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Abstract. A brief review of Rayleigh–Bénard studies performed all along the twen-
tieth century is presented, with an emphasis on the transition to turbulence and the
appropriate theoretical framework, relying on the strength of confinement effects and
the distance to threshold, either dynamical systems for temporal chaos in the strongly
confined case, or models of space-time chaos when confinement effects are weak.

1 Introduction

The idea of convection is quite old (Hadley, Lomonossov, Rumford,. . . ) but the
first quantitative experiments have been performed by Henri Bénard around
year 1900 [1]. Figure 1 is a low-resolution reproduction of one of his original
photographs. In fact Bénard studied the stability of a thin fluid layer open to
air and submitted to a vertical temperature gradient. He accurately determined
properties such as the space periodicity of the hexagonal pattern, its variation,
the profile of the interface. Later, in 1916, Lord Rayleigh [2] proposed his theory
of a feedback coupling resting on buoyancy: a fluid particle hotter than its

Fig. 1. One of Bénard’s celebrated original photographs of the top view of convection
patterns in a thin layer of spermaceti heated from below.
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Fig. 2. Mechanisms for Bénard convection. Left: motion of fluid is self-sustained as
soon as gravitational energy release can overcomes dissipation losses (Rayleigh’s idea).
Right: the surface-tension mechanism (Marangoni effect) works even in zero-gravity
environment provided that hot fluid comes from inside.

environment encounters ever colder fluid as it rises, which leads to the instability,
as sketched in Fig. 2 (left). He developed a complete linear stability analysis
assuming stress-free conditions for the velocity and good heat-conducting plates.
This mechanism was accepted as the explanation of Bénard’s results until the
role of the thermal Marangoni effect was pointed out, in particular by Pearson
[3]: a temperature fluctuation at the surface induces tangential stresses that can
be amplified by hot fluid coming from the inside, as suggested in Fig. 2 (right).
Surface tension usually increases as the temperature decreases while surface
elements with the larger surface tension want to shrink, so that the mechanism
indeed works when the temperature gradient is directed towards the interior of
the layer. Some of the confusion may be explained by the fact that hexagons are
usually expected when the top-bottom symmetry is broken, i.e. when boundary
conditions at the top plate are different from those at the bottom plate, which
was the case of Bénard’s experiments with a free upper surface. In that case, the
two mechanisms are in competition but a bump is implied at the place where the
fluid rises when the buoyancy is involved, whereas the effect of surface-tension
is to create a dip. Buoyancy effect in the bulk will dominates in thick layers
and surface-tension in thin ones so that there exists a compensation thickness
at which both deformations balance each other [4]. This being recognized, in the
following I will restrict myself to the consideration of convection between solid
plates according to Rayleigh’s mechanism, hereafter called RB convection, as
opposed to BM convection, where ‘R’ stands for Rayleigh, ‘B’ for Bénard, and
‘M’ for Marangoni.

I will briefly recall the results of linear stability analysis in §2, and then
some early nonlinear findings about secondary instabilities and the transition to
turbulence in §3. After these preliminaries I will mainly turn to modeling issues
raised by the theoretical understanding of the results beyond threshold. As to
weakly turbulent states developing moderately far from the threshold, I will insist
on the role of confinement effects in controlling the nature of scenarios either
toward chaos as envisioned in dynamical systems theory (§4) or towards space-
time chaos (§5,6,7). Before closing the presentation I will also say few words
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about the account of strongly turbulent sates when the applied temperature
gradient becomes arbitrarily large in §8.

The present review is of course sketchy and biased by my personal inter-
ests. For further information and complementary views, the reader is invited to
consult the works mentioned in the bibliography. An early self-contained presen-
tation is in the first chapters of Chandrasekhar’s book [5]. A more recent general
reference is by Koschmieder [6]. Consult also the reviews by Busse [7] about non-
linear convection, by Newell, Passot and Lega [8] and Cross and Hohenberg [9]
for the theoretical approach of space-time chaos with emphasis on the envelope
formalism and general aspects of space-time chaos respectively. The most recent
developments about the transition to turbulence in convection can be found in
the review by Bodenschatz, Pesch and Ahlers [10], while the article by Siggia
[11] is devoted to fully developed turbulent convection.

2 RB convection at threshold

Rayleigh’s theory for the instability threshold1 was developed within the so-
called Boussinesq approximation, i.e. the Navier–Stokes equations for an incom-
pressible flow completed by the energy equation generalizing the Fourier diffusion
equation to a fluid medium. The simplifying assumption is that the temperature
only enters the state equation to account for thermal expansion, while all other
fluid parameters are kept constant. Within this approximation the governing
equations read:

∇h · vh + ∂zvz = 0 , (1)

P−1 [(∂t + v ·∇) vh +∇hp] =∇2vh , (2)

P−1 [(∂t + v ·∇) vz + ∂zp] =
(∇2vz + θ

)
, (3)

(∂t + v ·∇) θ =∇2θ +Rvz . (4)

