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Abstract—Multipole methods have evolved to be an important class
of theoretical and computational techniques in the study of photonic
crystals and related problems. In this chapter, we present a systematic
and unified development of the theory, and apply it to a range of
scattering problems including finite sets of cylinders, two-dimensional
stacks of grating and the calculation of band diagrams from the
scattering matrices of grating layers. We also demonstrate its utility
in studies of finite systems that involve the computation of the local
density of states.
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1. INTRODUCTION

While there exist a variety of theories [1–3] for solving general
scattering and propagation problems, methods that are strongly
adapted to particular scattering geometries or profiles can be quite
advantageous. Such techniques yield highly accurate results with
relatively short computation times, permitting the study of larger
or more complex structures, and facilitating asymptotic analyses in
certain limiting cases.
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One class of methods that has been particularly successful are
the Rayleigh methods in which field quantities are expanded in
multipole expansions. The origins of these methods date back to
the classic, 1892 paper of Lord Rayleigh [4] in which he developed
a method for the solution of electrostatic problems involving lattices
of spheres or arrays of cylinders. At that time, Rayleigh was aiming to
demonstrate the limits of the validity of the Lorentz-Lorenz equation
— a fundamental equation of optics that provides a bridge between
the microscopic or atomic model of materials, and the continuous
model of a homogeneous and isotropic dielectric through which an
electromagnetic wave propagates. Through his multipole model,
Rayleigh showed that the Lorentz-Lorenz equation was a dipolar
approximation and was able to exhibit corrections due to higher order
terms.

The essence of a multipole method is the application of an
ingenious field identity relating the regular field in the vicinity of any
scatterer to fields radiated by scatterers and external sources, and the
use of lattice sums in the case of periodic systems. While the origins
of the method lie in the solution of electrostatic problems for periodic
systems, the technique has evolved to become an important tool in
the solution of dynamic problems (in particular, in electromagnetism
and solid mechanics) involving both finite and periodic systems.
Applications in these areas, however, have occurred only since the mid
1970s when the multipole method became a significant computational
tool, in addition to its analytic uses.

Amongst the first applications of multipole methods in electrody-
namics was the work of von Ignatowsky [5] who developed a diffraction
theory for wire gratings, incorporating cylindrical harmonic functions
and exploiting lattice sums to render their superpositions quasiperi-
odic. Twersky [6] generalised Ignatowsky’s work and developed effi-
cient computational schemes for the lattice sums based on the Euler-
MacLaurin formula. We have further extended the method [7–9] to
provide for multiple cylinders in the basis cell, leading to the introduc-
tion of both global and relative lattice sums. Other authors [10, 11]
have used related methods that trace their origin to the well-known
Korringa-Kohn-Rostoker method [12] of solid state physics.

Multipole techniques have been used within our group [13, 14] to
develop a theory for the modes and band structure of a two-dimensional
(2D) array of cylinders. This, in turn, has been applied to develop
a theory of diffraction of plane waves by a 2D, perfectly conducting
capacitive array for both normal incidence and off-axis incidence [15–
17]. The multipole method has also been applied to finite systems with
applications in fibre optics [18] and photonic crystals [19].
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Lattice sums are an essential feature of multipole methods for pe-
riodic systems. These are sums of terms evaluated at each point of the
lattice structure, and depending on its dimensionality and geometry, a
range of lattice sums involving different functions (according to the
Green’s function of the relevant wave equation) may arise. Their
evaluation is an important and highly subtle aspect of the method, with
difficulties in their evaluation arising through the occurrence in their
definitions of conditionally convergent series over the direct lattice.
We have developed [20] an absolutely convergent representation in the
form of a series over the reciprocal lattice which, unlike the Ewald
method [21], may be accelerated by successive integrations to any
order. We have also demonstrated relationships [22] between the
lattice sums of a 2D array and a one-dimensional (1D) grating that are
computationally advantageous and which may be extended to higher
dimensions and different lattice geometries.

In this article, we present a systematic development of the
Rayleigh multipole method, commencing with a finite array of cylinders
and extending this to the study of propagation in an infinite 2D
periodic array [14, 13] and diffraction by a 1D grating [8, 9]. We
formulate the propagation problem for a 2D array in terms of an
eigenvalue problem involving grating scattering matrices, and use this
to derive explicit representations for the scattering matrices of finite
stacks, the form of which is closely related to scalar expressions for
1D Fabry-Perot interferometers. The reflection scattering matrix from
a semi-infinite array is shown to be a physically significant quantity
which can be used to study the homogenisation of the structure at
long wavelengths.

The methods are applied to the study of disordered media [23]
and we investigate the transition from localisation to homogenisation
in the long wavelength limit, and derive the effective dielectric constant
for disordered media for both principal polarisations. We also describe
the effects of different types of structural and material disorder on the
properties of photonic crystals and establish the particular parameters
that have a dominant influence on their optical properties.

We conclude with the construction of the 2D Green’s function for
a finite photonic crystal, from which we compute the local density of
states (LDOS) in both E‖ andH‖ polarisations. The LDOS shows how
the crystal affects the radiation properties of an infinite line source
embedded within it and we explore its variation, both within and
outside band gaps and show the existence of “hot” and “cold” spots
outside band gaps and an exponential decay of the LDOS within a
band gap. This technique will be used in the study of the effects of
disorder on the density of states, leading to a deeper understanding of
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the confinement mechanism in random lasers [24].
Finally, we point out that this review complements an earlier

one [25], in which problems both in three dimensions (3D) and 2D
were discussed, with the focus here being on the latter case.

2. THEORETICAL FORMULATION

2.1. Background and Context

Here, we develop a general framework to handle field problems for 2D
photonic crystals composed of finite or infinite collections of cylinders
in either of the two fundamental polarisations. We begin with a
treatment (Sec. 2.2) of a finite number of scatterers and proceed to
develop the solution of propagation and scattering problems for one
and two dimensional periodic structures — namely, gratings in Sec. 2.4
and arrays in Sec. 2.3 — introducing lattice sums as a key element of
the theory for periodic structures. The diffraction theory of cylinder
gratings commences with the scalar problems that arise for operation
in either of the fundamental polarisations, and evolves to a discussion
of the full vector treatment that occurs in the study of crossed gratings
and “woodpile” structures (Sec. 2.6).

The theory is formulated in an elegant and compact matrix
notation and is applied to the calculation of the band structure and
the study of finite photonic crystals in Sec. 3. We develop the theory
of periodic structures initially for simple unit cells containing only
a single scatterer and then extend this to more complex structures
with multiple scatterers per unit cell (Sec. 2.5), necessitating the
introduction of relative lattice sums. Finally, the basic theory is applied
to the study of the radiation dynamics of a finite photonic crystal
(Sec. 5) via the calculation of a Green’s function that leads to the local
density of states. As becomes evident below, the common thread is the
use of the Rayleigh method [14] to develop a field identity expressing
the regular part of the field (i.e., the part associated with the non-
singular terms), in the vicinity of each cylinder, in terms of sources on
all the other cylinders, plus contributions from other external sources.

2.2. General Framework

We begin with a 2D finite system of cylinders and extend the
treatment to 2D infinite and truncated arrays. The finite system
(see Fig. 1) comprises Nc non-intersecting cylinders of radii {al} and
refractive index {νl}, with their axes parallel to the z-axis, and centres
at r = rl (l = 1, 2, . . . , Nc). There are two different classes of
problems to consider, namely propagation and scattering problems.
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Figure 1. Schematic of the structure considered in this Section. It
consists of gratings of cylinders of radii al and positions cl. The unit
cell of the first grating is marked by the thick dashed line.

In propagation problems there is no external, incident field. They are
thus homogeneous in their nature and are formulated as eigenvalue
problems, involving the search for an eigenparameter and, optionally,
field modes. In the case of periodic structures, the points r form
an infinite lattice and the problems are characterised by a Bloch or
quasiperiodicity condition V (r + rp) = exp(ik0 · rp)V (r) (with rp
denoting a lattice vector and k0 = (k0x, k0y) the crystal momentum of
the field). Such problems may be formulated in either of two ways —
with the eigenfrequency (ω or k) as a function of the crystal momentum
k0, or vice versa. Scattering problems are inhomogeneous and here we
consider a plane wave field, incident upon the system of cylinders, and
seek to find the amplitudes of the waves reflected and transmitted by
the structure. For in-plane incidence the full vector problem can be
decomposed into two scalar problems, one for each of the two principal
polarisations, E

‖
and H

‖
, in which the electric and magnetic fields

are aligned respectively with the axes of the cylinders [26]. We let
V (r) denote the z component of the electric field in the case of E

‖

polarisation, or the z component of the magnetic field in the case of
H

‖
polarisation.
In general, we consider a scalar field quantity that satisfies an



Rayleigh multipole methods 27

inhomogeneous Helmholtz equation
[
∇2 + k2ν(r)2

]
V (r) =

∑

s

ςsδ (r− rs) , (1)

where ν(r) = 1 in free space and ν(r) = νl for r inside the cylinder
l. There are two cases of particular interest here: one for infinite
periodic systems in which the ςs denote Bloch factors which form
sources that may characterise a quasi-periodic Green’s function, and
another involving a single source that yields the local density of states
for finite clusters (Sec. 5).

