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Rayleigh-Bénard simulation using the gas-kinetic Bhatnagar-Gross-Krook scheme

in the incompressible limit

Kun Xu and Shiu Hong Lui
Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

~Received 28 September 1998!

In this paper, a gas-kinetic Bhatnagar-Gross-Krook ~BGK! model is constructed for the Rayleigh-Bénard

thermal convection in the incompressible flow limit, where the flow field and temperature field are described by

two coupled BGK models. Since the collision times in the corresponding BGK models can be different, the

Prandtl number can be changed to any value instead of a fixed Pr51 in the original BGK model @P. L.

Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 ~1954!#. The two-dimensional Rayleigh-Bénard

thermal convection is studied and numerical results are compared with theoretical ones as well as other

simulation results. @S1063-651X~99!00205-6#

PACS number~s!: 47.20.Bp, 05.20.Dd, 02.70.2c

I. INTRODUCTION

The use of a code for compressible flow to study incom-

pressible fluid has attracted much attention in the past. Since

compressibility is proportional to the Mach number squared,

dr/r;M 2, it is negligible once the Mach number is lower

than 0.15. In many numerical test cases, such as the cavity

flow, the results from compressible codes are almost identi-

cal to the results from incompressible codes @1–3#. It is also

realized that using a compressible code for incompressible

simulations has advantages. For example, a Poisson solver is

avoided and parallelization of the code can be easily imple-

mented.

If thermal effects are involved in the incompressible flow,

a simple adaptation of a compressible code here bears poten-

tial danger. For example, across the thermal boundary layer,

the pressure is almost constant. If the temperature changes

substantially, say by 10%, in the layer, then the energy equa-

tion will cause a 10% density change due to the ideal equa-

tion of state p5rRT . In reality, the density change is mini-

mal with any reasonable temperature variation in the liquid.

So, the compressible effect is more severe in the thermal

problem than that for the pure Mach compression problem

where dr/r;M 2. It is certainly true that we can use other

equations of state to describe a slightly compressible liquid.

See @4#, and references therein. There, the ability to recover

the correct thermal effects is still questionable. In most cur-

rent literature about the application of compressible codes to

incompressible flows, thermal compressibility seems to be

ignored.

In order to reduce the compressibility in the compressible

code for the thermal problem, we have to, in some ways,

decouple the mass and momentum from the energy equation.
In this paper, two pseudotemperatures are used to model the
Rayleigh-Bénard thermal convection problem in the incom-
pressible limit. In the current model, the velocity field and
temperature field are described by two Bhatnagar-Gross-
Krook ~BGK! models with different collision times. As a
consequence, the Prandtl number can be changed to any
value by modifying the collision times.

II. GAS-KINETIC BGK MODELS

FOR RAYLEIGH-BÉNARD THERMAL CONVECTION

In this section, we are going to construct BGK models to
study the following incompressible Navier-Stokes equations
with thermal effect:

]r

]t
1“•~rU!50,

]U

]t
1U•“U52

“p

r
1n¹2U2G, ~1!

]T

]t
1“•~TU!5“•~k“T !,

where r is the density which is a constant in the incompress-
ible limit, U the velocity, p the pressure, k the coefficient of
thermal conductivity, and T the temperature. Note that rT is
the thermal energy. For the Rayleigh-Bénard convection in a
two-dimensional box, the Boussinesq approximation gives

rG5rbG0~T2Tm!ŷ,

where G0 is the gravitational constant, Tm the average value

of the top and bottom temperatures, ŷ the unit vector in the
vertical direction, and b the coefficient of volume expansion.
For authoritative treatments of this problem, see, for ex-
ample, @5,6#.

In order to the recover the above equations, gas-kinetic
models can be constructed in the following forms:

] f

]t
1u•“ f 5

f eq
2 f

tn
1F , ~2!