These equations are written here in dimensionless form for the perturbation
around the basic state. Coordinate z is along the vertical and subscript ‘h’ indi-
cates the horizontal directions. The temperature fluctuation θ is defined as the
departure from the linear temperature profile given by the Fourier law in the
fluid at rest: T0(z) = Tb − z∆T/h (h is the height of the cell and ∆T = Tb − Tt

is the temperature difference between the bottom and top plates). The natural
control parameter is the Rayleigh number defined as:

R =
αg∆Th3

κν
,

where α is the expansion coefficient and g the acceleration of gravity. The thermal
diffusivity κ and the kinematic viscosity ν parameterize the stabilizing dissipative
processes. The last parameter that shows up in these dimensionless equations is
the Prandtl number P = ν/κ that controls the nature, either mostly thermal or

1 The material in this section is discussed at length in Chandrasekhar’s book [5].
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rather hydrodynamic, of the physical processes at stake, as they depend on the
relaxation rates of temperature and vorticity fluctuations. Equation (1) accounts
for the continuity of the flow and (4) for heat conduction in the fluid. Differential
buoyancy shows up in (3) through the term in θ and, at this stage the horizontal
component of the Navier–Stokes equation (2) only plays a passive role (closing of
flow lines). Boundary conditions must be added to these equations. The cleanest
situation is for good conducting rigid (i.e. non slip) plates, which yields:

θ(z = zp) = 0 and v(z = zp) = 0 , (5)

where zp denotes the plate’s position. As already mentioned, Rayleigh assumed
stress-free boundary conditions at top and bottom, hence:

θ(z = zp) = 0 and vz(z = zp) = 0 , ∇hvh(z = zp) = 0 . (6)

He solved the problem for Fourier normal modes in the form ∝ exp(ikh·xh) where
all the functional dependence in the vertical coordinate are absorbed in the pro-
portionality sign. A straightforward calculation from the Boussinesq equations
(1–4) and boundary condition (6) yields the marginal stability condition:

Rm(k) =

(
k2 + π2

)3

k2
,

where k is the length of the horizontal wave-vector kh. This curve is displayed
in Fig. 3, together with that corresponding to the more realistic no-slip velocity
boundary conditions (5) obtained by Pellew & Southwell (1940). The minimum
of each curve defines the corresponding threshold above which convection sets
in, Rc = 27π4/4 ' 657.5 and Rc ' 1708 for stress-free and no-slip conditions
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Fig. 3. Marginal stability curves for stress-free (A) and no-slip (B) velocity boundary
conditions and isothermal plates (infinitely large conductivity).
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respectively. The expected diameter of the convection cells is half the critical
wave-length λc = 2π/kc. In the no-slip case kc ' 3.12, which make the predicted
diameter very close to the height of the cell (π/3.12 ' 1.007). In the stress-free
case one obtains kc = π/

√
2 which gives a somewhat larger diameter (

√
2 ' 1.4).

This prediction could have partly been responsible for the confusion alluded
to above because it was close to Bénard’s observations (but for a Marangoni-
based mechanism) though, strictly speaking, one should have compared with the
prediction for mixed boundary conditions (bottom: no-slip, top: free) that yields
Rc ' 1101 and kc ' 2.68. [Of course other cases can also be studied, especially
by relaxing the assumption about the thermal conductivity of the plates.]

3 RB convection beyond threshold

As the Rayleigh number exceeds the threshold value, part of the heat is trans-
ported by convection which decreases the potential for instability, while thermal
diffusion and viscous friction increases due to the horizontal gradients implied
by the modulation. This explains that the amplitude of the motions saturates
beyond threshold. For rolls, the bifurcation turns out to be supercritical , i.e.
behaves continuously in the vicinity of the threshold and the system builds up
a well defined steady pattern. Early studies have been devoted to the problem
of which kind of periodic pattern was selected by nonlinearities, rolls made of
a single pair of wavevectors ±kx̂ where x̂ is a unit vector in the horizontal
plane, squares made of two pairs of wavevectors at right angles, hexagons with
three pairs at 120◦ (Fig. 4). The theory was again first developed for stress-free

Fig. 4. Hexagons vs. rolls. Hexagons result from the superposition of three pairs of
modes at 120◦. Those appearing in thin convecting layer are produced by the Marangoni
effect and have fluid sinking in the center of the cells. In thicker layers, the Rayleigh
mechanism produce hexagons with fluid sinking at the cell edges. Both bifurcate sub-
critically. Rolls are obtained from a pair of modes with opposite wavevectors which
may point to any direction in the horizontal plane owing to orientational degeneracy
in laterally unbounded layers. This degeneracy is then broken by the developing mode.
Rolls bifurcate supercritically.
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Fig. 5. Busse balloon in perspective in the (k, P,R)-space, after Busse [7].

boundary conditions (Malkus & Veronis, 1958 [12]) and later in the no-slip case
(Schlüter, Lortz & Busse, 1965 [13]), both studies concluding for roll patterns.
Subsequent developments concerning the stability of the rolls against various sec-
ondary mechanisms mainly belong to Busse and Clever [7]. The result is a surface
in parameter space called the Busse balloon separating stable roll patterns from
unstable ones. In addition to the Rayleigh number, stability depends on the
wavelength of the cells and on the Prandtl number. Some secondary modes are
universal, i.e. do not depend on the fact that the pattern is generated by the RB
mechanism but on the symmetries of the rolls (invariance through translation
→ Eckhaus instability, and rotation → zigzag instability) or on the fact that
the intensity of the convection is weak close to the marginal curve (cross-roll
instability). Other secondary modes are much more specific to convection, with
structures that strongly depend on the value of P , e.g. the bimodal instability
with secondary rolls localized in thermal boundary layers at right angles with the
primary pattern when P is large. Fig. 5 displays a picture of the Busse balloon.