In order to derive the general form of the field V (r) in free space,
we use the Green’s function

G(r, r′) = − i
4
H0(k|r− r′|) (2)

that is the elementary solution of the equation
(
∇2r + k2

)
G(r, r′) = δ(r− r′). (3)

To simplify the nomenclature in (2), and in what follows, the Hankel

function of the first kind, of order n (usually denoted by H
(1)
n ) will be

denoted by Hn.
In the exterior vicinity of each cylinder l, in a region free of sources,

we make use of a local cylindrical harmonic field expansion

Vl(r) =
∞∑

n=−∞

[
AlnJn(k|r− rl|) +BlnHn(k|r− rl|)

]
ein arg(r−rl). (4)

The Wijngaard expansion [27] for the total field is valid everywhere in
free space and has the form

V (r) =
Nc∑

j=1

∞∑

n=−∞

BjnHn (k |r− rj |) ein arg(r−rj) + E(r), (5)

which may be derived with an application of Green’s theorem
∫

A

[
V (r′)∇2r′G(r; r′) − G(r; r′)∇2r′V (r′)

]
dAr′

=

∮

∂A

[
V (r′)

∂

∂n′
G(r; r′)−G(r; r′) ∂

∂n′
V (r′)

]
dsr′ , (6)

to an area A containing all sources and scatterers, with ∂A representing
the union of the exterior boundary of A (∂Aext) and the boundaries of
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the cylinders {∂Al}, with n′ denoting an outward, unit normal to ∂A
at r′. The left hand side of (6) yields V (r) minus contributions due
to sources within A (associated with the right hand side of (1)), that
are included within the true source term E(r) of (5). The line integrals
of (6) around the cylinders yield the scattered field (characterised by
coefficients Bln) in (5) while the line integral around ∂Aext generates a
further contribution to E(r) due to sources exterior to this boundary.
In this article, the term E(r) arises from real sources such as those
that occur in the calculation of local density of states (Sec. 5) and
plane waves, sourced at infinity, as occur in scattering problems.

For each cylinder l we define an annular region Dl beginning at
the exterior boundary of the cylinder and extending up to the nearest
source or cylinder. In this region, the local field expansion (4) is valid,
and by equating (4) and (5) we obtain

∞∑

n=−∞

AlnJn(k|r−rl|)ein arg(r−rl) =
∑

j �=l

∞∑

n=−∞

BjnHn(k|r−rj |)ein arg(r−rj)

+
∞∑

n=−∞

E lnJn(k|r−rl|)ein arg(r−rl), (7)

where the final term of (7) is the series expansion of E(r) in cylindrical
harmonics about the centre of the cylinder l. The field identity (7)
shows that the regular part of the field in the vicinity Dl of cylinder
l (left side), is generated by sources on all the other cylinders, plus
contributions from other external sources (right side). In (7) we apply
Graf’s addition theorem [28] to derive the Rayleigh identity

Aln =
Nc∑

j=1

∞∑

m=−∞

Sljn−mB
j
m + E ln, (8)

where Sljn = Hn(k|rj − rl|) exp [−in arg(rj − rl)] for l 	= j, and Slln = 0.
In matrix notation Eq. (8) has the form

A = SB+ E, (9)

where A = [Al] = [Aln]. That is, A is a vector composed of
partitions Al, each of which are vectors with elements Aln. Similarly,
B = [Bl] = [Blm] and E = [El] = [E ln], and S = [Slj ] is a block matrix

comprising the Toeplitz matrices Slj = [Sljn−m]. In (9), the term SB
denotes the scattered field radiated by the cylinders while the term E

is due to true sources.
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The boundary conditions require continuity of the tangential
components of the electric and magnetic fields at the boundary of each
cylinder. This yields the vector relation

Al = −MlBl, (10)

for each cylinder l, where Ml = diag(M l
m), with

M l
m =





νlJ
′
m(νlkal)Hm(kal)− Jm(νlkal)Hm′(kal)

νlJ ′m(νlkal)Jm(kal)− Jm(νlkal)J ′m(kal)
,

J ′m(νlkal)Hm(kal)− νlJm(νlkal)Hm′(kal)

J ′m(νlkal)Jm(kal)− νlJm(νlkal)J ′m(kal)
,

(11)

for E
‖
and H

‖
polarisations, respectively. In matrix notation, we can

write Equation (9) in the form

(S+M)B = −E, (12)

with M = diag(Ml), a block diagonal matrix. Equation (12)
encapsulates the structure of the Rayleigh multipole method and forms
the basis of the methods for finite or infinite structures that are
presented in later sections.

2.3. Infinite Structures — Arrays

Here, we consider a doubly periodic array of cylinders, centred on the
points rl = l1ê1 + l2ê2, where ê1 and ê2 are the basis vectors of the
array, and l = (l1, l2), is an integer pair that indexes the cylinders of
the array. To solve the propagation problem we set E(r) = 0 and use
the Bloch theorem

V (r+ rl) = e
ik0·rlV (r), (13)

where k0 = (k0x, k0y) is the crystal momentum. In the vicinity of the
cylinder l we may express V as a local field expansion (4), and from
the Bloch condition (13) it follows that

Aln = Ane
ik0·rl , Bln = Bne

ik0·rl , (14)

where An and Bn are the coefficients associated with the cylinder
centred about the origin of coordinates ((l1, l2) = 0). Note that in
the case we are considering there is only one cylinder in each unit cell
and so quasiperiodicity reduces the field problem to determining the
solution of the source coefficients Bn in the central cell. By substituting
(14) in (8) we obtain

An =
∑

j �=l

∞∑

m=−∞

Sljn−me
ik0·(rj−rl)Bm, (15)
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where l and j are integer pairs. Equation (15) introduces the array
lattice sums

SAn
def
=

∑

j �=l

Sljn e
ik0·(rj−rl) =

∑

j �=0

Hn(k|rj |)e−in arg(rj)eik0·rj . (16)

Lattice sums underpin applications of multipole methods for
periodic structures, and consist of sums over the lattice of terms whose
form is determined by the Green’s function for the wave equation
in a given system of separable coordinates. For these to be formed,
the existence of an addition theorem (e.g., Graf’s theorem for Bessel
functions [28]) is necessary. Depending on the dimensionality and
geometry of the periodic structure, different lattice sums associated
with different basis functions may emerge. We note that there is a
second widely used definition of the lattice sums that arises through
derivations based on expansions of Green’s functions in cylindrical
coordinates [25]. In such treatments, an arbitrary choice in the
representation of the Green’s function introduces the lattice sums (16)
or the alternative form

S̃An
def
=

∑

j �=0

Hn(k|rj |)ein arg(rj)eik0·rj . (17)

The two forms are related by S̃A−n = (−1)nSAn .
With a separable coordinate system and an addition theorem, it

is possible to derive summation formulae for the lattice sums [25]. For
the array lattice sums, Cauchy’s integral test shows that the SAn , as
defined in (16) are conditionally convergent for all orders, and so we
must devise a suitable summation method. We employ two forms of
the quasiperiodic Green’s function [20, 25] namely, the spatial domain
form

G(ξ) = − i
4

∑

l

H0 (k |ξ − rl|) eik0·rl (18)

and the spectral domain form

G(ξ) =
1

A
∑

j

ei(Kj+k0)·ξ

(Kj + k0)2 − k2
, (19)

where ξ = r− r′, A is the area of the unit cell and {Kj} are reciprocal
lattice vectors corresponding to the direct lattice vectors {rj} [25]. We
apply the addition theorem for Hankel functions to (18), and identify
the lattice sums (16) in the result

G(ξ) = − i
4
H0(kξ)−

i

4

∞∑

n=−∞

SAn Jn(kξ)e
in arg (ξ). (20)
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Here, the first term represents the source due to the central cylinder,
while the terms in the series describe the multipole sources of order n,
with the lattice sums giving the contribution of all the other cylinders of
the array. Next, we use the Bessel series expansion for the exponential
in (19):

ei(Kj+k0)·ξ =
∞∑

m=−∞

imJm(|Kj + k0|ξ) e−im arg (Kj+k0) eim arg (ξ), (21)

and by means of a Poisson summation formula we may show that (20)
and (21) are equal [20, 25]. We then identify the coefficients of equal
powers of exp [i arg (ξ)] to obtain the expressions for the array lattice
sums

SAn Jn(kξ) = −H0(kξ)δn0 −
4in+1

A
∑

j

Jn(|Kj + k0|ξ)
(Kj + k0)2 − k2

e−in arg (Kj+k0).