]h

]t
1u•“h5

heq
2h

tc

, ~3!

where u5(u ,v) is the x and y components of the particle
velocity. tn and tc are the collision times for the BGK mod-
els. Equation ~2! is used to recover the mass and momentum
equations, and also the velocity flow field. Equation ~3! is for
the thermal energy evolution. The equilibrium states f eq and
heq have the following forms:
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f eq
5rS l1

p
D e2l1~u2U!2

,

heq
5rTS l2

p
D e2l2~u2U!2

,

where l1 and l2 can be expressed as

l15

1

2RT1

and l25

1

2RT2

,

with the two constant variances T1 and T2. Here T is the real
temperature to be simulated. Note that T1 and T2 are both
constants in the current model, and the value of either T1 or
l1 determines the artificial sound speed of the flow field. In
the above BGK models, the compressibility is determined
from Eq. ~2! with the equation of state p5rRT1, which is
totally decoupled from the real temperature T. The external
forcing term F in Eq. ~2! can be approximated as @7#

F52l1G•~u2U! f eq,

from which the buoyancy force can be recovered.
In the course of particle collisions, the compatibility con-

dition is satisfied in the BGK models,

E ~ f eq
2 f !S

1

u

v

D dudv50

and

E ~heq
2h !dudv50.

By using the Chapman-Enskog expansion, Eq. ~1! can be
recovered exactly in the incompressible limit, with the kine-
matic viscosity coefficient

n5tnRT1

and the heat conduction coefficient

k5tcRT2 .

Different from the original BGK model @8#, here both coef-
ficients are decoupled from the fluid temperature T. As a
result, the Prandtl number Pr becomes

Pr5
n

k
5

tn

tc

T1

T2

,

which can be changed to any value by choosing different
tn ,tc ,T1, or T2.

III. NUMERICAL SCHEME FOR THE BGK MODELS

For a finite volume scheme, we need to evaluate the nu-
merical fluxes across a cell interface, and the flux function
depends on the gas distribution function. In this section, the
BGK scheme to solve Eqs. ~2! and ~3! for fluxes will be
presented.

First, for Eq. ~2! we are going to use the operator splitting
method to solve the equation in two steps

f t1u f x1v f y5

f eq
2 f

tn
, ~4!

and

f t5F . ~5!

For Eq. ~4!, in the smooth incompressible limit, the general
solution of f in the above equation at the cell interface x i11/2,j

and time t can be simplified as @9#

f ~x i11/2,j ,y i11/2,j ,t ,u ,v !5

1

tn
E

2`

t

f eq~x8,y8,t8,u ,v !

3e2~ t2t8!/tndt8, ~6!

where x85x i11/2,j2u(t2t8) and y85y i11/2,j2v(t2t8) is
the trajectory of a particle motion. Generally, the equilibrium
state f eq around the center of the cell interface (x i11/2,j

5x0 ,y i11/2,j5y0) and the initial time step (t50) can be
approximated as

f eq~x ,y ,t ,u ,v !5@11~x2x0!a1~y2y0!b1tA#g0 , ~7!

where g0 is the local Maxwellian located at the center of a
cell interface,

g05r0S l1

p
D e2l1[~u2U0!2

1~v2V0!2]. ~8!

Note again l1 is a constant. The dependence of a ,b ,A in Eq.
~7! on the particle velocities can be obtained from the Taylor
expansion of a Maxwellian about the center of the cell inter-
face and have the forms

a5a11a2u1a3v

5S 1

r0

]r

]x
12l1U0

]U

]x
12l1V0

]V

]x
D

22l1U0

]U

]x
u22l1V0

]V

]x
v ,

b5b11b2u1b3v

5S 1

r0

]r

]y
12l1U0

]U

]y
12l1V0

]V

]y
D

22l1U0

]U

]y
u22l1V0

]V

]y
v ,

A5A11A2u1A3v

5S 1

r0

]r

]t
12l1U0

]U

]t
12l1V0

]V

]t
D

22l1U0

]U

]t
u22l1V0

]V

]t
v ,

where all parameters (]r/]x ,]U/]x ,]V/]x) and
(]r/]y ,]U/]y ,]V/]y) at t50 can be obtained from the ini-
tial reconstructions of the macroscopic variables
]r/]x ,]r/]y ,](rU)/]x , . . . . For example, a second-order
interpolation gives
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r05

1

2
~r i , j1r i11,j!,

U05

1

2r0
@~rU ! i , j1~rU ! i11,j# ,

V05

1

2r0
@~rV ! i , j1~rV ! i11,j# ,

]r

]x
5

1

Dx
~r i11,j2r i , j!,

]r

]y
5

1

2Dy
S 1

2
~r i11,j111r i , j11!2

1

2
~r i11,j211r i , j21! D ,

. . .

where Dx ,Dy are the cell sizes in the x and y directions. The
difference in the definition of the x derivative from that of
the y derivative is due to the fact that the Taylor expansion
point is located at the center of the cell interface in the x

direction.