Secondary instabilities are just a step towards more complex behavior as R
is increased. Different scenarios have indeed been observed, depending on the
value of P . Beyond the primary instability leading to the formation of time-
independent two-dimensional2 rolls, time dependence was observed to introduce
itself first and at relatively low R when P is small, but only after secondary
instabilities adding space dependence along the rolls (three-dimensional time
independent states) at large P at higher R. A compilation of early experimental

2 i.e. locally functions of only one horizontal coordinate, say x, in addition to z.
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Fig. 6. Transition to turbulence in RB convection: experimental results collected before
1973 by Krishnamurti [14].

results, adapted from Krishnamurti [14], is displayed in Fig. 6.
In all cases the regime called ‘turbulent convection’ was reached after a finite

number of steps. At first sight this fact seemed to support the revision by Ruelle
and Takens [15] of the classical Landau theory of transition to turbulence [16]:
three or four bifurcations before unpredictable behavior instead of n-periodicity
resulting from an infinite cascade of Hopf bifurcations. However the situation
was not as satisfactory as one would have liked because the thresholds of the
observed transitions were not always well defined and a residual, more or less
random, component of the time dependence was most often recorded before it
was decided to consider the system as turbulent. This was due to the fact that
experiments were performed in wide containers, i.e. with many wavelengths,
while the transitions were most sensitive to defects in the roll patterns. For
example, a state observed at higher R could anticipate transition by nucleating
at dislocations. Checking the Ruelle–Takens dynamical systems approach more
carefully thus required a better control of the patterns. This has been achieved
by playing with confinement effects: only a small number of configuration is
available when the number of cells is limited, which makes the Ruelle–Takens
approach more relevant a priori , as exemplified in the following section. The
case of weakly confined systems will be reviewed next.

4 Weak turbulence in confined systems and chaos

When the lateral size of the container is of the order of its height, hence the
aspect-ratio defined as Γ = `/h (where ` is some typical horizontal scale) is of
order one, the structures of the convection modes strongly depend on its geom-
etry. The flow field can be analyzed in terms of a small number of elementary
motions characterizing the recirculating cells and to which individual ampli-
tudes can be attached. This directly leads to an interpretation of the observed
dynamics in terms of couplings between these variables. Formally, the success
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of this approach rests on the appropriateness of the strategy of reduction to the
center manifold that expresses Haken’s slaving principle [17] in mathematical
terms. Basically, this “principle” says that, among the infinitely many degrees of
freedom accounting for a continuous medium, most can be eliminated owing to
dissipation that smoothes out all high-frequency small-scale motions to leave but
but few slowly evolving fundamental modes. This fundamental property opens
the way to an abstract analysis using the whole vocabulary and techniques of
dynamical systems theory. In practice, the reduction is however analytically out
of reach, so that the understanding gained might sound as a conjecture about
how things really happen. The beauty and the strength of that conjecture rest
on the applicability of the concepts brought forward by the mathematical theory,
especially their universal contents.

In fact, RB convection has concentrated a large part of the efforts in the
study of nontrivial features of nonlinear dynamics as applied to physical prob-
lems, namely chaos, transition scenarios, strange attractors, and the empirical
reconstruction of experimental nonlinear dynamics. The main routes to chaos
predicted by theory have been observed, the sub-harmonic cascade [18], the two-
periodic route and its frequency lockings [19], several types of intermittency, and
even less generic situations such as quasi-periodic regimes with four or five fre-
quencies. It turns out that, while one is unable to predict which scenario will
take place in a given situation, when the system is engaged in a given well-
identified route, it strictly follows that route in its most intricate mathematical
properties until unavoidable experimental limitations enter to blur the details.
Here is shown the example of type III intermittency [20], the intermittency that
develops beyond a sub-critical sub-harmonic bifurcation. This scenario can be
modeled by means of an iteration [21]:

Xn+1 = −(1 + r)Xn −X3
n ,

where X represents the amplitude of the departure from a limit cycle (cor-
responding to the fixed point of the iteration at X = 0) and r is a control
parameter (negative below threshold, positive above). This local map has to be
completed by a global assumption about the nature of manifold on which this
reduced dynamics takes place and regarding the return of escaping iterates in the
vicinity of the fixed point. Type III intermittency was observed by Dubois et al.
[20] in convection using silicone oil (large P ). A typical time series is displayed
in Fig. 7 (top). Displayed on the bottom line of that figure, the return maps of
the maxima In of some observable plotted every two determinations, i.e. In+2 as
a function of In and the statistics of the durations of closely periodic sequences
before escape —the so-called laminar intermissions— both agree quantitatively
with corresponding theoretical predictions after appropriate empirical rescaling.