(22)
Note that in (22) ξ is an arbitrary vector inside the circle inscribed
within the central Wigner-Seitz cell. While the series in (22) converge
absolutely as O(|Kj + k0|−2.5), convergence may be accelerated by
integrating over ξ. The technique utilises the identity (znJn(z))

′ =
znJn−1(z), with z = kξ, to increase the order of the Bessel functions,
thereby increasing the rate of convergence to O(|Kj +k0|−m−2.5) after
m such integrations. Such a technique is far superior to Ewald’s
method [21] in both accuracy and speed of convergence.

We now return to the Rayleigh identity (15) for a doubly periodic
array of identical cylinders in the form

An =
∞∑

m=−∞

SAn−mBm, (23)

which is structurally identical to (8), with quasiperiodicity introducing
contributions from periodic replicates of each cylinder of the central
cell into the corresponding terms of the lattice sums. In matrix
notation, and by substituting the boundary conditions (10) for the
central cylinder, Eq. (23) becomes

(S+M)B = 0. (24)

This is a propagation problem that can be solved to determine the
eigenfrequencies ω that annul the determinant of the coefficient matrix
in (24), and the associated field modes. The standard technique of the
singular value decomposition is used to compute the eigenfrequencies
and null vectors of the system, and to ascertain their multiplicity.
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The zeros of the determinant in (24), for a crystal momentum k0 in
the irreducible domain of the first Brillouin zone of the array, define
the dispersion curves for photons propagating through the periodic
structure. Hence, in the coordinate system ω (where ω = kc) versus
k0 we obtain the photonic band structure of the array.

The field modes are easily reconstructed from

V (r) =
∞∑

n=−∞

[−MnJn(kr) +Hn(kr)]Bnein arg(r), (25)

representing the exterior field in the central unit cell from which the
modal forms in all other cells are derived using field quasiperiodicity
(13). We note that these forms have been used in our modal theory
[15,16] for the diffraction of plane waves by a capacitive array composed
of perfectly conducting cylinders.

2.4. Infinite Structures — Gratings

Whereas the focus of the previous section was on the solution of
propagation problems (i.e., band structure and modes) for an infinite
array, here we study the solution of an inhomogeneous or scattering
problem involving a cylinder grating. The theory derived here becomes
the basic tool in an alternative derivation of the modes and band
structure of a 2D array in Sec. 3 where we show that the two
formulations are equivalent through the relationships between grating
and array lattice sums for arrays and gratings. The theory, with
extensions to provide for multiple cylinders per period, also underpins
our computational studies of localisation and disorder in Sec. 4.

We commence with a theory for the diffraction of plane waves by
a grating, comprising a single cylinder per period and then generalise
this to handle multiple cylinders per period in Sec. 2.5. The grating,
whose period is d1 and whose cylinders are located with centres on the
line y = 0, is illuminated from above (y > 0) and below (y < 0) by
plane wave fields of respective amplitudes {δ∓p }

E(r) =
∞∑

p=−∞

χ−1/2p δ∓p e
i(αpx∓χpy), (26)

where αp = α0 + 2πp/d1, χp =
√
k2 − α2p, α0 = k sin θ and k = 2π/λ,

with λ and θ denoting the free space wavelength and angle of incidence.

The factors χ
−1/2
p are included in (26) to normalise energy calculations.
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The Rayleigh identity

An =
∞∑

m=−∞

SGn−mBm + En, (27)

is then formed by calculating the matrix SG of grating lattice sums and
the cylindrical harmonics representation of plane wave sources (En). In
(27) the series coefficients An and Bn refer to fields in the central unit
cell.

As in Sec. 2.3, we apply field quasiperiodicity to form the grating
lattice sums (16), summed over a line of inclusions rather than a 2D
array. The grating consists of an infinite set of cylinders with centers
located on the x-axis at the points x = jd1, for integers j ∈ [−∞,∞],
and so the array vectors become rj = jd1x̂, where x̂ denotes the unit
vector along the x-axis. The structure is periodic only in the x direction
so that the crystal momentum has only one component: k0 = α0x̂.
Finally, the lattice sums take the form [8]

SGn =
∑

j �=0

Hn(k|j|d1)e−inH(−j)πeiα0jd1 , (28)

where H is the Heaviside function. We note that the grating
equivalents of the corresponding array lattice sums (16) and (17) are
identical. We also observe that the grating lattice sums apply to
the entire family of plane waves that correspond to equivalent points
in the Brillouin zone, that is SGn (αp) = SGn (α0) . Numerically, the
grating lattice sums (28) can be evaluated using the formulae derived
by Oberhettinger [29] for n = 0, and by Twersky [6] for n 	= 0. The last
term in (27) can be obtained by expanding the exponentials of plane
waves in terms of Bessel functions using their generating function [28],
to yield

En =
∞∑

p=−∞

χ−1/2p

[
(−1)ne−inθpδ−p + einθpδ+p

]
, (29)

where exp (iθp) = (χp + iαp)/k.
For collinear cylinders with their centres lying on the x-axis, the

grating thus exhibits up-down symmetry and the problem may be
decomposed into its symmetric (⊕) and antisymmetric (⊖) compo-
nents. For the symmetric and antisymmetric problems, we establish a
symmetric incidence (δ−p = δ+p = δp) and an antisymmetric incidence

(δ−p = −δ+p = δp), and observe that B−n = ±(−1)nBn, respectively,
corresponding to even [cos(nθ)] and odd [sin(nθ)] angular dependence
of the field expansion. This enables us to fold the system of equations,
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effectively halving its dimension, and, for the symmetric problem, we
form (

σ⊕ +Mǫ−1
)

ǫB⊕ = −J⊕χ−1/2δ , (30)

where σ⊕/⊖ = [σ
⊕/⊖
nm ] = [SGn−m ± (−1)mSGn+m], ǫ = diag(εm), εm

(= 1/2 if m = 0 and = 1 if m > 0) denotes the Neumann symbol,

J⊕/⊖ = [J
⊕/⊖
np ] = [exp (−inθp) ± (−1)n exp (inθp)], and B⊕ denotes

the vector of field coefficients for the symmetric problem. Here, we
have also introduced the symbol ⊖ for the antisymmetric problem.
Once the field coefficients have been calculated, we may reconstruct
the plane wave fields above and below the grating. Above the grating,
we have the outward going field

V (r) =
∞∑

p=−∞

χ−1/2p fpe
i(αpx+χpy), (31)

where

fp = δ
+
p +

2

d1
χ−1/2p

∞∑

n=−∞

Bne
−inθp , (32)

a result derived using an application of Green’s theorem about a region
containing the central cylinder, and using the plane wave form of the
free space Green’s function [8, 9].

For symmetric incidence Eq. (32) reduces to the matrix form

f⊕
def
=

[
f+p

]
= S⊕δ, (33)

defining a scattering matrix

S⊕ = I− 2

d1
χ−1/2K⊕

(
σ⊕ +Mǫ−1

)−1
J⊕χ−1/2, (34)

with K⊕/⊖ = [K
⊕/⊖
pn ] = [exp (−inθp)± (−1)n exp (inθp)]. Correspond-

ingly, for the antisymmetric problem a Rayleigh identity similar to (30)
leads us to the scattering matrix

S⊖ = −I+ 2

d1
χ−1/2K⊖

(
σ⊖ +Mǫ−1

)−1
J⊖χ−1/2. (35)

In (34) and (35) the identity matrix represents a scattering matrix that
is the solution of the diffraction problem in the absence of a grating. In
such a case, the symmetrised problem corresponds to reflection from
a magnetic mirror (∂V/∂y = 0) at y = 0, leading to S⊕ = I, while
the antisymmetrised problem corresponds to reflection from an electric
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mirror (V = 0) at y = 0, leading to S⊖ = −I. The second term in (34)

and (35) represents the diffracted field. In these terms, J⊕/⊖ denotes a

change of basis from plane waves to cylindrical harmonics, while K⊕/⊖

denotes a basis change in the reverse direction. The term (σ+Mǫ−1)−1

denote the scattering operator in cylindrical harmonics and comprise
two components: (1) σ encapsulates the structural geometry through
the lattice sums, while (2) M encapsulates the material properties of
the cylinders. The actual reflection and transmission matrices for the
cylinder grating are then formed from

R = (S⊕ + S⊖)/2, T = (S⊕ − S⊖)/2. (36)

For a stack of gratings we denote by (Ri,Ti) the scattering
matrices of the ith layer, and by (Rn, Tn) the scattering matrices
of a stack of n layers. Finally, for a stack of s gratings uniformly
separated by d3, with propagation matrix P = diag[exp (iχpd3)], we
form the scattering matrices of the entire stack [8] via matrix recurrence
relations:

Rs = Rs +TsPRs−1P(I−RsPRs−1P)−1Ts,

Ts = Ts−1P(I−RsPRs−1P)−1Ts. (37)

