 2.0, A = 0.02, v = r] = 0.2, Nx = 34, NY = 17. 

a rather common one. In the present case, the motion 

between the “laminar” states involves many degrees 

of freedom, as will be confirmed. Thus the behavior 

here cannot be described by a low-dimensional dy- 

namical system. Indeed, this type of behavior here has 

not been observed for an ODE model reduced from 

the Navier-Stokes equations, with taking only a small 

number of Fourier modes. 

The itinerancy over low-dimensional ordered mo- 

tions via high-dimensional turbulent motions is known 

as chaotic itinerancy and has been observed in a vari- 

ety of dynamical systems, including globally coupled 

maps [ 30,3 11, Maxwell-Bloch turbulence [ 321, neu- 

ral dynamics [ 331, and also in an optical experiment 

[ 341. Similar phenomena as CI has also been observed 

and analyzed in global climate dynamics [ 351. 

So far there have been no reports on chaotic itiner- 

ancies in BCnard convection. This, we believe, is due 

to the fact that convection experiments are often fo- 

cused either on low-dimensional chaos or on a very 

high-dimensional dynamics. Thus we predict that the 

behavior here should be observed by studying the in- 

termediate situation. 

This chaotic itinerancy motion is studied quantita- 

tively, by using a probability distribution for a lifetime 

0.06 
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0.02 

2 0 
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-0.04 

-0.06 

time per 50 steps 

Fig. 10. Time series of the vertical velocity in the middle 

of the container. Temporal evolution of short-time average of 

the vertical velocity uy(N,/2, Ny/2) is plotted every 50 steps, 

which shows intermittent switching between upward and down- 

ward directions. Here we take 50 time steps for the average 

(VY ‘-%I + v)+’ 
+ + ui) /50. In the course of the switch- 

ing to a new direction, highly turbulent behavior is observed. 

AT = 1.5, A = 0.02,~ = ?j = 0.2, Nx = 34, NY = 17. 

of laminar and turbulent states. In order to get such 

a binary representation, we first define the number of 

rolls which exist in the container. The number of rolls 

can be estimated by the number of local maxima of 

thefunctionf(x) = u,(x,N,/2).Wecallthemotion 

turbulent if the number of rolls exceeds a threshold 
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Fig. I I. The lifetime distribution of the turbulent state. Semi-log 

plot of the lifetime distribution of the turbulent state. The distribu- 

tion is taken over I O4 residence time. The form of the distribution 

does not depend on the temperature difference between the top and 

bottom plates. Solid 1ine:AT = 0.07, doted line:AT = 0.09, broken 

1ine:AT = 0.15. The other parameters are the same as in Fig. IO. 
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Fig. 12. The lifetime distribution of the laminar state. The distri- 

bution of the lifetime of the laminar state, which should be com- 

pared with Fig. Il. The distribution is taken over IO4 residence 

time. The characteristic lifetime is clearly dependent on AT. Solid 

line:AT = 0.07, doted line:AT = 0.09, broken 1ine:AT = 0.1.5. The 

other parameters are the same as in Fig. I I. 

II,, and otherwise call it laminar ’ The lifetime dis- 

tribution of these states exhibits quite a different type 

of behavior with the increase of AT (see Figs. 11 and 

12). 

Both distributions of the turbulent and the laminar 

states are exponential. The characteristic lifetime of 

the turbulent states is almost independent of AT. On 

the other hand, the lifetime of the laminar state is 

much longer and increases by decreasing AT until it 

diverges at the critical point ATcr, where the two lam- 

inar states are disconnected. The exponential distribu- 

tion of the turbulent state implies that the state plays 

’ AS long as we take the threshold 3 < n, < 7. the statistical 
Instead of averaging over a long time, we detinc the 

properties we study do not depend on this choice of nC. local Lyapunov spectrum by the average over a given 

the role of “loss of memory”  in the course 01’ this mo- 

tion. Indeed, the direction of the vertical velocity i\ 

almost randomly selected by losing the memory of the 

previous laminar state. 

We have computed the Lyapunov spectrum [ XI] IO 

characterize the switching and to estimate the involved 

degrees of freedom during turbulence. The Lyapuno\. 

spectrum measures the averaged divergence of nearby 

trajectories in phase space. The number of positive 

Lyapunov exponents gives a rough measure for the 

effective number of “degrees of freedom”. 

Fig. I3 shows the Lyapunov spectra at different A7 

in the chaotic itinerancy regime. The number of posi- 

tive Lyapunov exponents is almost constant at around 

7, over the range of AT from 0.5 to 2.0. Thus about 7 

chaotic modes are involved in the motion. By increa.s- 

ing AT, the lifetime of the laminar state gradually dc- 

creases, and the dynamics of convective rolls gets conl- 

plex towards developed spatiotemporal chaos. How- 

ever, the number of positive Lyapunov exponents IS 

constant here, which means that the number of’ un- 

stable directions in phase space is almost constant in 

the chaotic itinerancy region. It may also be useful to 

point out that the shape of Lyapunov spectra seems to 

be rather fat at the null exponents. Such tract OF the 

plateau at the null exponent may represent a cascade 

process (e.g.. successive split of vortices) at the col- 

lapse of (low-dimensional) ordered motion [ 37.38 j 

In our simulation, only few null exponents arc seen in 

Fig. 13, and the plateau is not so clear, which is due 10 

a small number of lattice points. 17 Y 34 in this c a st, 

The Lyapunov spectra may not be useful for distin- 

guishing the chaotic itinerancy from the usual chaotic 

motion, since they are obtained from long (infnitc) 

time averages. In order to characterize the dynamic 

properties, we have computed local Kolmogorov 

Sinai entropy C LKSE) The Kolmogorov-Sinai cn 

tropy (KSE) is estimated by the sum of the positive 

Lyapunov exponents [ 391: 

KSE = 2 A, CA, > 0. A, / / < 0). f IO) 

/=I 
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finite (short) time interval here. By using the local 

Lyapunov exponents, we define the LKSE as the sum 

of the local positive Lyapunov exponents. Thus the 

LKSE is time dependent, and characterizes some dy- 

namic features. Time series of LKSE are plotted in 

Fig. 14, which has a spiky structure. Each higher peak 

than about 0.02 in this time series corresponds to the 

turbulent motion of the convective rolls. The switching 

between upward and downward occurs intermittently. 