After substituting Eq. ~7! into Eq. ~6!, the final gas distri-
bution function at a cell interface is

f ~x0 ,y0 ,t ,u ,v !5g0@12tn~ua1vb !1~ t2tn!A# . ~9!

The only unknown in the above equation is A, which de-
pends on ]r/]t , ]U/]t , and ]V/]t . Since

f eq~x0 ,y0 ,t ,u ,v !5g0~11At !,

together with the compatibility condition

E ~ f eq
2 f !S

1

u

v

D dudv50,

along time t and at x5x i11/2,j , A can be uniquely deter-
mined from

E g0~ua1vb1A !S
1

u

v

D dudv50,

which gives

1

r0 S
]r

]t

]~rU !

]t

]~rV !

]t

D 52

1

r0
E ~ua1vb !g0S

1

u

v

D dudv

52S
a1^u&1a2^u2&1a3^uv&1b1^v&1b2^uv&1b3^v

2&

a1^u2&1a2^u3&1a3^u2
v&1b1^vu&1b2^u2

v&1b3^uv
2&

a1^uv&1a2^u2
v&1a3^uv

2&1b1^v
2&1b2^uv

2&1b3^v
3&
D ,

where the detailed formulation of ^un
v

m& can be found in the
Appendix. Therefore, the above equation uniquely deter-
mines ]r/]t , ]U/]t , and ]V/]t , so A is obtained.

After determining f in Eq. ~9!, the time-dependent numeri-
cal fluxes in the x direction across the cell interface can be
computed as

S
Fr

FrU

FrV

D
i11/2,j

5E uS
1

u

v

D
3g0@11tn~au1bv !1~ t2tn!A#dudv .

~10!

Once again, the moments of u and v can be easily obtained
from the recursive relations shown in the Appendix. By in-
tegrating the above equation for a time step Dt , we get the
total mass, momentum transport. Similarly, Gi , j11/2 , the
fluxes in the y direction, can be obtained by repeating the

above process in the y direction. With both fluxes in the x

and y directions, we can update the flow variables inside
each cell (i , j) by

S
r

rU

rV
D

n11

5S
r

rU

rV
D

n

1E
0

DtS 1

Dx
~Fi21/2,j2Fi11/2,j!

1

1

Dy
~Gi , j21/22Gi , j11/2! D dt

2S
0

0

rnbG0~Tn
2Tm!

D Dt ,

where the effect from Eq. ~5! has been accounted for in the
above equation.

Once Eq. ~2! is solved, the scheme for Eq. ~3! can be
constructed similarly. For example, we can expand heq as
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heq~x ,y ,t ,u ,v !5h0@11~x2x0!ah1~y2y0!bh1tAh# ,

where

h05~r0T0!S l2

p
D e2l2[~u2U0!2

1~v2V0!2]

at a cell interface, and

ah5ah11ah2u1ah3v

5S 1

r0T0

]~rT !

]x
12l2U0

]U

]x
12l2V0

]V

]x
D

22l2U0

]U

]x
u22l2V0

]V

]x
v ,

bh5bh11bh2u1bh3v

5S 1

r0T0

]~rT !

]y
12l2U0

]U

]y
12l2V0

]V

]y
D

22l2U0

]U

]y
u22l2V0

]V

]y
v ,

Ah5Ah11Ah2u1Ah3v

5S 1

r0T0

]~rT !

]t
12l2U0

]U

]t
12l2V0

]V

]t
D

22l2U0

]U

]t
u22l2V0

]V

]t
v ,

which are closely related to the coefficients of a , b , and A.
In other words, the evolution of h is not totally independent
of the evolution of f, and ]U/]x ,]V/]x , . . . in the above
equations are the same as the corresponding terms in the
equations defining a ,b ,A earlier. Hence, the only unknowns
are T0 , ]T/]x , ]T/]y , and ]T/]t . In order to determine all
unknowns, at t50, the following interpolations can be used
to get r0T0 and ](rT)/]x ,](rT)/]y . The linear reconstruc-
tion of thermal energy rT is necessary with

r0T050.5@~rT ! i , j1~rT ! i11,j# ,

and

]~rT !