2.5. Infinite Structures with Complex Unit Cell

We next generalise the theory to accommodate multiple (Nc) cylinders
in the basis cell. We return to (8) and let l denote a cylinder in the
central cell. We partition the set of all cylinders j 	= l into two sets,
the first representing the periodic replicates of cylinder l in all cells
other than the central cell, and the second representing the periodic
replicates and originals of all cylinders j 	= l in all period cells. By
applying the quasiperiodicity condition we then write the right hand
side of the Rayleigh identity (8) as

∑

j

∞∑

m=−∞

Sljn−mB
j
m =

∞∑

m=−∞

∑

J �=0

Sl,JNc+l
n−m eiα0Jd1Blm

+
∞∑

m=−∞

∑

j �=l

∞∑

J=−∞

Sl,JNc+j
n−m eiα0Jd1Bjm, (38)

where, in the right side of (38), j labels a cylinder in the primary cell
and J labels a period cell. In (38) we identify absolute lattice sums
(28)

SG,lln
def
= SGn =

∑

J �=0

Sl,JNc+l
n eiα0Jd1
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=
∑

J �=0

Hn(k|J |d1)einH(−J)πeiα0Jd1 , (39)

and we introduce the relative lattice sums

SG,ljn
def
=

∞∑

J=−∞

Sl,JNc+j
n eiα0Jd1

=
∞∑

J=−∞

Hn(k|rj − rl + Jd1x̂|)e−in arg (rj+Jd1x̂)eiα0Jd1 . (40)

One application of Graf’s addition theorem reduces the relative lattice
sums to a form that is amenable to computation [8]. Indeed,
various interrelationships [8] can be established that accelerate their
evaluation.

Proceeding in an analogous manner to the derivation of (9), the
Rayleigh identity now becomes a partitioned system of linear equations

Al =
Nc∑

j=1

SG,ljBj + E
l, (41)

where the Al, Bj and E
l denote vectors of cylindrical harmonic

coefficients associated with a cylinder referenced by their respective
labels. The remainder of the formulation then proceeds in the manner
outlined above and we formulate plane wave scattering matrices [8, 9]

S⊕/⊖ = ±I∓ 2

d1
χ−1/2ẼHK̃⊕/⊖

(
σ̃⊕/⊖ + M̃

)−1
J̃⊕/⊖Ẽχ−1/2. (42)

Here, the matrix σ̃ is a partitioned matrix σ̃ = [σ̃lj ] indexed by
cylinder blocks (l, j), and whose elements derive from the absolute and

relative lattice sums according to σljnm = SG,ljn−m ± SG,ljn+m. Correspond-

ingly, M̃ = diag(Mlǫ−1) is a block diagonal matrix, the blocks of which

are the boundary condition matrices Ml for cylinder l. The J̃ and K̃
perform changes of basis between cylindrical harmonic and plane wave
forms as before, while Ẽ is a matrix that accounts for phase shifts in the
plane wave fields due to the placement of cylinders at positions other
than the centre of the primary unit cell. A comprehensive description
of the method is given in Ref. [8, 9].

2.6. Infinite Structures — Crossed Gratings and
“Woodpiles”

Three-dimensional photonic band gap structures are the ultimate goal
as they provide for total confinement, unlike 1D and 2D crystals.
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Figure 2. The geometry of the woodpile structure.

One such configuration is the “woodpile” [30, 31], a photonic crystal
consisting of a finite stack of gratings, each made up of a planar
collection of identical rods which, in this case, are taken to be
cylindrical (see Fig. 2). Each grating is parallel to the xz plane and
the cylinders in any layer are orthogonal to those in adjacent layers.
The solution of the problem in terms of a single scalar potential is no
longer possible due to the crossed structure of successive gratings and
the polarisation coupling that occurs through the boundary conditions.
It is therefore necessary to consider a general incidence configuration
(also referred to as conical diffraction), which, although complicating
the details of the treatment, still allows us to maintain the structure
of the methods already discussed.

We begin our treatment by considering conical diffraction for a
single grating with cylinders parallel to the z-axis. All field quantities
are expressed in terms of the TE and TM components of the electric
field (with respect to the vertical y axis). The fields Ez andKz = Z0Hz
(with Z0 denoting the impedance of free space) in the vicinity of the
grating are expanded in 2D cylindrical harmonic functions in a form
analogous to (4), with the boundary conditions yielding

[
A(E)

A(K)

]
= −

[
MEE MEK

MKE MKK

] [
B(E)

B(K)

]
, (43)

the analogue of (10). In (43) the matrices M are diagonal in form, and
for in-plane incidence the submatrices MEK and MKE vanish, while
the terms in MEE and MKK simplify into the forms corresponding to
the two principal polarisations (11). The multipole coefficients B(E)
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and B(K) that occur in the field expansions for Ez and Kz respectively
are obtained in the usual way, using an application of Green’s theorem
to derive an appropriate Rayleigh identity.

In crossed gratings, the plane wave diffracted orders are a doubly
infinite set, indexed by pairs h = (p, q) corresponding to diffraction in
the plane of each grating. Here, p enumerates the diffracted orders of
the grating with generators parallel to the x axis, while q enumerates
the orders of the orthogonal grating. For either grating, there is
dispersion in only one direction and thus the 2D scattering matrix
for a single grating is a block diagonal matrix (or a permutation
thereof) with each block being the scattering matrix for a 1D problem
indexed over, say, channels q, and driven with incidence parameters
corresponding to channel p of the orthogonal grating.

For a single grating with cylinders parallel to the z-axis, the up-
down symmetry of the grating leads us to consider two symmetrised
problems arising through the structure of Maxwell’s equations. In the
first problem, Ey is symmetric and Et, the component of E in the
plane of the grating, is antisymmetric, while Ky is antisymmetric and
Kt is symmetric. In the second problem, all symmetries are swapped.
The scattering matrix for incidence associated with channel p of the
orthogonal grating for the Et symmetric case is

S⊕
p = I− 2

d1

k

k2⊥,p
χT1

[
K⊕ 0
0 K⊖

] [
M̃⊕

]−1 [
J⊕ 0
0 J⊖

]
χ1, (44)

where, in addition to the previous notation, we have put

M̃⊕ =

[
MEE MEK

MKE MKK

] [
ǫ−1 0
0 ǫ−1

]
+

[
σ⊕ 0
0 σ⊖

]
. (45)

In (45), k⊥,p =
√
k2 − k2‖,p is associated with a longitudinal field

dependence (i.e., along the axis of the cylinder) of exp (ik‖,pz) for
channel p. The corresponding scattering matrix for the opposite
symmetry is easily formed by the transposition of the entries super-
scripted by ⊕ and ⊖. The matrix χ1 is a 2×2 matrix of diagonal blocks
that transforms TE and TM field components to the Cartesian forms
involving Ey and Ky. With a crossed grating, it may happen that k⊥,p
becomes imaginary leading to a diffraction problem in which there are
no propagating orders. This requires some further generalisation of
Twersky’s method [6] in order to handle the lattice sums that arise in
this case.

Once the scattering matrices for a single layer have been calcu-
lated, we extend these results, first to a pair of crossed gratings and
then to a stack of such pairs. This is a subtle process, due to the
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fact that the natural channel order for the top grating is not the same
as that for the next grating. In fact, channel (p, q) in the top grating
corresponds to channel (−q, p) in the bottom grating. This necessitates
a permutation of scattering matrix entries to ensure that the channel
order in successive gratings is the same. Once two gratings have been
properly coupled, it is straightforward to develop recurrence relations
of the form (37) for a grating stack.

While the theory outlined above applies to a structure based on
cylindrical gratings, it is readily extensible to the structures based on
lamellar gratings of rectangular cross-section that are being fabricated
by, for example, Sandia Laboratories [31]. In this case, the theory
would be formulated in terms of orthonormal waveguide modes that
are a conical diffraction generalisation of our earlier treatment [32].

3. FROM SCATTERING MATRICES TO BAND
DIAGRAMS

Plane wave scattering matrices may be used to determine the band
structure of photonic crystals. Here, we extend a technique developed
originally in low energy electron diffraction [33] and applied recently
to photonic crystals [34]. We consider an infinite array, characterised
by basis vectors e1 = (d1, 0), e2 = (d2, d3), and composed of identical
1D grating layers. Note that for rectangular arrays, d2 = 0, while
for hexagonal arrays d2 = d1/2 and d3 =

√
3d1/2. The fields are

expanded in a plane wave basis above and below the grating (j = 1
and j = 2, respectively), with centred phase origins at Pj = (xj , yj) =
±(d2/2, d3/2):

V (j)(r) =
∞∑

p=−∞

χ−1/2p

[
f (j)−p e−iχp(y−yj) + f (j)+p eiχp(y−yj)

]
eiαp(x−xj).