Unfortunately, the intermittent switch is not clearly 

visible, since the stream line of the convective rolls is 

modulated in time, and the LKSE fluctuate around a 

small value. 

hi 

I 
5 10 15 

i 

From the local Lyapunov exponents, one can get 

some information on the dynamics of the degrees of 

freedom. The number of positive local Lyapunov ex- 

ponents gives a measure for the degrees of freedom 

at each time. Indeed, the time series of this number 

shows essentially the same behavior as that of the 

LKSE. Thus the switch between two low-dimensional 

states via high-dimensional motion is confirmed. 

Fig. 13. Lyapunov spectra in the chaotic itinerancy region. The 

first 20 Lyapunov exponents are plotted, computed by the average 

of lo5 time steps. In the chaotic itinerancy regime, the number of 

positive Lyapunov exponents is almost constant with the increase 

of AT, while the value of the positive exponents increases with 

AT. Solid 1ine:AT = 0.5, dotted:1 .O, broken:l.5. 

In the present paper, we have focused on the chaotic 

itinerancy motion with two convective rolls. However, 

we have observed the same chaotic itinerancy behav- 

ior for the cases with 3 or 4 rolls. Generally this type 

of behavior is observed at low or intermediate aspect 

ratios (e.g., r < 5). Here turbulent behavior appears 

after a few numbers of rolls is selected. At these as- 

pect ratios, spatiotemporal chaos appears through the 

chaotic itinerancy motion of convective rolls. First, 

we observe turbulence as spatiotemporal chaos as a 

switching state between two laminar (but temporally 

chaotic) states, and then, with the increase of AT, the 

portion of such turbulent motion increases. Since this 

behavior is rather generally observed, we expect that 

it will also be observed in experiments, by choosing a 

suitable aspect ratio and Rayleigh number. 

0.03. 

g 

:0.02- 

0.01. 

I. 1 

0 500 1000 1500 2000 

time per 50 steps 

Fig. 14. lime series of local KS entropy. Time series of the 

LKSE estimated by the sum of the local positive Lyapunov 

exponents. Each LKSE is obtained as the average over 500 

time steps around each time step. For each collapse of the 

convective rolls, a sudden increase of the LKSE is observed. 

AT = 1.5, A = 0.02, v = 7) = 0.2, Nx = 34, NY = 17. 

dom for convective rolls is suppressed. Indeed we have 

confirmed the universal routes to chaos such as sub- 

harmonic, quasi-periodic and intermittent ones. 

6. Coherent chaos 

If the aspect ratio is much larger, the number of 

rolls is very large. Since the spatial degrees of freedom 

roughly correspond to the number of convective rolls 

in the Rayleigh-BCnard system, the degrees are no 

longer suppressed. Here it is difficult to observe the 

universal routes to temporal chaos discussed in the 

previous section. In this case, a study of the transition 

to “spatiotemporal chaos” is required. 

So far we have studied a system with a relatively When AT is increased above the critical value AT,, 

low aspect ratio, where Rayleigh-BCnard convection a perfect chain of convective rolls is formed. The num- 

has provided a good test system for the study of the ber of rolls increases with AT. For example, the num- 

transition to chaos, since the spatial degrees of free- ber of rolls increases from 10 (at AT = 0.001) to 13 
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(at AT = 0.02) with r = 10 (with NY = 17). With 

the further increase of AT, the number of rolls starts 

to vary in time. During the selection process of the 

number of rolls, the long time transient behavior with 

glassy motion of rolls has been observed. 

Above a certain threshold, these rolls oscillate col- 

lectively where all rolls oscillate with almost the same 

frequency. We have measured the temperature in the 

middle of the container along the horizontal direc- 

tion. The local maxima correspond to the positions of 

hot streams while the local minima to cold streams 

in the vertical direction. In Fig. 15, the positions of 

the local maxima and minima are plotted in space- 

time. It is clearly seen in Fig. 15a that the positions 

of hot and cold streams oscillate collectively. In addi- 

tion, cold streams and hot streams oscillate with op- 

posite phases. The value of the local maximum also 

oscillates in time. Such a collective oscillation is also 

observed in experiments [ 401. We have not found any 

aspect-ratio dependence of the oscillatory frequency 

while changing r from 10 to 30. Thus the oscillation 

is governed not globally but locally with interactions 

of neighboring cells. 

We have found chaotic motion with spatial coher- 

ence at intermediate values of AT between collective 

and ST1 behavior to be discussed in the next section. 

We confirm the existence of spatial coherence by the 

spatial correlation C(x) : 

C(x) = (+a, NY/2) ~‘j.(xo fx, N./2)). (11) 

In Fig. 16, the spatial correlation starts to decay up 

to some distance, beyond which it seems to converge 

to an oscillation with a finite amplitude. Thus the spa- 

tial coherence is sustained with a regular structure of 

convective rolls. 

On the other hand, the motion is chaotic with many 

unstable modes. We have measured the Lyapunov 

spectrum by changing the aspect ratio from 2 to 50. 