In the same spirit, Takens’ methods of delays [22] has been used extensively
to reconstruct attractors [19] and determine quantities such as fractal dimensions
and Lyapunov exponents. An early example is shown in Fig. 8, again taken from
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Fig. 7. Type III intermittency in RB convection after Dubois et al. [20]. Top: time
series of a velocity component measured at some point in the cell. Bottom-left: effective
iteration obtained by displaying maxima of that variables every two steps. Bottom-
right: cumulative distribution function of the duration of laminar intermissions.

the work of the Saclay group [23]. There, the correlation dimension3 [24] has been
determined from the so-called correlation integral (left) computed with recon-
structions at ever larger embedding dimensions de and the saturation observed
(right) for d2 = 2.8 clearly indicates the low dimensionality of the corresponding
chaotic attractor.

These approaches in terms of dynamical systems with few degrees of freedom
culminated with the study of the universality and the multi-fractal properties of
chaos emerging from a two-periodic regime observed by Jensen et al. [25] in a
convection experiment with a conducting fluid (mercury) under periodic forcing
by a variable magnetic field. The left part of Fig. 9 displays a section of the
two-periodic attractor at the margin of chaos and its right part the correspond-
ing “f-of-alpha spectrum” characterizing the distribution of singularities of the
distribution of points along the section.

It should again be stressed that the understanding of the transition to tem-
poral chaos has not been obtained ab initio from the primitive problem, e.g.
by truncating a Galerkin expansion as done to obtain the celebrated Lorenz
model [26] (or its higher dimensional generalizations), which is analytically
tractable only at the price of non-physical boundary conditions (stress-free at top

3 This quantity is often used to characterize the fractal component of strange attrac-
tors. It is equivalent to the Renyi dimension d2. The Renyi dimensions dq are defined
by dq = limε→0 log(

∑
i
pqi )/ log(ε), where ε measure the size of balls covering the frac-

tal set and pi the occupation probability of ball i belonging to the covering of the
set. From their usual definitions, it is easily shown that the fractal dimension (or
capacity), the information dimension, and the correlation dimension are obtained as
dq with q = 0, 1, and 2, respectively.
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Fig. 8. Determination of fractal dimensions by Malraison et al. from Saclay RB con-
vection data. Left: Grassberger–Procaccia correlation integral C(r) as a function of the
distance r in embedding spaces with dimensions de ranging from 3 to 8. Right: correla-
tion dimension (slope of C(r) in log-log coordinates) for the RB experiment saturating
at ν = 2.8 (for comparison: increase observed for a synthetic noise signal). After [23].

Fig. 9. Multi-fractal properties of the attractor at the threshold of the two-periodic
route to chaos after Jensen et al. [25]: Left: section of the attractor. Right: f-of-alpha
spectrum.

and bottom, horizontally periodic). Rather, an inductive type of modeling has
been developed, resting on mathematical properties with universal contents in
the dynamical systems sense, i.e. normal forms for bifurcations and their conse-
quences. This phenomenological approach involving generic dynamical systems,
especially iterations, led to impressive results on a local scale in phase space
but, as a matter of fact, beyond threshold the global phase-space structure of
a confined RB convection system with realistic boundary conditions becomes
extremely complicated. This holds true in particular for large-P fluids at high
R, in which thin fluctuating internal thermal boundary layers were observed as
illustrated in Fig. 10, while temporal-chaos concepts should remain relevant to
the dynamics.
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Fig. 10. Complicated patterns in silicone oil at high R. Adapted from [28], courtesy
of F. Daviaud (Saclay).

5 Patterns in extended systems at large P

Furthermore, coexistence of separate attraction basins for different scenarios ap-
peared to be the rule. For example, Type I intermittency and the two-periodic
route were observed in the same experimental container with the same fluid (sili-
cone oil) but starting with initial conditions built according to different protocols
[27].

In the case of confined systems, the validity of universality concepts is backed
by the reduction to low-dimensional dynamical systems through adiabatic elimi-
nation of slaved variables. Appropriate adaptations are clearly needed for weakly
confined systems. On general grounds, lateral confinement effects are expected
to scale as 1/`2. This turns out to be an advantage since, for sufficiently wide
systems (Γ � 1), interesting phenomena may happen in a narrow neighborhood
of the threshold, thus accessible to perturbation techniques. The new meaning
of universality for structures with many cells can indeed be approached in terms
of modulations brought to uniformly periodic roll systems.

The standard multi-scale formalism [8] is the most natural framework for the
study of weakly disordered patterns. Assuming that, close to the threshold, a
modulated solution locally condensed on a pair of wavevectors k± = ±kcx̂ can
be searched for in the form

V (x, y, z, t) = A(x, y, t)V (z) exp(ikcx) + c.c.

A being a slowly varying envelope (∂t ∼ r, ∂x ∼ r1/2, ∂y ∼ r1/4, r =
(R − Rc)/Rc � 1). One is led to the Newell–Whitehead–Segel (NWS) equa-
tion [29,30]:

τ0∂tA =
(
r − g|A|2

)
A+ ξ2

0

[
∂x +

1

2ikc
∂yy

]2

A ,

where τ0 is the natural relaxation time of fluctuation and ξ0, linked to the curva-
ture of the marginal stability curve at threshold, is the natural coherence length
accounting for the reluctance of the system to adopt a wavevector with a value
different from kc.
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Fig. 11. The amplitude of rolls parallel to a lateral wall follows the hyperbolic-tangent
law predicted by the Ginzburg–Landau theory up to the quantitative level according
to the measurements reported in [31].