(46)
Relative to the coordinate origins (xj , yj), the field properties are
expressed in terms of scattering matrices corresponding to incidence
from above (R,T), and below (R′,T′), in the most general case. For
a cylinder grating, we characterise these in terms of the scattering
matrices R(0) and T(0) for an up-down symmetric grating relative to
a phase origin on the centre line y = 0 (passing through the centre of
the central cylinder) according to

[
T′ R
R′ T

]
=

[
Q

1

2 0

0 Q− 1

2

] [
P

1

2 0

0 P
1

2

] [
T′(0) R(0)

R′(0) T(0)

]
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Figure 3. Geometry of the unit cell for the Bloch method calculations.
The phase origins P1 and P2 of the fields f+1 , f

−
1 , f

+
2 , and f−2 , above

and below the grating respectively, are shown.

·
[
P

1

2 0

0 P
1

2

] [
Q

1

2 0

0 Q− 1

2

]
. (47)

Here, Q = diag(Qp) with Qp = exp (iαpd2), and P = diag(Pp) with
Pp = exp (iχpd3). Then, in the notation of Fig. 3, we can write

f−2 = Tf−1 +R′f+2 (48)

f+1 = Rf−1 +T′f+2 . (49)

and formulate the field eigenvalue problem for the array by applying the
Bloch condition V (r + rh) = exp (ik0 · rh)V (r). With k0 = (α0, β0),
the eigenvalue equations become f+2 = µf+1 , f

−
2 = µf−1 where µ =

exp (ik0 · ê2).
The general treatment of the scattering problem, when there is no

lattice symmetry to exploit, is expressed in terms of the T-matrix as
follows:

F2 = TF1, where Fj =

[
f−j
f+j

]
and T=

[
T−R′T′−1R R′T′−1

−T′−1R T′−1

]
.

(50)
The band structure of the crystal is then generated from the eigenvalue
problem

TF1 = µF1 , (51)

with the parameters k and α0 = k0x being embedded implicitly in the
matrix T = T(k, α0) by the diffraction theory that calculates the single
layer scattering matrices. Consequently, the use of (51) to calculate
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the dispersion surfaces requires the specification of a particular slice
(α0) of the Brillouin zone, followed by the determination of points
on the trajectory β0 = β0(k) for fixed α0 from the eigenvalue µ =
exp i(α0d2 + β0d3).

For up-down symmetric gratings arranged in rectangular or hexag-
onal lattices, it is possible to reformulate the above eigenvalue problem
to halve its dimension and simultaneously improve its numerical
stability. In the case of a rectangular array, a similarity transformation
of the matrix enables the eigenproblem to be reduced to the form
F−1
i Tgi = (2c)−1gi, i = 1, 2, where gi = ±f1 + f2, and where

Fi = I+(T∓R)(T±R)), with 2c = µ+µ−1. A similar simplification
also applies when d2 = d1/2, a case that is related to hexagonal
symmetry.

The eigenvalues µ of T may be partitioned according to the
direction of propagation of the associated mode. Non-propagating
states (i.e., states with complex eigenvalues associated with band
gaps) are readily classified according to their magnitudes. Those
with |µ| < 1 are regarded as forward propagating while those with
|µ| > 1 are backward propagating. The classification of propagating
states, however, requires the y-component of the group velocity that is
proportional to

dk/dβ0 = wF /(kwD), (52)

the sign of which determines the propagation direction. Here, wD
denotes the energy density per unit cell, which is always positive, and

wF =
∑

p∈Ωr

(∣∣∣f−p
∣∣∣
2
−

∣∣∣f+p
∣∣∣
2
)
− 2 Im

∑

p∈Ωr

f−p f
+
p , (53)

denotes the net energy flux, the sign of which determines the propaga-
tion direction. Each mode is characterised by the eigenvectors of plane
wave coefficients {f±p } that are associated with diffraction orders which
may be either real or evanescent. In (53), Ωr is the set of propagating
orders, for which χp is real, while its complement Ωr is the set of
evanescent orders, with χp imaginary.

We illustrate the technique by calculating the complex band
structure associated with a biological specimen, the sea mouse, a
marine worm with a broad, segmented body found worldwide in
shallow to moderately deep sea water. Its dorsal surface is covered by
long, felt-like threads or spines that, through some remarkable photonic
engineering — the finest and most regular living structure identified
in nature — yields a brilliant iridescence [35].

Fig. 4(A) shows the spectral characteristics of the spines that
comprise a stack of 88 regular, hexagonally packed layers of sea
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Figure 4. (A): Reflectance of a stack of 88 cylinder gratings,
hexagonally packed, at normal incidence (α0 = 0). Vertical dashed
curves correspond to the band gap in the photonic band diagram shown
in the inset. (B): Complex band diagram for the partial gap of the sea
mouse, showing the gap states. The brace in (A) and (B) indicates
the location of the partial band gap. Note that the Im(β0) = 0 plane
of (B) is the inset of (A) (From Figs. 7 and 8 of [49], reprinted by
permission of American Physical Society).

water cylinders of index ν = 1.33, radius a = 0.2 µm and spacing
d1 = 0.51 µm, embedded in a chitin matrix of index ν = 1.54. While
the bulk reflectance of such a structure is very low (0.54%), Bragg
reflection overcomes this to yield a stack with a very high reflectance in
the red at normal incidence. The strong iridescence is associated with
the formation of a partial band gap shown in the inset of Fig. 4(A).
Fig. 4(B) displays the band gap in complex k0 space and demonstrates
the trajectory of the primary evanescent state crossing the gap.

In general, the eigenvalues are paired such that if µ is an eigenvalue
then so is 1/µ̄, a result that holds irrespective of lattice symmetry.
When the lattice exhibits a symmetry, a further pairing relation may
emerge which, for rectangular lattices, pairs µ with 1/µ. For hexagonal
arrays, the relationship is slightly more general, with µ exp(iα0d2/2)
paired with 1/(µ exp(iα0d2/2)). Table 1, corresponding to the sea
mouse structure at normal incidence (α0 = 0), demonstrates these
relationships and shows the partitioning of the 12 most significant
eigenvalues into two sets of 6, respectively associated with forward
and backward propagation.

We look now at the structure of the eigenvalue equations (51)
and see that they may be partitioned into forward and backward
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Table 1. Properties of the 12 most important modes for simplified
structure of the sea mouse. Columns 2 and 3 give the modulus and
phase of the eigenvalues, whereas column 4, only the sign of which is
important, gives the energy flux.

n |µ| arg(µ) wF
1 8010 0.825π 0
2 8010 −0.825π 0
3 1896 0 0
4 1.514 0 0
5 1. −0.140π −0.873294
6 1. 0.039π −0.799632
7 1. −0.039π 0.799632
8 1. 0.140π 0.873294
9 0.6605 0 0
10 0.0005274 0 0
11 0.0001248 −0.825π 0
12 0.0001248 0.825π 0

propagating parts in accordance with the classification of the eigen-
values. This leads to the spectral decomposition

T = F̃Λ̃F̃−1 where F̃ =

[
F− F′

−

F+ F′
+

]
and Λ̃ =

[
Λ 0

0 Λ′

]
.

(54)

Forward propagation is associated with the left half of F̃ and the
eigenvalues of Λ, while back propagation is associated with the right
half of F̃ and the eigenvalues in Λ′. For forward propagation,
the matrices F− and F+ respectively denote the eigenincidence and
eigenreflection, while for backward propagation, the corresponding
quantities are F′

+ and F′
−.

Having elucidated the structure of the single layer propagation
operator T, the corresponding operator for an n-layer structure is
inferred from

Tn
def
=

[
Tn −R′

nT
′−1
n Rn R′

nT
′−1
n

−T′−1
n Rn T′−1

n

]
=

(
F̃Λ̃F̃−1

)n
= F̃Λ̃

n
F̃−1.

(55)
From this, explicit forms of the reflection and transmission scattering
matrices for an n-layer structure may be deduced. For example,

Rn =
[
I+ F′

+Λ
′−nG′

−G
−1
− ΛnF−1

+

]
F+F

−1
− ·
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·
[
I+ F′

−Λ
′−nG′

−G
−1
− ΛnF−1

−

]−1
, (56)

with the matrices G± and G′
± defined by

F̃−1 = G̃ =

[
G− G+
G′

− G′
+

]
. (57)

It is instructive to consider the limit as the stack length increases
without bound, thereby forming the scattering matrix R∞ for a semi-
infinite stack. To achieve this, we must ensure that no wave can return
from the back surface of the stack by eliminating the back propagation
terms. This may be done through the introduction of an arbitrarily
small component of loss leading to

R∞ = lim
n→∞

Rn = F+F
−1
− , (58)

a result that may be interpreted as the “ratio” of the eigenreflections
to the eigenincidence. R∞ is a fundamental quantity, representing the
fixed point of the recurrence relation

Rn+1 = R+T′Rn
(
I−R′Rn

)−1
T, (59)

and is closely related to the eigenvalues through the spectral decom-
position of the single layer propagation operator

(
I−R′R∞

)−1
T = F−ΛF

−1
− . (60)

Such relations enable explicit forms of n−layer scattering matrices to
be expressed in a physically meaning form. For example, we may write

Tn = (I−R′
∞R∞)

[
F−Λ

−nF−1
− +R′

∞F
′
−Λ

′−nF′−1
− R∞

]−1
, (61)

which is closely related to the corresponding scalar quantity for a 1D
Fabry-Perot interferometer which, in the usual nomenclature, has a
transmission coefficient

t =
t12t23 exp(iγ)

1 + r12r23 exp(2iβ)
=

1− ρ2
exp(−iγ)− ρ2 exp(iγ) . (62)

Here, ρ denotes the interface, Fresnel reflection coefficient and is the
scalar analogue of R∞, while γ is the phase change across the layer
and is related to the corresponding eigenvalue by µ = exp(iγ).