The number of positive Lyapunov exponents increases 

in proportion to the aspect ratio. The Lyapunov spec- 

trum n(x) E AI_,, scaled with the aspect ratio, as is 

shown in Fig. 17, approaches a unique form when the 

size is increased. Such scaling behavior is often seen 

in spatiotemporai chaos [ 41,421. 
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Fig. IS. Collective oscillation 01. convect&c rolls. Spacctmc 

positions of convective rolls are plotted. At lagc aspect ra- 

tios, collective oscillation of rolls is observed. Cold and ho1 

streams oscillate with opposite phases. As iZT is incrcascd. tur- 

bulent patches appear in the spacetime diagram, providing STI 

A = 0.02,Y = 7) = 0.2. IV,, = 17,N, = 85 (aJA7‘ = 0.04. 

(b)AT = 0.05. 

Thus a system with a large aspect ratio consists of a 

chain of chaotic oscillators, and the dimension is ex- 

pected to diverge linearly with the system size. Hence 

one may expect that the spatial coherence, rcpresent- 

ing the phase relationship between rolls, may be lost. 

This is not the case. The coherence is maintained as 

can be seen in C(x). The reason for this “coherent”  

chaos is due to the separation of scales. Here. chaos 

appears as a slow modulation on the oscillation 01‘ 

convective rolls. The time scales, as well as the ampli- 

tudes, are well separated, and chaos in each convective 

roll cannot destroy the spatial coherence. 

Coexistence of long-range order with chaos has 

been discussed recently [ 43 1. A “ferro-type”  order in 

a CML with local chaos is found in an Ising-like model 

[44], while an “antiferro”-like order (or a pattern with 

a longer wavelength) with local chaos was found in 

the earlier studies of CML [ 9,l 1 1. The long-ranged 

spatial order in the present model belongs to the lat- 

ter example, which is maintained by the separation oi 

scales between the collective motion and chaos. As fog 
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Fig. 16. Spatial correlations for coherent chaos. Spatial correlation 

function at coherent chaos, by the average of IO4 time steps after 

discarding IO“ transients. There are many positive Lyapunov ex- 

ponents here, indicating high dimensional chaos, while the spatial 

structure still remains. A = 0.02, v = r] = 0.2, NY = 17, AT = 0.05, 

I‘= 100. 

the shape of Lyapunov spectra, there is one difference 

between the earlier studies and the present one. In the 

former, a stepwise structure is often seen [ 111, while 

the spectra are rather smooth (with an almost linear 

slope) in the present case (see Fig. 17). We believe 

that this distinction is due to the fact that the domain 

structure is rigid in the former [ 111, while the bound- 

ary of each roll is not so rigid. 

As an onset of spatiotemporal chaos, phase turbu- 

lence is a well established mechanism arising from 

broken continuous symmetry [ 45-471. In the present 

model, we found chaotic modulation keeping the spa- 

tial coherence, which might be associated with the 

phase turbulence, since the coherent chaos exists in a 

weakly nonlinear regime. However there remain some 

problems for this association. First the amplitude oscil- 

lation might be essential here. Second long-time sim- 

ulations with a large system size are required to check 

if the behavior in the present section can be described 

by phase dynamics. 

The amplitude of the oscillation of the rolls in- 

creases with AT, until oscillatory bursts with a large 

amplitude appear through the interaction of streams 

of two neighboring cells. Then the collective oscilla- 

tion loses its stability, as in shown in Fig. 15b. Lam- 

inar and turbulent states coexist in the spacetime di- 

agram, which leads to spatiotemporal intermittency. 

The collective oscillatory motion here is a prelude to 

spatiotemporal intermittency. 

During this cooperative oscillation, we have also 
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Fig. 17. Scaled Lyapunov spectrum At an intermediate value AT for 

the collective oscillation (below the STI), chaos with spatial co- 

herence has been observed. The figure shows ordered Lyapunovex- 

ponents Ai versus i/T. A = 0.02, v = 11 = 0.2, NY = 17, AT = 0.05, 

r = 4 (thin solid line), 10 (broken line), 15 (dotted line), 50 

(solid line). In the computation, we have obtained only the first 

50 exponents. The spectra for r = 15 and 50 agree rather well by 

the scaling of i/f. 

observed travelling waves. The rolls move to the left 

or right (depending on the initial conditions) with 

the oscillation. These travelling waves have been ob- 

served in experiments [48], as well as in a simple 

CML model [49]. In our simulations, we have found 

that several attractors coexist which correspond to dif- 

ferent traveling speeds. The details of the travelling 

wave will be reported elsewhere. 

7. Spatiotemporal intermittency 

In this section, we study spatiotemporal intermit- 

tency as a standard route to spatiotemporal chaos. The 

transition to spatiotemporal chaos is rather different 

from that to temporal chaos. In spatially extended sys- 

tems, the most well known transition to spatiotempo- 

ral chaos occurs through spatiotemporal intermittency 

(SD). STI occurs through the propagation and con- 

nection of chaotic bursts within the laminar domains. 

There the system consists of a mixture of laminar do- 

mains and chaotic bursts. ST1 was first studied in (dif- 

fusively) coupled map lattices for some classes of lo- 

cal maps [ lo], and has also been observed in partial 

differential equations [ 431. Critical properties were 

studied in detail in connection with directed percola- 

tion [ 43,501. 
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Fig. 18. The probability distribution of the local wavelength. For 

low AT, the rolls oscillate coherently (there are no turbulent 

patches in space and time), and the distribution of local wave- 

lengths has a sharp peak. The peak gets broader with the increase 

of AT due to the turbulent patches. Each distribution is taken over 

IO7 time steps sampled per 100 time steps after 1000 initial tran- 

sients, A = 0.02, v = 7 = 0.2, NY = 17, I‘ = 50,AT = 0.01 (solid 

line), 0.02 (dotted line), 0.03 (broken line). 