]x
5

1

Dx
@~rT ! i11,j2~rT ! i , j# ,

]~rT !

]y
5

1

2Dy
@~r0T0! i11/2,j112~r0T0! i11/2,j21# .

The final solution of h at the center of the cell interface is

h~x0 ,y0 ,t ,u ,v !5h0@12tc~uah1vbh!1~ t2tc!Ah# ,
~11!

and the ]T/]t term in Ah is determined by applying the
compatibility condition

TABLE I. Critical Rayleigh numbers calculated on different

meshes. The error is calculated relative to the theoretical value.

Grid size Rac Error

20310 1756.22 2.84%

40320 1729.43 1.27%

80340 1711.45 0.22%

Theory 1707.76

FIG. 1. Time history of the maximum vertical velocities.

FIG. 2. The dependence of Nusselt number on Rayleigh num-

ber. The simulation results by Clever and Busse @11# are also in-

cluded.

FIG. 3. Temperature contours at Ra55000.
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E ~heq
2h !dudv50,

along (x0 ,y0 ,t), which similarly gives

E Ahh0dudv52E ~ahu1bhv !h0dudv .

Once h is determined in Eq. ~11!, the numerical flux for the
thermal energy is

FrT5E uhdudv ,

and the thermal energy inside each cell can be subsequently
updated.

IV. RESULTS

The Rayleigh-Bénard problem offers a first approach to a
complicated convective flow. In this case, with the gravita-
tional force in the vertical direction a horizontal layer of
viscous fluid is heated from the bottom while the top bound-
ary is maintained at a lower temperature. When the tempera-
ture difference between the top and bottom boundaries is
increased above a certain threshold, the static conduction
state becomes unstable to any small disturbance and the sys-
tem become convective.

In our calculations, the horizontal and vertical length
scales are L52.0 and H51.0, respectively. The tempera-
tures at the bottom and top are Tbottom51.0, T top50.0, with
the difference DT51.0. Nonslip boundary conditions are
implemented at the bottom and top boundaries by reversing
the flow velocities in the ‘‘ghost’’ cell next to the simulation

domain. For the lattice Boltzmann method @10#, a more so-
phisticated boundary condition has to be considered in order
to get the nonslip effect. Periodic boundary conditions are
used for the temperature along the sides of the box. In our
current study, we fix G051.0 and b50.1.

The Rayleigh number is defined as

Ra5

bDTG0H3

nk
.

From the above relation and Pr5n/k , the viscosity coeffi-
cient can be determined:

n5AbDTG0H3 Pr

Ra
.

Consequently, the collision time tn in Eq. ~2! is fixed with

tn52l1n ,

and tc in Eq. ~3! is

tc5tn

l2

l1 Pr
.

Since in the simulations the Courant-Friedrichs-Lewy ~CFL!
time step Dt is almost a constant, in order to keep the colli-
sion time tn at around 1021Dt , we have to choose l1 prop-
erly. In most calculations, l1 is on the order of 1021. Al-
though the numerical scheme is general for any Pr, we used
Pr51, l15l2, and tn5tc in the first test case.

As a first test, we tried to get the critical Rayleigh number
for the onset of thermal convection. With an 80340 mesh,
we have simulated this problem with two supercritical Ray-

FIG. 4. Stream function contours at Ra55000.

FIG. 5. Temperature contours at Ra510 000.

FIG. 6. Stream function contours at Ra510 000.

FIG. 7. Temperature contours at Ra550 000.
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leigh numbers Ra51720 and Ra51735 separately. In each
case, we calculate the maximum y-component velocity in the
whole computational domain at each time step. The time-
dependent amplitude of the y velocity on an 80340 mesh is
shown in Fig. 1, from which we can estimate the critical
Rayleigh number by fitting the curve to V;exp@a(Ra
2Rac)t# , where Rac is the critical Rayleigh number. From
the exponential growth rates, we found that the critical Ray-
leigh number in our calculations is Rac51711.17, which is
0.22% away from the theoretical value 1707.76 ~which is
actually for a box of width 2.0158). For other meshes, the
calculated critical Rayleigh numbers are listed in Table I.