We note that in a band gap, the net incident and reflected fluxes
of each state are identical, a result illustrated in Table 1 for the
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Table 2. Effective dielectric constant (εeff) for a square array of
dielectric cylinders, for both E

‖
and H

‖
polarisations, against p.

The cylinders have a refractive index ν = 4 and radius a/d = 0.3
(area fraction f = 0.2827). The plane wave channels are indexed
−p, ..., 0, ..., p and the scattering matrices are of dimension (2p+ 1)×
(2p+ 1)

p εeff
E

‖
polarisation H

‖
polarisation

0 5.24115 1.67609
1 5.24115 1.66620
2 5.24115 1.66617
3 5.24115 1.66617
4 5.24115 1.66617
5 5.24115 1.66617

non-propagating states. A more general form of the same result is
expressed in terms of the unitarity of that part of R∞ corresponding
to propagating order channels. That is, RH∞R∞ = I, a result showing
explicitly that the crystal behaves as a mirror in a bandgap.

At long wavelengths, R∞ provides a mechanism by which the
effective permittivity can be deduced. At these wavelengths, the
specular order (0, 0) is the dominant element of the matrix, defining
a reflection coefficient from which an effective refractive index and
permittivity may be deduced. The calculation is accelerated by
standard extrapolation techniques and converges rapidly. In Table 2,
we show the estimate of the dielectric constant of an array of dielectric
cylinders for both E

‖
and H

‖
polarisations as a function of the

number of plane wave orders used in the scattering matrices. Whereas
convergence is achieved for E

‖
polarisation with the inclusion of only

a specular order, the inclusion of a small number of evanescent orders
is needed for H

‖
polarisation. At long wavelengths, homogenisation of

the single layer is governed by the monopole term (that is directly
associated with the specular plane wave order) in the case of E

‖

polarisation, while for H
‖
polarisation, homogenisation is determined

by the dipole term, the representation of which requires both specular
and evanescent plane wave orders. This may be interpreted in terms
of the subtle difference between the array and grating lattice sums of
order 2. In the long wavelengths limit, the dipole lattice sum for a
grating becomes S2 = π2/3, while for an infinite array S2 = π due to
both specular and evanescent order coupling between layers [23]. These
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points are further elucidated in the consideration of long wavelength
homogenisation in Sec. 4.

We conclude the section by showing the relationship between
the array propagation problem (Sec. 2.3) and the grating scattering
formulation (Sec. 2.4). We begin by writing the Rayleigh identity (27)
for the grating problem corresponding to incident fields of δ− from
above and δ+ from below:

(
SG +M

)
B = −

(
UJχ−1/2δ− +Kχ−1/2δ+

)
, (63)

where U = diag[(−1)n], J = [Jnp] = [exp (−inθp)] and K = [Knp] =
[exp (inθp)]. We reconstruct the upward and downward plane wave
fields that are propagating away from the grating by

f+ = δ+ +
2

id1
χ−1/2JTB , (64)

f− = δ− +
2

id1
χ−1/2KTUB , (65)

and then form the eigenvalue equations by applying the Bloch con-
ditions, f− = µQP−1δ− and f+ = µ−1Q−1P−1δ+. We thus form a
homogeneous system

[
SG +∆S+M

]
B = 0 (66)

where

∆S =
2

d1

[
K

χ−1

µ−1Q−1P−1 − I
JT +UJ

χ−1

µQP−1 − I
KTU

]
. (67)

Eq. (66) must be equivalent to the Rayleigh identity (24) for the
2D array and this, in turn, suggests that SA = SG +∆S, providing a
relationship between the array and grating lattice sums

SAl − SGl =
2

d1

∞∑

p=−∞

χ−1p

[
eilθp

µ−1Q−1
p P

−1
p − 1

+
(−1)le−ilθp

µQpP
−1
p − 1

]
, (68)

in which the right side converges exponentially. The result, derived
heuristically above, and subsequently justified using special function
theory [22], is of practical significance as it provides a way of increasing
the speed of evaluation of the array lattice sums by at least an order
of magnitude.
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Figure 5. 〈lnT 〉 versus λ for E
‖
polarisation. (A): Effect of index

disorder for Qν = 0 (solid), 0.2 (dashed), 0.4 (short dashed), 0.8
(dotted). (B): Effect of radius disorder for Qa = 0 (solid), 0.01d
(dashed) and 0.08d (dotted) (From [23], reprinted by permission of
American Physical Society).

4. DISORDERED PHOTONIC CRYSTALS

A significant issue in the design of photonic devices is their tolerance
to imperfections, a problem closely related to the effects of disorder on
their transmission properties. This is an important problem that has
been considered by a number of authors including [23, 36, 37]. Here,
we study the effects of disorder on the transmittance of 2D photonic
crystals, modelling these with a randomised stacks of gratings. Each
grating exhibits short to medium range disorder and comprises 10–20
cylinders per period, the properties of which are chosen randomly.

Numerical studies of disordered media are computationally in-
tensive, particularly when using Monte Carlo approaches. Such
simulations require a large number of realisations of the problem with
random perturbations of the structural and material properties. The
computational demands of the task place it in the regime of high
performance computing, and its nature lends it to execution on a
parallel computer system with either shared or distributed memory
using a master-slave model of computation. Different realisations of
the problem may then be run under separate slave processes, with
inter-process communication being managed by the MPI protocol.

Fig. 5(A) shows the ensemble averages over 100 realisations of
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Figure 6. (A): Combination of strong disorder for E
‖
polarisation.

Results are shown for the regular structure (solid line), the combination
of all four types of disorder (dashed line), the effects of index and radius
disorder (line with short dashes) and the effects of index and thickness
disorder (dotted line). (B): Localisation length versus wavelength for
the weak interface case. The localisation to homogenisation transition
occurs at λ ≈ 4sd (Fig. (A) is derived from [23], reprinted by
permission of American Physical Society).

the logarithm of the transmittance in E
‖
polarisation for refractive

index disorder. The refractive indices of the cylinders are given by
νℓ = ν̄ + δℓ, with δℓ distributed uniformly in the interval [−Qν , Qν ],
and ν̄ = 3. The structure consists of s = 10 grating layers characterised
by Nc = 5 equally spaced (d = 1) cylinders per period (d1 = 5). The
effect of disorder is strongest in the first gap (3 ≤ λ/d ≤ 5), and most
prominent on the long wavelength side.

Fig. 5(B) shows the effects of radius disorder. Here, the radii
are given by aℓ = ā + δl, where δl is distributed uniformly with
δl ∈ [−Qa, Qa] and with fixed index ν = 3. In Fig. 5(B), ā = 0.3d,
for Nc = 10 equally spaced cylinders per period (d1 = 10) and s = 20
layers. Again, the effects of randomness are most pronounced in the
first gap, with disorder inducing “resonances” between 3.8 < λ/d < 4.5
in the first gap. The behaviour is generally similar to that of index
disorder, although with slightly more pronounced resonances, the
number of which varies in proportion to the stack length, leading
us to the conclusion that resonant behavior is essentially that of a
randomised interferometer.

Figure 6(A) shows the effects of a combination of randomness (for
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a square lattice with ν̄ = 3 and ā = 0.3d) with strong disorder in
refractive index (Qν = 1.5), radius (Qa = 0.1d), vertical separation
(Qh = 0.05d) and lateral position of layers (i.e., sliding of layers)
(Qx = 0.5d). Index and radius disorder have by far the greatest effect
and are able to eliminate any band structure [23]. Similar results apply
to H

‖
polarisation.