It is useful to point out that there seem to be two 

types of ST1 [ 5 11. The first case, which we term type- 

I STI, is associated with the transition from spatially 

homogenous and temporally periodic states to turbu- 

lence, where chaotic bursts are not created sponta- 

neously. The type-II STI, on the other hand, allows 

spontaneous creation of bursts, and is typically ob- 

served at the transition from a spatially inhomogenous 

pattern to a turbulent state. Locally chaotic dynamics 

usually exists already at the pre-ST1 region, and the 

ST1 transition leads to a globally chaotic behavior. 

In Rayleigh-BCnard convection, ST1 has been ob- 

served in systems with large aspect ratios [ 5052,531, 

and has been investigated intensively. Other exam- 

ples of ST1 are observed in electric convection of liq- 

uid crystals [ 54,551, rotating viscous fluids [ 561, and 

other systems [57]. ST1 is now believed to form a 

universality class for the transition to turbulence in 

spatially extended systems. All experimental reports 

of the ST1 in convection, so far, belong to type-II. 

In this section, we study this ST1 transition to spa- 

tiotemporal chaos in a system with a large aspect ratio, 

mostly by fixing it to r = N,/N. = 50 and adopting a 

periodic boundary condition for the horizontal direc- 

tion. We also discuss the Prandtl number dependence 

of the transition. 

Below the onset of ST1 (ATsri), all the rolls have 

the same frequency and wavelength. With the increase 

of AT, the spatial coherence of the rolls’ oscillations is 

gradually lost. To see this change, we have measured 

the distribution of the local wavelength, which is es- 

timated as the distance between two local maxima of 

l>!(x, N!./2). For AT < AjTsrt, this distribution has a 

sharp peak at a single value corresponding to the wave- 

length of laminar rolls, while the peak gets broadci 

and broader as AT increases beyond ATsri (Fig. 1 X 1. 

When AT is increased, the amplitude of the hori 

zontal oscillation of convective rolls increases. which 

leads them to interact with their neighbors. By the in- 

teraction, the roll structure is often collapsed and crc 

ats a chaotic bust. A typical example for the collapse 

can be seen in Fig. 15b. Convective rolls successively 

appear and disappear though bursts, which provide the 

ST1 behavior. 

To distinguish the laminar and turbulent regions 

numerically, we have adopted the following criterion 

with the use of the local wavelength of the convective 

rolls; By introducing the mean wavelength &i at the 

onset of ST1 and a given tolerance zone Ah. WC as- 

sume that the behavior at a position is laminar if the 

local wavelength there (i.e. the size of the cell ) sat- 

isfies Aa - Ah < h; otherwise it is called turbulent” . 

By using this binary representation, the spatiotempo- 

ral diagram for ST1 is plotted in Fig. 19. The fraction 

of the turbulent patches increases with AT, which are 

connected in spacetime near the onset of STI. 

ST1 has been studied both experimentally and nu- 

merically. Following previous studies [ 10.43 1. WC 

quantitatively characterize the ST1 behavior, with the 

use of the distribution P(L) of the laminar domains 

of length L. The existence of two different regimes 

can clearly be observed. At the onset of STI. the dis- 

tribution shows a power law (Fig. 20). The exponent 

of this power is 2 $ 0.2, and agrees with that found 

in experiments [52] Beyond the onset of STI. the 

distribution is exponential (Fig. 2 I), and ia titted by 

P(L) = c exp( -L/Ls,,, ). i I?, 

’ The following results do noi depend on the choice of AA pr-o 

vided 3 c AA < 9 is satisfied. 
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Fig. 19. Binary representation for STI. Spacetime diagram for STI. 

A black pixel means a turbulent region defined by the criterion 

in the text. The fraction of turbulent patches increases with AT. 

f = 10, Left: At = 0.04, Center: AT = 0.12, Right: AT = 0.30. 

The other parameters are the same as in Fig. 18. 

It is found that the inverse of characteristic length 

1 /Lsn increases almost linearly with the temperature 

difference AT - ATsn (Fig. 22). Furthermore this AT 

dependence of Lsn is invariant against a change of A 

from 0.02 to 0.1. 

We have also measured the spatial correlation func- 

tion for the vertical velocity (see Fq. ( 11) ) . This cor- 

relation function C(X) oscillates with x because of 

the existence of the roll structure, whose amplitude 

decays with x. The absolute value of the local max- 

ima and minima for C(x) shows exponential decay. 

We fit C(X) above the onset of STI as 
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Fig. 20. Log-log plot of the distribution of the lengths of the lami- 

mu domains. The distribution of the lengths of the laminar domains 

is plotted by sampling IO5 steps, starting from a random initial con- 

dition with AT = 0.05, I = 0.02, v = n = 0.2, NX = 850, NY = 17. 

Near the onset of STI, the distribution of the length of laminar 

domains obeys the power law, with the exponent 2 f 0.2. 
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0 
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Fig. 21. Semi-log plot of the distribution of the lengths of the 

laminar domains. Semi-log plot of the distribution of laminar 

regions, for AT = 0.1 (solid line), and 0.5 (broken line). The 

other parameters are the same as in Fig. 20. Above the onset of 

ST1 ( ATsn N 0.05), the distribution obeys the exponential form, 

whose decay rate decreases to zero as AT approaches ATsn. 
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Fig. 22. AT dependence of the spatial characteristic length. The 

inverse of the characteristic length l/Lsn of the distribution is 

plotted versus AT. Each dot is obtained by fitting the distribution 

of the lamlnar domains with E!q. ( 12). The parameters are the 

same as in Fig. 20. 
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Fig 23. Rayleigh number dependence of the spatial correlation 

length. The best fit value of [srt in Eq. ( 13) is plotted versus AT. 

The inverse of the correlation length l/&r increases with AT. 