Once the Rayleigh-Bénard convection is stabilized, the
heat transfer between the top and bottom is greatly enhanced.
The enhancement of the heat transfer can be described by the
Nusselt number,

Nu511
^VT&

kDT/H
,

where V is the vertical velocity, DT is the temperature dif-
ference between the bottom and top walls, H is the height of
the box, and ^ & represents the average over the whole flow
domain. Figure 2 is the calculated relationship between the

Nusselt number and the Rayleigh number. The simulation
results of Clever and Busse @11# are also included. As shown
in the figure, our results are very close to those of Clever and
Busse. But, at higher Rayleigh numbers, our value of the
Nusselt number is a little bit smaller than that in @11#, and
thus underestimates the amount of heat transfer. Similar re-
sults are obtained using lattice Boltzmann methods @10,12#.

Typical temperature and stream function contours are
shown in Figs. 3–8 with Ra55000, 10 000 and 50 000. As
the Rayleigh number increases, two trends were observed for
the temperature distribution: enhanced mixing of the hot and
cold fluids and an increase in the temperature gradients near
the bottom and top boundaries. Both trends enhance the heat
transfer in the box.

As another benchmark problem, we have tried one case in
@13#. This problem is that of the two-dimensional Boussinesq
flow in a square with H5L51.0 and Prandtl number Pr
50.71, which is done by setting l15l2 and tc5tn /Pr in
our code. Both velocity components are zero on the bound-
aries. The horizontal walls are insulated, and the vertical
sides are at temperatures T left51.0 and T right50.0. In this
case, the Nusselt number is defined as

Nu511
^UT&

kDT/L
.

The results for the streamline and temperature contours at
Ra5105 are shown in Figs. 9 and 10. With Ra5105, the
average Nusselt number in the whole domain is listed in
Table II for different mesh sizes. Contrary to the last test
case, our result overestimates the heat transfer. A larger Nus-
selt number is obtained.

V. CONCLUSION

In this paper, gas-kinetic BGK models for convective
thermal flow are constructed. A numerical scheme has sub-
sequently been developed. As an application, the two-
dimensional Rayleigh-Bénard case is studied. The simulation

FIG. 8. Stream function contours at Ra550 000.

FIG. 9. Stream function contours at Ra5100 000.

FIG. 10. Temperature contours at Ra5100 000.
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results are very close to those obtained by other methods.
The study of incompressible flow phenomena using the com-
pressible model is an attractive research area. In order to
simulate the thermal effect in the incompressible fluid, the
decoupling of the energy equation from the mass and mo-
mentum equations seems necessary, because the relation be-
tween temperature and volume changes is different for in-
compressible and compressible fluids. Compared with the
lattice BGK methods, the current approach with continuous
particle velocity has advantages in terms of stability and ef-
ficiency. The time step used in the current method is the CFL
time step, which is about one order of magnitude larger than
the particle collision time, which is usually used in the lattice
BGK method @14#.

In this paper, the temperature evolution equation only in-
cludes advection and diffusion terms. The viscous heating
term in the Navier-Stokes energy equation is ignored due to
the simplicity of the model. The construction of a two-
temperature BGK model with the viscous heating term in the
thermal energy evolution equation is an important and chal-
lenging problem. The research in this direction will help us
to find an efficient kinetic scheme to simulate incompressible
flow, and pave the way to simulate a flow mixing compress-
ible gas and incompressible liquid.
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APPENDIX MOMENTS OF THE MAXWELLIAN

DISTRIBUTION FUNCTION

In the gas-kinetic scheme, we need to evaluate moments
of the Maxwellian distribution function with unbounded in-
tegration limits. Here, we list some general formulas @15#.

First, we assume that the Maxwellian distribution for a
two-dimensional flow is

g5rS l

p
D e2l[~u2U !2

1~v2V !2].

Then, by introducing the following notation for the moments
of g:

r^&5E ~••• !gdudv ,

the general moment formula becomes

^un
v

m&5^un&^v
m& ,

where n ,m are integers. When the integration limits are from
2` to 1` , we have

^u0&51,

^u&5U ,

. . .

^un12&5U^un11&1

n11

2l
^un&.

Similarly,

^v
0&51,

^v&5V ,

. . .

^v
m12&5V^v

m11&1

m11

2l
^v

m&.
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TABLE II. Nusselt numbers calculated on different meshes. The

error is calculated relative to the numerical result in @13#.

Grid size Nusselt number Error

20320 4.590 1.77%

40340 4.563 1.17%

80380 4.540 0.66%

Reference @5# 4.510
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