This equation was obtained for stress-free boundary conditions but can be
shown to hold in the no-slip case with coefficients that can be computed and
checked against experiments. As seen in Fig. 11, the modulation of the convection
amplitude close to a lateral boundary parallel to the roll axis predicted by the
theory is in excellent agreement with that experimentally measured by Wesfreid
et al. [31] in a long and narrow parallelepipedic container using high-P silicone
oil. An equally good quantitative agreement was observed for other physical
properties, e.g. the relaxation rate of fluctuations (critical slowing down), show-
ing that the classical Landau theory of second-order phase transitions applies
also to supercritical bifurcations in extended media.4

In the vicinity of the convection threshold, a large body of results about the
dynamics of disordered patterns, also called textures, can be understood within
the envelope formalism [33]. This remains true as long as the textures behave
relaxationally, which is the case when P � 1. A single scalar envelope field
can then be used, that is locally governed by the NWS equation. Owing to its
real coefficients, this equation derives from a potential so that solutions to it
relax towards essentially time-independent states. Solutions may be disordered,
with curvature and defects, owing to the fact that they have to accommodate
contradictory requirements, the most important ones being that the roll axis
be perpendicular to the lateral boundaries and that the local wavelength be
roughly constant and equal to its critical value in the bulk. Even in the limit
P →∞, the envelope formalism is difficult to handle when textures are strongly
disordered [34]. An alternative is the recourse to simplified models such as the
Swift–Hohenberg (SH) model [35]:

τ0∂tw = rw − ξ4(∇2 + k2
c )2w − g w3 ,

4 Corrections to the classical behavior due to fluctuation effects similar to those in
thermodynamic phase transitions are not detectable in most practical situations.
These effects have been recently studied by Oh and Ahlers [32].
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Fig. 12. Time independent textured state obtained by simulation of the SH model for
r = 0.3 in a large square domain with boundary conditions w = ∇⊥w = 0 where ∇⊥
is the gradient along the normal to the boundary (kc = 1, ` = 200).

where w is now a two-dimensional field function of time and the horizontal
coordinates representing the local convection motion (e.g. the temperature at
mid-height). The SH model was obtained by a semi-rigorous elimination of the
vertical dependence through a Galerkin expansion of the thermo-hydrodynamic
fields in the stress-free case. The original SH model, with its cubic nonlinearity,
derives from a potential and, as such, can only lead to time-independent textures.
A typical simulation result obtained by myself is displayed in Fig. 12, illustrating
the frustration of geometrical origin with “grains” of well-oriented rolls and
several kinds of defects joining them. Non-variational corrections can be expected
however, leading to unsteady textures with very slow residual time dependence,
at least as long as P is sufficiently large. Accordingly, the transition to turbulence
can mostly be interpreted in terms of a “fusion” of two-dimensional (scalar)
textures. Variants of the SH model have been proposed to deal with convection
in different circumstances, when hexagons or squares are expected owing to non-
Boussinesq or heat-conductivity effects [36]. When P decreases, the situation is
more complicated because the velocity field recovers its rights to control the
dynamics. Turbulence is then seen to occur at moderate distance of the primary
convection threshold (see Fig. 6). A theoretical digression is however necessary
before I come back to this problem.

6 Weak turbulence in extended systems at small P

Within the stress-free model, Siggia & Zippelius [37] have shown that the NWS
envelope equation must be corrected at lowest order to account for drift flows
induced by the curvature of rolls. They obtained a set of two coupled equations
for the amplitude A and the intensity U of the drift flow. The effect of the latter
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is to push the rolls, hence a modified NWS equation

τ0(∂t + ikcU)A =
(
r − g|A|2

)
A+ ξ2

0

[
∂x +

1

2ikc
∂yy

]2

A ,

the drift flow U arising from the large-scale vertical vorticity Ω = −∂yU induced
by the curvature of the rolls according to

γ∂tΩ − ∂yyΩ = g ∂y

[
A∗
(
∂x +

1

2ikc
∂yy

)
A+ c.c.

]
,

where g ∝ (1+P )/P 2 ∼ 1/P for P � 1 and ‘c.c.’ denotes the complex-conjugate
term. By contrast with the NWS equation, the new system does not derive from
a potential so that a less trivial dynamics can develop.5 Systematic expansions
in this vein have been developed by Decker and Pesch [38] for the realistic case of
no-slip boundary conditions leading to an account of stability properties of the
rolls in the neighborhood of the threshold in agreement with Busse’s previous
numerical findings [7] (and analytical results by Piquemal and myself for the
zigzag instability [39]).