The inverse of the correlation length 1 /&rt increases 

with AT as is shown in Fig. 23. This divergence of 

the correlation length is common in the STI transition, 

although it is not easy to estimate the value of the 

exponent accurately. The divergence is a consequence 

of the increase of the frequency of a large laminar 

domain, as is seen in Fig. 20. 

In order to find the Prandtl number dependence near 

the onset of STI, we define the following characteris- 

tics: 

F= 

( 

number of turbulent patches 

number of patches > ’ 
(14) 

where (. . .) denotes the temporal average. A global 

characterization of STI is given by the evolution of the 

turbulent fraction F, which is calculated as the aver- 

aged total length occupied by the turbulent cells, di- 

vided by the length of the container. By plotting this 

turbulent fraction versus the thermal conductivity h, 

we find that the critical value ATsrr almost linearly 

increases with the Prandtl number. The power law be- 

havior and its exponent at the onset of STI are invari- 

ant under a change of the Prandtl number. 

We have also calculated the Lyapunov spectra by 

changing AT and the aspect ratio. In and above the 

ST1 region, the ordered Lyapunov exponent decreases 

almost linearly with its index (see Fig. 24). Neither a 

plateau at the null exponent nor a stepwise structure 

‘I / / 

Fig. 24. Scaled Lyapunov spectrum. The ordered Lyapunov cxpo 

nents Ai versus i/T are plotted. A = 0.02, v = n = 0.2, N, = 17. 

(a) AT = 0.1 (near onset of STI), I’ = 2 (thin solid line). 5 

(broken line), IO (dotted Line), 20 (solid line). (b) AT -- 0.5. 

I’ = 2 (thin solid line), S (broken line), 10 (dotted line ). In 

the computation, we have obtained only the first SO exponents by 

the average of LO4 time steps after discarding 10” transients. The 

Lyapunov spectrum approaches a unique form with the increase 

of aspect ratio. Above the onset of ST1 (b), this convergence i\ 

faster than for (a) 

is observed. This linear shape is distinguished from 

that of type-I ST1 in some coupled map lattices \ 10 1. 

and is consistent with that for the type-II ST1 of the 

coupled logistic lattice [ 1 11. With the increase of the 

aspect ratio, the scaled Lyapunov exponents A, versus 

i/T approaches a unique form, as is shown in Fig. 24. 

The approach is rather slow near the onset of STI, due 

to the long range spatial correlation, where the inter- 

mittent appearance of large laminar patches enhances 

the statistical fluctuation of the Lyapunov exponents. 

8. Transition from soft to hard turbulence 

When AT is increased further, the roll patterns col- 

lapse, and the convection shows turbulent behavior. 

In recent experiments, Libchaber’s group has found 
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Fig. 25. Contour plot of temperature field. The snapshots of equi-temperature lines am plotted for (a)AT = 1 .O (b)AT = 3.0, and 

(c)AT = 10.0. In (b) (in the soft turbulence region), plumes exist near the boundary layer. In (c) (in the hard turbulence region), plumes 

(b) 

can reach the opposite boundary, and the boundary layer is destroyed by these plumes. A = 0.4, ZJ = 7) = 0.2, NX = 29. NY = 29. 

a transition in turbulence. The phase at lower AT is 

called soft turbulence, while the latter at higher AT 

is called hard turbulence [ 58,591. They have charac- 

terized this transition by the temperature distribution 

in the middle of container. According to their exper- 

iments, the distribution is Gaussian in the soft turbu- 

lence regime, while it is exponential in the hard tur- 

bulence regime. They have also pointed out that the 

transition is due to the destruction of the boundary 

layer and the formation of hot and cold plumes. 

Let us discuss this soft/hard turbulence transition 

in our model. By increasing AT, hot and cold plumes 

start to appear (Fig. 25)) above some transition tem- 

perature. Plumes in our model are defined as isolated 

sets of few connected lattice points with larger or 

smaller energy E than their neighbors. Slightly above 

the transition temperature for the plume formation, a 

hot plume cannot reach the top plate (and vice visa 

for a cold plume). The boundary layers are still pre- 

served. With the further increase of AT, plumes can 

reach the opposite plate, breaking the boundary lay- 

ers. This observation agrees with the picture by Libch- 

aber’s group for the transition between the soft (for 

former) and hard turbulence [ 58,591. 

To confirm the transition quantitatively, we have 

measured the distribution of E( n, NY /2), by sampling 

over a given time interval. As is plotted in Fig. 26, 

the distribution shows the transition from Gaussian to 

exponential, in agreement with experiments. 

To characterize the change of the distribution quan- 

titatively, we have also calculated the flatness 

81 

Fig. 26. Distribution function of the temperature. The distribution 

of the temperature E(x, N,/2) in the middle of the container, 

measured from the histogram of the temperature sampled over 1 O5 

time steps. The distribution changes its form from Gaussian to 

exponential, indicating the soft and hard turbulence respectively. 

A = 0.4, v = 7 = 0.2, N, = NV = 29, solid line: AT = 3.0, dotted 

line: AT = 5.0. 

f = ((E - (E))4)/((E - (E)j2j2. (15) 

At low Prandtl numbers, the flatness rises from 3 

to 6 with the increase of AT, while it rises continu- 

ously to 12 at high Prandtl numbers. Moreover, the 

plateau around the flatness 3 (in the soft turbulence 

region) gets narrower by increasing the Prandtl num- 

ber (Fig. 27). This Prandtl number dependence of the 

flatness is our prediction here, which should be con- 

firmed by experiments in the future. Our CML pro- 

vides the first simple model for the soft-hard turbu- 

lence transition [ 601. Our observation of the energy 

pattern (Fig. 25) also suggests that this transition is 

associated with the percolation of plumes at the bot- 

tom plate. 