For λ sufficiently large, each layer homogenises to a uniform film,
with the stack eventually homogenising to a uniform slab. In the case
of E

‖
polarisation, the monopole term (i.e., the 0th order harmonic

in (12)) is dominant and we form an asymptotic estimate of the
reflectance of the grating, inferring from this an effective permittivity
of the homogenised layer, 〈εeff〉 = 1 + (1/Nc)〈

∑Nc

ℓ=1 fℓ(εℓ − 1)〉, with
fℓ denoting the area fraction of cylinder ℓ. For E

‖
polarisation, the

specular order is the only significant channel of communication between
layers and thus, for statistically equivalent layers, the structure
eventually homogenises to a uniform slab of the same permittivity.
For H

‖
polarisation the situation is different, requiring both monopole

and dipole terms. Taking ensemble averages and assuming that the
cylinders each occupy the same area fraction, we derive the Maxwell-
Garnett formula 〈εeff〉 = 1 + 2f/[(ε + 1)/(ε − 1) − fS2/π] (for weak
disorder only). For a single layer, the static dipole lattice sum is
S2 = π2/3, while for an infinite array S2 = π due to both specular
and evanescent order coupling between layers [23].

Localisation occurs when waves undergo multiple scattering off
a random potential and is characterised by the localisation length l
defined by

l/d = − lim
s→∞

2s/〈lnT 〉, (69)

where T is the transmittance of the stack of s layers, each of thickness
d. When each layer has homogenised, an asymptotic analysis [23] gives
the localisation length by

d

l
≈ −〈lnT 〉

2s
=
α2

8

[
〈η2〉+N(α, s)ε̃2

]
, (70)

where ε̃ = 〈εs〉 − 1, α = kd and η = εs − 〈εs〉 denotes the random
component of the dielectric constant with zero mean. The first term,
involving 〈η2〉, does not depend on the stack length and determines
the true localisation length l. The second term, however, is length
dependent and describes the multiple reflections between the first
and last interfaces of the isotropic stack, and represents the eventual
homogenisation of the entire structure. For short wavelengths, the
term N(α, s) = 2 + [sin(sα) sin(s − 2)α]/(s sin2 α) has a magnitude
of approximately unity and switches quite suddenly to the number of
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the layers in the stack at long wavelengths. The crossover between
localisation and homogenisation occurs when λ ≈ 4sd, the longest
wavelength for which a quarter wave fits into the stack. Fig. 6(B)
shows the variation of l/d with λ, and displays asymptotes generated
from the pure localisation terms and the combined localisation and
homogenisation terms.

5. GREEN’S TENSOR AND LOCAL DENSITY OF
STATES FOR 2D PHOTONIC CRYSTALS

5.1. Background

A key quantity determining the dynamics of radiative sources in
photonic crystals is the spatially resolved, or local, density of states
(LDOS) ρ(r;ω) [38]. In 3D problems, it quantifies the coupling of
an atom, with transition frequency ω at position r, to the modes
of the photonic crystal and thus encapsulates how a photonic crystal
affects the emission rate of an atom. For infinite structures, the LDOS
vanishes inside a complete band gap, and thus an excited two-level
atom with a corresponding transition frequency cannot decay. Rather,
a bound photon-atom state is formed [39]. We observe that the LDOS
has been calculated before for infinite 3D photonic crystals [40] and
for 1D structures [41].

Here, we apply the Rayleigh method of Sec. 2.2 to calculate
the LDOS for finite 2D clusters of Nc non-overlapping cylinders of
radii {al} and refractive indices {νl}, centred at rl in a medium with
refractive index νb = 1 [42]. The LDOS is given by the expression [43]

ρ(r;ω) = − 2ω

πc2
Im[Tr G(r, r;ω)] , (71)

where Tr denotes the trace operation and G(r, rs;ω) denotes the
Green’s tensor at a field point r corresponding to a line current source
located at rs. In general, the tensor G is dense but for 2D problems
with in-plane incidence, the field identities can be decoupled and
solved in terms of single, scalar fields. For TM (E

‖
) and TE (H

‖
)

polarisations, the field problems are characterised by components Ez
and Hz respectively, leading to Green’s tensors of the form [44]

GTM =




0 0 0
0 0 0
0 0 Gzz


 , GTE =



Gxx Gxy 0
Gyx Gyy 0
0 0 0


 , (72)

where each column of the tensors represents the components of an
electric field vector. In each of these, [Gxu, Gyu, Gzu] represents the
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field generated by a current source radiating in the u = x, y, z directions
respectively.

For TM polarisation, we have a monopole source and the Green’s
function is Gzz = V , the solution of

(
∇2 + k2ν2

)
V (r) = δ(r− rs), (73)

where V denotes the scalar field component Ez and ν is the refractive
index as a function of position. For TE polarisation, the field problem
is solved in terms of the scalar field component V = Z0Hz that satisfies

(
∇2 + k2ν2

)
Vu(r) = −iẑ · [∇× u δ(r− rs)]/k, (74)

a result that follows readily from Maxwell’s equations with a pointlike
current source u δ(r) oriented in the direction of the unit vector u, a
vector in the xy-plane. The tensor elements, Gvu for u, v = x, y are
electric field quantities associated with what is a dipole source Vu, and
are calculated according to

(Gxu, Gyu) = −i(ẑ×∇Vu)/(kν2), (75)

for the two independent problems with u = x̂, ŷ respectively.

5.2. LDOS for TM Polarisation

Exterior to cylinder l, the solution of (73) is given by the Wijngaard

expansion (5) with the external source term E(r) given by V
(0)
z , the

particular solution of (73). Here, V
(0)
z = −iH0(kν|r − rs)|/4 with

ν = νb if the source lies in the background, and is zero otherwise.

Interior to the cylinder, the solution is again a sum of V
(0)
z plus a field

expanded in regular cylindrical harmonics that is a general solution of

the homogeneous Helmholtz equation. In this case, V
(0)
z has the same

form as above (with ν = νl) if the source lies inside cylinder l, and is
zero otherwise. We use

Vl(r) =
∑

[C lnJn(kνl|r− rl|) +KlnHn(kνl|r− rl|)]ein arg (r−rl), (76)

as the interior field expansion in the vicinity of the boundary, with the

coefficients Kln arising from an expansion of V
(0)
z using Graf’s addition

theorem. The boundary conditions at the surface are expressed in
terms of harmonic reflection (Rln) and transmission (T ln) coefficients

Bl = RlAl +TlKl, (77)
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where Rl = diag(Rln) and Tl = diag(T ln). Generalising the derivation
of (9), we obtain the blocks of the Rayleigh identity associated with
cylinder l:

−Rl−1Bl +
∑

j �=l

SljBj = −Rl−1
(
RlEl +TlKl

)
, (78)

with the E
l and K

l respectively denoting exterior and interior sources.
For an exterior source, we have E ln = iHn(krls) exp (−inθls)/4 and
Kln = 0, while for an interior source, E ln = 0 and Kln = iJn(krls)
· exp (−inθls)/4, where (rls, θls) = rl − rs. In the above Rnl = −1/M l

n
from Eq. (11) and

T ln =
2i/(πkal)

ξνlHn
′(kνlal)Jn(kal)−Hn(kνlal)J ′n(kal)

, (79)

where ξ = 1 for TM polarisation and ξ = 1/ν2l for TE polarisation.
From the solution of the Rayleigh identity (78), we may construct the
Green’s function Gzz = V as follows. Five cases must be distinguished.
When r and rs are in the same cylinder

V = V (0)z (r, rs) +
∞∑

m=−∞

C lmJm(kνlrl)e
imθl , (80)

where V
(0)
z = H0(kνl|r − rs|)/(4i) is the Green’s function for a

homogeneous medium with refractive index νl. Note that in the

absence of scatterers, Gzz = V
(0)
z = −iH0(kνb|r − rs|)/4 and the

local density of states is given by the equation πc2ρ(r;ω)/(2ω) = 0.25.
When r and rs lie in different cylinders, or if r is in one of the cylinders,
and rs is in the background medium, then Gzz is given by Eq. (80),

but without the V
(0)
z term. In contrast, if both r and rs are in the

background medium, then

V = V (0)z (r, rs) +
Nc∑

l=1

∞∑

m=−∞

BlmHm(k|r− rl) e
im arg (r−rl), (81)

with νl in V
(0)
z replaced by νb = 1. Finally, if the source rs is situated

in one of the cylinders and r is in the background medium, then

Gzz is given by Eq. (81), without the V
(0)
z term. The accuracy of

approximate solutions to (80) and (81) is governed by the number
of circular harmonics that are retained in the linear system. All
calculations below have a relative accuracy of better than 10−4.
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Figure 7. Logarithmic contour plot of ρ(r;ω). (A) λ/d = 3.5, in
the low-transmission (band gap) region; (B) λ/d = 2.5, in a high-
transmission region (From Figs. 1(a) and 1(b) of [50], reprinted by
permission of American Physical Society).