Close to the threshold, but not asymptotically close to it, the stability of well-
aligned patterns can be studied within the phase formalism [40]. Technically the
full solution, symbolically written V (x, y, t), is searched for in the form V0[k0(x+
φ(x, y, t))]+V1+..., where φ is a slowly varying phase and x the coordinate along
the wavevector of the reference roll system. A compatibility condition for φ leads
to a diffusion equation:

∂tφ = D‖∂xxφ+D⊥∂yyφ ,

where the diffusion coefficients D‖ and D⊥ are functions of the wavevector k0

different from kc (but not too far from it) and the relative distance to threshold r.
Universal secondary instabilities occur when these diffusion coefficients become
negative (Eckhaus when D‖ < 0; zigzags when D⊥ < 0). The generalization of
this approach is due to Newell and Cross [34] who derive the diffusion equation
in a form independent of a reference frame linked to the local roll wavevector.
The solution being now written as V0(Θ(x, y, t)) = A(x, y, t) exp(iΘ(x, y, t)), the
local wavevector is given by kh(x, y, t) =∇hΘ(x, y, t), k ≡

√
k2

h, the amplitude
A is enslaved to the phase Θ through an eikonal equation A = A(k) and Θ is
governed by:

τ(k)∂tΘ(x, y, t) +∇h · [khB(k)] = 0 ,

where τ(k) and B(k) are two functions of k. The previous diffusion equation
is recovered when a nearly uniform roll pattern is assumed, which yields D‖ =
−τ−1d(kB)/dk and D⊥ = −τ−1dB/dk. Cross and Newell then added drift

5 The Galilean invariance of the stress-free Boussinesq problem is broken when no-slip
boundary conditions are considered but, when P is sufficiently small, this invariance
is approximately restored beyond threshold through thin viscous boundary layers at
the top and bottom plates so that the approach still makes sense.
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flows phenomenologically through the change: ∂t 7→ ∂t + U ·∇h. The field U
that generalizes the variable U introduced earlier now describes a horizontal
incompressible flow deriving from a stream function Ψ (i.e. U ≡ (∂yΨ,−∂xΨ))
governed by

∇2Ψ = γ ẑ ·∇h ×
[
kh

(∇h ·
(
khA

2
))]

,

where A is the amplitude and ẑ = x̂× ŷ. In practice, in the unstable range, gen-
eralized phase equations form an ill-posed problem leading to singularities and
some regularization is demanded, as discussed in detail by Newell and coworkers
(see, e.g. [8]).

These theoretical problems are indeed fully relevant to the understanding of
the transition to turbulence in low Prandtl number fluids that do not behave
relaxationally but have more active dynamics of inertial origin. Whereas it was
known for long from conventional studies that turbulent states can be observed
at moderate R when P ∼ 1 or below, see Fig. 6, it was later discovered that
the range of strictly time-independent convection was extremely narrow at large
aspect-ratios Γ � 1 [41]. However, the kind of time-dependence that developed
was not real high-frequency turbulence but resembled a low-frequency broad-
band noise with a power-law spectrum appearing before any trace of secondary
instability [42]. This behavior was not well understood until Pocheau et al. [43]
showed that this noise resulted from a cycle involving the nucleation, migration,
and annihilation of dislocations. Pictures of this cycle are displayed in Fig. 13.

Fig. 13. In a cylindrical container (with Argon under pressure as the working fluid),
lateral boundary effects on the roll orientation at the walls imply some curvature in
the buck. Interplaying with drift flow, a periodic process of nucleation, migration, and
annihilation of dislocations develops, at first roughly periodic in time. Irregularities
in the process lead to a noisy dynamics with power-law spectrum. Pictures kindly
provided by V. Croquette (ENS-Ulm), see [44] for details.
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In an attempt to get a semi-microscopic account of convection at low Prandtl
number in weakly confined systems, it seems necessary to include drift flow
effects in the SH model. Paralleling Siggia and Zippelius, I derived a generalized
SH model by truncating at lowest significant order a Galerkin expansion of the
thermo-hydrodynamic fields while taking care of the large scale flow driven by
curvature effects, obtaining [45, a]:

∂tw + U·∇hw =
[
r − (∇2

h + 1)2
]
w −N (w) ,

(∂t + P∇2
h)∇2

hΨ = ∂yw∂x∇2
hw − ∂xw∂y∇2

hw ,

where, as above, Ψ is the stream function from which the velocity field U de-
rives and N (w) some nonlinear saturating term (either w3 as in the original
SH model, or e.g. [(∇hw) + w2]w as in [45, a], or possibly more general —even
nonlocal— expressions). Numerical simulations of the extended SH model [45,
b] have led to an interpretation of weak turbulence in extended RB convection
systems in terms of a dynamical compatibility of drift flows to the spatially dis-
ordered topology of patterns implied by the geometrical frustration imposed by
the lateral boundaries.

At larger but still small P , a quite different kind of weak turbulence, called
spiral defect chaos (SDC) has also been observed by Ahlers and coworkers [46]
among others. This regime is illustrated in Fig. 14 for two different values of
R. Bistability with respect to this regime has also to be noted: at the same R,
straight rolls are still locally stable but, when it is nucleated somewhere, the SDC
regime invades the whole surface of the system at the expense of the rolls. From
a modeling viewpoint, the SDC regime has been observed in simplified systems
such as the generalized SH model presented above [47] or others simplified models
in the same spirit [48]. The role of drift flows seem essential for such a space-
time chaotic behavior but, on more general ground, its extensive character (i.e. a
density of spiral cores can be defined, independent of the shape of the container
provided it is sufficiently wide) makes it interesting from the point of view of a
statistical analysis of out-of-equilibrium systems at the thermodynamic limit.