We have a!so varied r], which expresses the pressure 
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8 

AT 

Fig. 27. The flatness of the temperature distribution. At low Prandtl Fig. 28. Lyapunov spectrum for the turbulent regime. The tlrst 20 

numbers, the flatness of the distribution increases with A,T and sat- Lyapunov exponents, computed by the average over I OJ time steph 

urates around 6.0, while at high Prandtl numbers, it increases until In the turbulent regime, the number of positive Lyapunov exponenrs 

12. line: A = 0.404, dotted line: A = 0.116. Each dot is obtained increases rapidly, which should be compared with the chaotic itin 

from the average over 20000 time steps. The other parameters are erancy motion in Section 5. A = 0.4, v = 7 = 0.2, N, = N, = 30. 

the same as in Fig. 26. solid line: AT = 2.0, dotted: 3.0, broken: 5.0. 

effect, from 0.2 to 0.4. The flatness for the temperature 

distribution scatters around from 2.6 to 3.0 in the soft 

turbulence region (AT = 3.0)) without any systematic 

deviation from the Gaussian shape. Thus our transition 

is a robust property against the change of 7, which is 

important for the justification of our approach, since 

YJ represents a rather artificial term in our modeling. 

To study the transition in terms of dynamical sys- 

tems, the Lyapunov spectrum and Kolmogorov-Sinai 

entropy are computed (Fig. 28). By increasing AT, 

the number of positive Lyapunov exponents also in- 

creases, in contrast with the chaotic itinerancy case 

discussed in Section 5 (Fig. 13). Within our simula- 

tion, no plateau at the null exponent is clearly visi- 

ble. At present it is not sure if this lack of the plateau 

implies the absence of the cascade process, or it is 

just because the number of lattice points is not large 

enough. 

9. Pattern formation 

Extension of our model to three dimensions is quite 

straightforward. We have simulated three-dimensional 

convection in rectangular and cylinderical containers, 

taking a fixed boundary at the wall. Here the pattern 

formation of convective rolls requires a long time, 

due to slow motion of defects between locally aligned 

rolls. Temporal evolution of roll patterns is given in 

Fig. 29, which is quite similar with the spatial pat- 

tern observed experimentally [ 611. while a quantita- 

tive agreement will be discussed shortly. Starting from 

an almost homogeneous field, rolls are formed locally 

within a short time, while defects between rolls move 

slowly. The domain size of aligned rolls increases so 

slowly that the irregular motion of the defects remains 

over many time steps. If AT is larger, these defects 

form cellular structures as in Fig. 29f. 

To see the pattern formation process quantita- 

tively, we have measured the spatial power spectrum 

P(k) of the vertical velocity I’? (.x, NJ 12) for the 

2-dimensional model: 

where (, t .) means the sample average over different 

initial conditions close to a homogeneous one (see 

Fig. 30). Starting from a random initial configuration. 

convective rolls are locally formed, which leads to the 

appearance of a peak in the spatial power spectrum. 

As the pattern formation proceeds, the peak shifts to 

a lower wave number while it gradually sharpens. We 

plot the wave number k,, which gives the maximum ot 

P( t, k), versus time t (see Fig. 3 1). k,,, converges to :I 

characteristic wave number k,. for the stationary stale. 

The approach to k,. obeys a power law in time ii.c.. 
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(a) (b) 

(d) (e) 

Fig. 29. Pattern formation of convective rolls. Roll pattern for three-dimensional convection. Snapshot of the vertical velocity I+ at the 

middle plate (x,y, N,/2) is shown with the use of gray scales. The lattice size is (N,, NY) = 125 x 125 (horizontal), and N, = 9. 

Y = A = 0.2. Random initial condition were used. AT = 0.6 and (a) time step 500 (b) 1000 (c) 2000 (d) 5000. AT = 2.0 and (e) time 

step SO (f) 5000. 
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Fig. 30. Spatial power spectrum. Spatial power spectrum averaged over 10 different initial conditions. (a) r = 32, (b) t = 1024, 

A = 0.2, v = 71 = 0.2, AT = 0.01, N+ = 1024, NY = 17. 
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Fig. 3 I Scaling exponent for the domain growth. Log-log plot for 

characteristic length (the maximum of spatial power spectrum) 

versus time. A = 0.2, v = 77 = 0.2,AT = 0.01, N., = 1024, N, = 17. 

k,, - k, M t-p). The width of the peak, measured by 

((k-(k))*)where(k)=~kP(k,t)dk/~P(k,t)dk, 

also decreases with the same power t-p. By our simu- 

lation this exponent for the convergent process is l/2, 

in agreement with experiments as well as the theory of 

pattern formation. Although the present result is ob- 

tained with the 2-dimensional model, we believe that 

the scaling exponent is invariant in a 3-dimensional 

case also. 

tency, transition from soft to hard turbulence, and the 

pattern formation process. Besides qualitative agree- 

ment with experimental observations, some quantita- 

tive agreements are also obtained; the power law dis- 

tribution of laminar regions in STI with the exponent 

2 f 0.2, and the flatness of the temperature distribu- 

tion at the soft-hard turbulence transition, in addition 

to rather trivial agreements on the exponents on the 

onset of convection, the critical slowing down and the 

pattern formation. The results on soft-hard turbulence 

may be the most remarkable, since it provides the first 

simple model with an agreement on the change of dis- 

tributions. It is also noted that the role of disconnected 

plumes is confirmed with the help of the snapshot tem- 

perature field. 

Inclusion of rotation to the convection is rather 

straightforward. We introduce the centrifugal and Co- 

liolis force procedure before the Lagrange procedure: 

UHU$-20JXVfOX (wxx). (17) 

Here we show only some examples of the spatial 

patterns (Fig. 32). By increasing the rotational speed, 

spiral convective rolls appear. As the rotational speed 

is further increased, the spiral structure collapses, and 

a complicated structure is successively formed. 