We now apply the method to a square arrangement of cylinders
with separation d having identical radius a/d = 0.3 and refractive index
νl = 3. Figs. 7 show πc2ρ(r;ω)/(2ω) for a cluster of Nc = 81 cylinders
for (A) λ/d = 3.5 near the centre of the first low-transmission region,
and (B) λ/d = 2.5 in a high-transmission region. Black circles indicate
cylinder boundaries. From Fig. 7(A) we see that within the band gap
ρ(r;ω) is small everywhere in the interior of the structure, and that
there is a boundary layer with a thickness of roughly a single lattice
constant that separates the cluster’s interior from its exterior.

A section of Fig. 7(A) for x = 0 is shown in Fig. 8(A), for
Nc = 21, 45, 81, 149 for the same wavelength, revealing that the LDOS
in the central cell decreases exponentially with cluster size and exhibits
strong regular variations within each cell. As the cluster size increases,
the positions of the minima and maxima show no notable changes.
Outside the cluster, the LDOS rapidly approaches its free space value
of 0.25, indicated by the horizontal asymptote. The LDOS reaches its
lowest value at the central cylinder’s edge, where ρ(r;ω) ≈ 3.3× 10−5,
almost four orders of magnitude smaller than the vacuum value.
Consequently, the radiation from a line antenna placed there would be
reduced by about four orders of magnitude. The low values for both
the transmission and the LDOS indicate the presence of a photonic
band gap around λ/d = 3.5.

In Fig. 7(B), for a wavelength λ/d = 2.5 outside the gap, the
LDOS does not decrease strongly inside the structure but varies around
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(A) (B)

Figure 8. Sections through Figs. 7 for x = 0. (A): λ/d = 3.5, and
Nc = 21, 45, 81, and 149 (top to bottom); (B) λ/d = 2.5, and Nc = 21
(solid line) and 81 (dotted line) (From Figs. 2(a) and 2(b) of [50],
reprinted by permission of American Physical Society).

the vacuum value of 0.25. Fig. 8(B) again gives a section of Fig. 7(B)
at x = 0 for Nc = 21 and 81. Inside the cluster, enhanced LDOS values
of at least 3.5 times the vacuum value are seen. The LDOS reaches its
lowest value of 0.07, almost three times lower than the vacuum level,
in the centre of the central cell. Similar effects have been reported for
infinite crystals [40].

The total DOS may be defined as the weighted average of the
LDOS over the Wigner-Seitz cell (WSC):

ρ(ω) =
1

d2

∫

WSC
ε(r)ρ(r;ω) dr , (82)

and in Fig. 9 we plot ρ(ω) in the central Wigner-Seitz cell for Nc =
149 (dashed line). Note the correlation between this curve and the
transmission data (solid line), with high transmittance corresponding
to a large DOS. The converse, however, is not in general true because
the transmission curve is associated with only a single section of the
Brillouin zone (Γ −X for normal incidence) while the LDOS and the
DOS sample the entire Brillouin zone. For normal incidence, the high
transmission for λ/d > 4.8 is associated with the acoustic band in
Γ − X, while for non-normal incidence the high transmission region
moves to the shorter wavelengths, indicating the presence of states
that are not available for coupling at normal incidence. While in the
low transmission region 3.8 < λ/d < 4.8 for normal incidence there is
no band in Γ −X, the presence of a band in X −M , at the extreme
edge of the Brillouin zone, yields a high DOS and would permit a high
transmission for incidence parameters consistent with the X−M edge.
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Figure 9. Solid line: Normal incidence transmissivity of a 10 layer
thick stack of cylinders, with parameters given in the text, versus
wavelength (right-hand scale). Dashed line: πc2ρ(ω)/(2ω) versus λ
in the central cell for Nc = 149. The inset shows a part of the band
diagram for the infinite structure on Γ-X-M . The vertical lines are
included to aid the eye (From Fig. 3 of [50], reprinted by permission
of American Physical Society).

The computational problem, even in the study of structures with
no disorder, is substantial. The calculation involves sampling ρ(r;ω)
at a set of points in the xy-plane. For each point we solve (78) for Bℓ,
with the computational efficiency being enhanced by the independence
of the left hand side of (78) on source position rs. Thus, we compute
the coefficient matrix only once and solve equation (78) for multiple
right hand sides. Since the matrix is both large and dense, efficiency
is further enhanced by the use of highly optimised linear algebra
routines such as those found in LAPACK [45] and its underlying
BLAS package, which are specifically designed for execution in a shared
memory parallel environment. Field reconstruction and the associated
computation of the LDOS can occupy the bulk of the computation
for large numbers of cylinders (i.e., Nc > 150) and the such code
is amenable to the parallelisation of key loops through the OpenMP
protocol.
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5.3. LDOS for TE Polarisation

In the background (ν = νb), in the absence of scatterers, we have two
elementary solutions of (74)

V (0)x = −νbH1(kνb|r− rs|) sin θ/4, V (0)y = νbH1(kνb|r− rs|) cos θ/4,
(83)

that correspond to two pointlike sources aligned respectively with
u = x̂, ŷ. With these and (75), we may form the elements of the
Green’s tensor in the absence of scatterers:

G(0)xx = −i [H0(kνb|r− rs|) +H2(kνb|r− rs|) cos(2θ)] /8, (84)

G(0)yy = −i [H0(kνb|r− rs|)−H2(kνb|r− rs|) cos(2θ)] /8, (85)

G(0)xy = G(0)yx = −iH2(kνb|r− rs|) sin(2θ)/8, (86)

where θ = arg(r− rs). Again, in the absence of scatterers, we see that
the LDOS for this polarisation is πc2ρ(r;ω)/(2ω) = 0.25.

The two components in (83) correspond to the components of a

vector with tangential direction θ̂, in keeping with solenoidal current
loops. For a source interior to cylinder l, the corresponding elementary
solutions are similar in form to (83), with νb replaced by νl. With this
change, the treatment of Sec. 5.2 proceeds as before, but this time
with two problems corresponding to the two orthogonal orientations of
the source term. For each orientation, we solve a Rayleigh identity of
the form (78) and calculate the general solutions of (74), Vx and Vy,

respectively corresponding to sources V
(0)
x and V

(0)
y . Thus, the interior

and exterior forms of Vx and Vy are respectively the same as (80) and

(81), with V
(0)
z replaced by V

(0)
x and V

(0)
y in turn. Finally, from the

full solutions Vx and Vy, we form the columns of the Green’s tensor
using (75).

While a full band gap cannot occur in TE polarisation for
structures composed of dense inclusions in a less dense background,
it is possible to achieve a band gap in the complementary structure
(i.e., the inverse crystal) [46]. In Fig. 10(A) we show the LDOS for
the cluster of 61 hexagonally closely packed voids of radius a/d = 0.48
in a dielectric matrix and observe the exponential decay of the LDOS
towards the centre of the cluster. Fig. 10(B) shows the LDOS in a pass
band, with results that are qualitatively similar to those obtained for
TM polarisation.
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Figure 10. Logarithmic contour plot of ρ(r;ω) for a hexagonally
closed packed array of air voids in a matrix of index νb = 3.61. (A)
λ/d = 2.25, in the low-transmission (band gap) region; (B) λ/d = 3.0,
in a high-transmission region.

6. DISCUSSION AND OUTLOOK

This article has presented a unified overview of the theory of multipole
methods in 2D layered systems, demonstrating their use in studies
of ordered and disordered photonic crystals and of the radiation
dynamics of a system involving finite crystals. Multipole techniques
are now a valuable part of the toolkit for studies of photonic crystals.
They provide highly accurate and efficient computational methods
due to their use of rapidly convergent field expansions adapted to
the particular geometry. In the applications that we have considered,
multipole methods have proved to be superior to plane wave and other
numerical techniques in both speed and accuracy. Another notable
strength is that such methods facilitate the derivation of a range
of analytic results — in particular asymptotic limits (e.g., for long
wavelengths). At this time, their use is largely restricted to circular
and spherical inclusions, but is extendable to inclusions with elliptical
shapes. However, multipole methods are not well suited to use with
scatterers of arbitrary shape.

The next milestone for multipole methods is their extensive use in
3D problems, and specifically, the study of layered systems composed
of arrays of spherical inclusions. While some work [10,11] has already
been undertaken in this area, the regular use of multipole techniques in
3D requires the development of highly efficient computational methods
for the lattice sums. Multipole methods are ideal for studies of
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coated inclusions and, indeed, experimental studies have demonstrated
that metallic coatings are able to produce robust band gaps, almost
independent of the lattice geometry [47]. There are also exciting
extensions of the work of Sec. 5 to studies of systems with gain, and
the modelling of random lasers [24] for which localisation provides the
field containment mechanism. There are also new applications of the
2D theory emerging in the study of microstructured optical fibres (also
known as “holey” or photonic crystal fibres) [48], the cross sections
of which appear as photonic crystals and yield substantial control
over dispersion, and single-moded performance over a wide wavelength
range. Much of this work will be computationally very demanding and
the modelling of realistically large systems will require extensive use
of the techniques of parallel computing.
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