Fig. 14. The density of spiral cores increases as R gets farther beyond the threshold
of SDC. Pictures kindly provided by G. Ahlers (UCSB), see [46].
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7 Space-time intermittency and statistical physics

Another situation is of interest with respect to statistical aspects of the transition
to turbulence when confinement effects are exploited to produce a quasi-one-
dimensional pattern, see Fig. 15. In the case to be described, the fluid is silicone
oil with moderate to high Prandtl number so that no strong large-scale flow
effects are expected. Seen from above the positions of the thin thermal boundary
layers between consecutive cells can be recorded as a function of time to construct
space-time diagrams. The most interesting experiments have been performed in
the narrow annular cell shown in Fig. 16 (top), thus avoiding parasitic end effects.

The transition to turbulence in this system happens via a new specific sce-
nario: the time-independent regular arrangement of cells below the transition is
disrupted by intermittent chaotic bursts above threshold. At a given time the
system can be divided in laminar and turbulent domains and at a given point
in space the system is alternatively laminar or turbulent, hence the term space-
time intermittency (STI). This kind of transition has been observed in several
convection experiments [49,50] but also in other physical systems. For a review,
consult [51].

The theoretical account of this scenario follows Pomeau’s idea [53] of an
equivalence of STI with a time-oriented stochastic process known as directed
percolation in statistical physics. This process deals with the modeling of epi-
demic processes in which subjects in good health (in the so-called absorbing
state) are contaminated by some disease (the excited state) with finite local
probability. The subjects stand at the nodes of a lattice and contamination is
from one node to its neighbors while time is advancing by steps. Above some
probability threshold, contamination is sustained and propagates to infinity with
finite probability, otherwise the epidemics ceases spontaneously. Directed perco-
lation is a critical phenomenon that defines a so-called universality class, with a
specific set of critical exponents, controlling, e.g. the fraction of excited states

Fig. 15. Convection in four parallel slits with decreasing width from (a) to (d), seen
from above. The linear arrangement of cells with complex individual flow patterns
observed in (a) is similar to those in Fig. 10. In (d) a regular row of simpler cells
has set in, hence a quasi-one-dimensional pattern with fewer local degree of freedom.
Adapted from [28], courtesy of F. Daviaud (Saclay).
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Fig. 16. Transition to space-time intermittency in quasi-one-dimensional geometry.
Top: annular convection cell, seen from above [the radial aspect ratio is similar to
the transverse one in Fig. 15 (d)]. Bottom: space-time diagrams with the azimuthal
coordinate along the vertical and time running from left to right, below (left) and above
(right) the STI threshold. Courtesy of F. Daviaud (Saclay), see [28] for details.

that grows as a power law of the distance to threshold.

An essential assumption is that, out of the two possible coexisting states at
each location, the one playing the role of the absorbing state is locally stable so
that there cannot be spontaneous birth of excited states. Coexistence of states
in the local phase space usually manifests itself by the formation of walls for
systems distributed in space. In the simplest case of a potential system these
walls move so as to minimize the potential. In the more complicated case where
the excited state is a chaotic transient, the motion of the wall through contam-
ination becomes random. In order to better understand how STI can occur in
deterministic systems, that is to say how local transient temporal chaos can be
converted in sustained space-time chaos by the interaction between neighboring
subsystems, models in terms of coupled map lattices [54] have been built with
an appropriate local phase space structure [55]. The universality issue turns
out to be intricate, especially regarding the thermodynamic limit of infinitely
large systems in the long-time limit, after transients have decayed [56]. As far
as convection in quasi-one-dimensional is concerned, turbulence is obviously the
excited state. The statistics of the size of turbulent domains has been studied as
a function of R, showing that the STI transition was only imperfect [50] due to
a tiny probability of spontaneous nucleation of turbulent cells (possibly linked
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to the focusing of a long-wavelength secondary instability of the convection cell
chain).

8 Convection at large Rayleigh numbers

Beyond the transitional stage, convection enters a fully developed turbulent
regime usually best characterized by physical properties scaling as some power
of R, as noticed by Siggia [11]. Most often one is interested in the behavior of
the Nusselt number defined as

N =
total heat flux

conduction heat flux

where the “total heat flux” is the measured flux and the “conduction heat flux”
is the flux computed from the applied temperature difference upon assuming
Fourier law in a fluid at rest, hence N = 1 below the primary threshold (R < Rc),
N −1 measuring the contribution of convection beyond. In the weakly nonlinear
regime close to threshold it is expected to vary as

N − 1 ∝ vzθ ∝
R−Rc

Rc
,

since N − 1 is the average over the cell of the product θvz, and each term scales
as [(R − Rc)/Rc]

1/2. This behavior has been well observed experimentally long
ago and, as mentioned by Chandrasekhar [5], can serve to locate the threshold
with precision. When R becomes larger than few hundreds of Rc, N increases
with R as a power law:

N ∼ Rγ ,
but some confusion exists about the relevant value of γ that may depend on the
range of R considered, with crossovers between different regimes, the nature of
the fluid (value of P ) and to a lesser extent on the shape of the container or the
roughness of the top and bottom plates. Exact bounds can be given for γ (see
[57] for references) and early arguments predicted γ = 1/3 or γ = 1/2. The first
value is obtained by assuming that the turbulent heat flux is fully controlled by
finite-width thermal boundary layers so that it becomes independent of the con-
tainer height (Malkus, 1958) while the second one, considered as the “ultimate
regime” at asymptotically large R, is reached when buoyancy is fully balanced
by advection in the momentum equation so that the heat transfer no longer
depends on molecular properties κ and ν (Kraichnan, 1962). Consult [58] for
an introductory presentation and [11] or [59] for more information. Some early
experiments seemed to support γ = 1/3 while others for P � 1 yielded rather
γ = 1/4, As a matter of fact, these early studies were performed in extended
geometry with many convection cells and did not allow to test sufficiently large
ranges of parameters. Since 1985 new experiments specifically focusing on this
problem have been developed, see for example [60–62] among many others. In
order to reach high values of R without increasing the temperature difference
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Fig. 17. Total heat flux as measured in terms of the Nusselt number as a function of
the Rayleigh number (in log-log scale). After the initial abrupt increase corresponding
to the weakly nonlinear regime, the Nusselt number varies more gently as Rγ . The
exponent is close to 2/7 over a four-decade range between 107 and 1011, and somewhat
larger, about 1/2, above. Adapted from Chavanne et al. [61, a].

too much (validity condition for the Boussinesq approximation), containers have
indeed to be tall since, from its definition R grows as h3 at given ∆T . But large
aspect ratios cannot be maintained if the experiment is to stay within reason-
able horizontal-size limits. In practice aspect ratios Γ = 1/2 or 1 have been used
and very large R, up to 1018 times the critical value, have been achieved. The
drawback of small aspect ratios is that the mean large scale flow may control an
important part of the heat transfer, especially by producing a “wind” along the
top and bottom plates. For example thermal transfer through so created velocity
boundary layer yields N ∼ R1/4 when they are laminar and N ∼ R2/7 when
they are turbulent.

Figure 17 adapted from the results of Chavanne et al. in liquid helium [61],
is typical of the most recent experiments. One can easily identify the previously
mentioned weakly nonlinear regime close to threshold,6 then the “soft turbu-
lence” regime where chaos is still mostly temporal, next “hard turbulence” with
an exponent γ ' 2/7 explained by the theory involving thermal transfer through
turbulent layers sheared by the general circulation wind, and finally the “ulti-
mate” regime with exponent tending to 1/2. The existence of this last regime
has been challenged [60] and conditions for its observation clarified by Roche et
al. [61, c].

The different turbulence regimes have been reconsidered by Grossmann and
Lohse [59] who distinguish them from the origin of the main contributions to
the dissipation, in the bulk or within boundary layers and give a unified scaling
picture of the strong turbulence problem in RB convection. According to this

6 The threshold is shifted somewhat beyond 1708 owing to small aspect-ratio effects.
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picture, four main regimes can exist with different γ signatures and it is argued
that the scaling with γ = 2/7 though observed over a rather wide range of
Rayleigh numbers (and in spite of its appealing physical interpretation in terms
of heat transfer through turbulent boundary layers) is equally well accounted
for as a blend of regimes with γ = 1/4 and γ = 1/3 with appropriate weighting
coefficients. How these regimes depend on the Prandtl number (also possibly on
the shape of the container and associated bifurcations of the mean large scale
flow) is the subject of recent studies, e.g. [62].

9 Conclusion

One century after his first experiments, one cannot but notice that Bénard
opened a particularly rich field of research, accessible to detailed analysis both
theoretical and experimental. Once the initial misunderstanding about the role
of surface tension has been cleared up, RB convection (within the Boussinesq
approximation) has indeed presented itself as an ideal testing ground for the
interplay of mathematics and physics methods, especially during the last thirty
years. In particular, fundamental problems related to universality could be tack-
led with, both for confined systems where the theory of dynamical systems is
relevant (chaos and transition scenarios, e.g. the sub-harmonic cascade) and for
extended systems where statistical physics is an appealing framework (Ginzburg–
Landau formalism and nonlinear pattern selection, space-time intermittency and
directed percolation). It should further be noticed that progress has been ob-
tained through an exemplary feedback process involving experiments, theory,
and modeling. Let us hope that the methods developed to reach such an im-
proved understanding of the emergence of complexity in this specific physical
system will also fuel the study of issues crucial to the future of our natural
environment.
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55. (a) H. Chaté, P. Manneville, “Spatiotemporal intermittency in coupled map lat-
tices,” Physica D 32 (1988) 409–422. For a review, see (b) H. Chaté, P. Manneville,
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& B. Hébral, “Turbulent Rayleigh–Bénard convection in gaseous and liquid He,”
Phys. Fluids 13 (2001) 1300–1320. (c) P.-E. Roche, B. Castaing, B. Chabaud, B.
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