Furthermore, we have also made several predictions 

here. (i) In systems with relatively low aspect ratios. 

switching between two roll patterns is found which 

occurs through high-dimensional chaos. At the onset 

of the chaotic itinerancy, the average lifetime of lam- 

nar states diverges. (ii) Spatial long-range order with 

temporal chaos is found in a system with a large as- 

pect ratio. Spatial correlations do not decay although 

the number of positive Lyapunov exponents increases 

with the system size. (iii) For the soft-hard turbulence 

transition, the calculated flatness of the temperature 

distribution increases from 3 to 6 at low Prandtl num 

bers, as is known in experiments. On the other hand 

it raises till 12 at high Prandtl numbers, which can be 

checked in future experiments. 

Correspondence of our results with experiments is 

summarized in Table I. Here a dash in the experiment 

column shows our novel prediction here. 

10. Summary and discussions 

In the present paper, we have proposed a CML 

model for Rayleigh-BCnard convection by introduc- 

ing a new procedure, i.e., a Lagrangian scheme for the 

advection. In this procedure, the advective motion is 

expressed by a quasi-particle. 

One of the merits of our modelling here lies in the 

applicability of dynamical systems theory. It is possi- 

ble to describe the convection phenomena in terms of 

dynamical systems, in particular by Lyapunov expo- 

nents. Collective motion with high-dimensional chaos 

is thus confirmed. as well as the switch between low- 

and high- dimensional dynamics at the chaotic itiner- 

ancy. Lyapunov spectra for STI and soft/hard turhu- 

lence transitions arc also obtained. 

Our model reproduces a wide range of phenom- Some, still, disagree with our CML approach only 

ena in convection; formation of rolls and their oscilla- because our model is not derived from the Navicr- 

tions, many routes to chaos, spatiotemporal intermit- Stokes equations. Our standpoint here is that the 



Fig. 32. Inclusion of rotation to the convection. Snapshot of the perpendicular velocity vz at the middle plate (x, J’, N, /2) is shown with 

the use of gray scales. The lattice size is (N,, NY) = 50 x 50 (horizontal), and NZ = 9. v = K = 0.2,AT = 1.0.(a) angular velocity w is 

0.001 (b) w = 0.004 (c) o = 0.008. 

Table 1 

Summary of our 1~u1t.s in comparison with experiments, as well as some predictions 

Phenomena Characteristics CML model Experiment 

onset of convection 

critical slowing down 

route to chaos 

chaotic itinerancy 

coherent chaos 

traveling wave 

ST1 

soft/hard turbulence 

pattern formation 

vz N ??

1/7-j"' 

quasi-periodic 

period doubling 

intermittency 

lifetime at laminar states 

spatial long-range order 

with chaotic motion 

coexistence of different 

speeds attractors 

distribution of 

laminar domain 

P(L) N L-v (onset) 

flatness 

((E - (E))4)/((E - (E))*)* 
characteristic length k,,, N r B 

0 = -l/2 

a’ = -1 

high Prandtl 

low Prandtl 

depend on I 

diverges at ATct 

(Y = -l/2 

(y’ = -1 

high Prandtl 

low Prandtl 

_ 

exists 

exists 

y = 2.0 f 0.2 y= 1.8 

3 to 6 3 to 6 
3 to 12 (high Prandtl) _ 

p= l/2 p= l/2 

salient features in convection are irrespective of the 

details of the models. Such features form universal 

classes. All of our results suggest that the qualitative 

features of convection do not depend on the details 

of the dynamics. This means that our model and real 

fluid dynamics belong to the same universality class. 

One of the advantages of our approach is the pos- 

sibility to check the robustness of a given feature of 

convection against the modification and/or removal of 

processes (see Appendix A). For example, the power 

law distribution of laminar domains in STI does not 

depend on the dynamics of the pressure effect, while it 

crucially depends on the buoyancy procedure. On the 

other hand, the buoyancy procedure is not relevant to 

the soft-hard turbulence transition, (but the pressure 

procedure is). Indeed the distribution change of a pas- 

sive scalar from a Gaussian to an exponential form is 

also observed in grid-generated turbulence and stirred 

fluids. Such universality may be related with the sta- 

bility against the choice of models. 

Thus our constructive approach is powerful for 

proposing universal classes of the phenomenology. In 

our model, for example, the soft-hard turbulence tran- 

sition is associated with the percolative behavior of 

plumes. This allocation forms the basis of universal- 

ity such as the change of the temperature distribution. 

The essence of the transition does not depend on the 

details of a model, as long as it belongs to the same 

universality class. 

The computational advantage of our model is also 
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clearly demonstrated. As we have discussed in Sec- 

tion 2.3, the NS equations are not necessarily the best 

model for numerical analysis, due to its demand of 

huge computational resources. In particular, to glob- 

ally understand the phenomenology, we must scan 

over the parameter spaces. Thus fast and interactive 

computation is important for a mode1 construction. It 

should be mentioned that all of our results here have 

been obtained by workstations. 

Last but not least, it should be mentioned that our 

Lagrangian procedure is also useful to construct a 

CML for shear flows or K&m& vortices and their 

collapse. Another important extension of our CML is 

the inclusion of phase transition dynamics, as is seen 

in boiling [ 141 and cloud dynamics. These examples 

will be reported elsewhere. 
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Appendix A. “ Structural stability”  of our model 

In previous sections, we have shown that our sim- 

ple model reproduces a wide range of phenomenol- 

ogy of convection (with some predictions), which 

may be rather surprising. In this appendix, we dis- 

cuss the stability of our mode1 to study the “univer- 

sality”  classes of convection. Here, we use the term 

“universality”  in a rather qualitative sense: if a set of 

models reproduces the same macroscopic properties 

such as flow patterns and statistical quantities, these 

models form a “universality class” . For example, spa- 

tiotemporal intermittency is believed to form such a 

universality class, since it is observed in a wide range 

of models with spatial degrees of freedom. Here, we 

address the following questions. Are there any other 

models which reproduce the phenomenology of con- 

vection? Is a given characteristic also reproduced by 

modification or removal of some elementary physical 

processes? In other words, are macroscopic properties 

robust against the structural change of models? 

The coupled map method is suitable to answer 1 hesc 

questions, because the dynamics is decomposed into 

several elementary processes which are expressed bq 

a simple dynamics (mapping). Hence, one can easily 

check the structural stability by replacing a procedure 

by another one. 

In our model, the thermal diffusion and viscosity 

procedures are rather straightforward. Hence. we stud) 

the effects of’ modifying the buoyancy and pressure 

procedures by fixing the diffusion and viscosity ones. 

Although a variety of replacements can be considered. 

here, we restrict ourselves to the changes listed in 

Table IO. 

By choosing either one of the procedures listed 111 

Table 10, we have 9 possible models as a total. Since. 

it is hard to report all simulations (onset of convcc- 

tion, routes to chaos. . . so on) for each model. tic 

report mainly the onset of convection. spatiotemporal 

intermittency and the soft-hard turbulence transition 

At the onset of the Rayleigh-BCnard convection in- 

stability, we calculate the scaling property for- the ver- 

tical velocity I:~ versus the normalized temperature 

difference E. We have found that the scaling proper{) 

does not depend on the details of modeling. All the 

models that follow from Table 10 reproduce l.‘, - 6’ “. 

while the critical temperature difference AT, depends 

on the models. This is reasonable since the scaling 

property is expected just from the bifurcation analysis. 

The distribution function of the laminar domains 

during ST1 depends on the choice of the dynamics 

in particular, on the choice of the buoyancy procc 

dure dynamics. For example. if we take a discretizeci 

d2/dy2 operator for buoyancy, the power law behav- 

ior is not obtained. In this case, laminar and globally 

turbulent states appear intermitt.ently in time without 

spatial intermittency (that is, the spatial structure ih 

not far from a homogeneous one). 

The transition between soft and hard turbulences 

also depends on the change of the procedure. The re 
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Table 2 

Dynamics of the procedures 

Buoyancy dynamics Pressure dynamics 

v; = vi + c discretized a2 E/ax2 u: = v: + r] discretized V( V Y) 
v; = I_$ + c discretized d2 Ef ay2 uJ_ = IJ: - r) exp( -yv2) 

v; = vi + c discretized a2 E/~?xdy u: = vz + 11 discretized V4 

Table 3 

Reproducibility with changing dynamics 

Model &X u V(VY) a,, u V(Vv) a,, u V(Vv) ir,, U exp(3) &x u 0 J17,, u v4 

onset 

STI : 

0 0 

: 

0 

0’ :+ 
SH 0 L L X X X 

0 : Agreement with experiments 

+ : No spatial intermittency 

t : Large fluctuation around the tail of the distribution P(L) 

311 

x : No plateau around 3 (soft turbulence regime) 

placement of the buoyancy procedure dose not affect 

the flatness of the temperature distribution. However, 

the pressure procedure is more relevant to the transi- 

tion. When the pressure procedure is substituted by the 

cut off dynamics, the flatness rises from 2 to 10 with 

the change of AT, (which does not depend on the cut 

off parameter y) . There is no plateau around 3 (corre- 

sponding to the Gaussian distribution; soft turbulence 

regime) and 6 (corresponding to the exponential dis- 

tribution) . 

The results for the structural stability against the 

change of the procedure are summarized in Table 3. 

Generally, the choice of a procedure affects some 

property. The relevance of a physical process to a given 

behavior is determined by replacing the procedure cor- 

responding to the process. For example, the scaling 

property near the onset of convection can be repro- 

duced by a wide range of models, while the pressure 

or buoyancy procedure is irrelevant to STI or the SH 

transition, respectively. The irrelevance of the buoy- 

ancy procedure for the SH transition implies that the 

mechanism of an external forcing does not affect the 

turbulence transition. In fact, the universal change of 

the distribution of a passive scalar is also observed in 

grid-generated turbulence and stirred fluids [ 62,631. 

To sum up, by determining the relevant procedures 

for a given behavior, it is possible to decide the uni- 

versality class which yields the same salient behavior. 

Appendix B. Autoregressive model 

In the Mth order AR model, the time series x(n) is 

expressed as 

x(n) = 2 a,x(n - m) + e(n), (18) 
m=l 

where e(n) is a residual error. We determine the co- 

efficient a, by using the maximum likelihood method 

[ 251. Of course we can obtain the power spectrum 

directly from the velocity time series. To get the fre- 

quency of the oscillation, however, we need a rather 

accurate form of the power spectrum, which requires 

a rather long computation. An advantage of the AR 

model is that the power spectrum inferred by it is a 

continuum function (rational polynomial function), 

/II 
2 

P(f) =a2 I-5 a, exp ( -2rifn) 
/I 

, (19) 
Ill=1 

where 

CT2 = (e(?z)e(n)). 
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Fig. 33. Power spectrum estimated by AR model. The power 

spectrum estimated by 100th order AR model near the onset of 

oscillation. Increasing AT, the amplitude of oscillation gets larger 

and the higher harmonics starts to appear. The 4000 time series 

per IO steps is used to determine the coefficient of AR model. 

AT = 0.3, A = 0.4, v = g = 0.2, N, = 17, A’, = 30. 

Then we can easily determine the characteristic fre- 

quency of the oscillation (see Fig. 33 which shows a 

power spectrum estimated by the AR model). 
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