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1. Introduction and main result

This paper deals with continuous time linear Hamiltonian systems and related quadratic
functionals and eigenvalue problems with Dirichlet boundary conditions. The main result is
the Rayleigh principle describing a variational method for finding the eigenvalues. A key feature
of this paper resides in the fact that we do not assume controllability (or equivalently normality)
of the Hamiltonian system, as opposed to the existing literature on this subject such as in [8,
Theorem 1] or [7, Theorem 7.7.1]. Our main result (Theorem 1.1) is based on several recent
topics from the theory of linear Hamiltonian systems without normality. In particular, these
topics are:

(i) a new extended global Picone formula involving the finite eigenfunctions of the associ-
ated eigenvalue problem (Theorem 3.1),

(ii) the oscillation theorem relating the number of proper focal points of conjoined bases of
the Hamiltonian system with the number of finite eigenvalues of the eigenvalue problem
(Theorem 2.9),

(iii) the geometric characterization of finite eigenvalues in terms of finite eigenfunctions
(Theorem A.2 in the Appendix),

(iv) the positivity of quadratic functionals (Proposition 2.2).

As applications of our main result we derive the expansion theorem in the space of admissible
functions (Theorem 4.3) and the equivalence between the positivity and coercivity of a quadratic
functional (Theorem 4.5).

Let us introduce the subject of this paper in more details. Let be given n ∈ N, a fixed interval
[a, b] with a < b, and

real n × n matrices A,B, C ∈ Cp on [a, b]
such that B(t) and C(t) are symmetric,

}

(1.1)

where Cp is the set of piecewise continuous functions. Given (1.1), we consider the linear
Hamiltonian system

x′ = A(t) x + B(t) u, u′ = C(t) x − AT (t) u, t ∈ [a, b], (H)

for real n-vector-valued functions x, u ∈ C1
p (piecewise continuously differentiable functions),

and the quadratic functional

F0(z) :=

∫ b

a

{xT Cx + uT Bu}(t) dt

for admissible pairs z = (x, u), i.e., the functions x ∈ C1
p, u ∈ Cp satisfy the equation of motion

x′(t) = A(t) x(t) + B(t) u(t) on [a, b].
The oscillation theory of system (H) is very well understood, see e.g. [2, 7, 8, 11, 12], when

the system (H) satisfies the (complete) controllability condition: If (x(·) ≡ 0, u) is a solution of
system (H) on a nondegenerate subinterval of [a, b], then also u(·) ≡ 0. This is also called the
(identical) normality of the system (H). As it is shown in [7, Theorem 4.1.3], if the Legendre
condition

B(t) ≥ 0, i.e., B(t) is symmetric and nonnegative definite, for all t ∈ [a, b] (1.2)

holds, then the above normality condition is equivalent to the fact that conjoined bases of the
system (H), i.e., the matrix solutions (X,U) which have XT U symmetric and rank(XT UT ) = n,
have X(t) invertible everywhere in [a, b] except possibly at isolated points t0 ∈ [a, b]. Such an
isolated point t0 where X(t0) is singular is then called a focal point of (X, U) and the defect
of X(t0), def X(t0) := dim Ker X(t0), is its multiplicity. When the normality condition is
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removed, then X(·) may be singular on an interval or even throughout [a, b], which invalidates
the oscillation theory based on the above focal point notion.

In [9, Theorem 3] (see Theorem 2.1) it is shown that under the Legendre condition (1.2) the
kernel of X(·) is piecewise constant on [a, b] and that the Moore–Penrose generalized inverse
X†(·) of X(·) can be used to develop the theory. In particular, the matrix function X†(·) is
differentiable on intervals where the kernel of X(·) is constant (see [9, Lemma 6]). This leads
to the notion of no (generalized or proper) focal points in (a, b] introduced in [9] as

Ker X(t) ⊆ Ker X(τ) for all t, τ ∈ [a, b], τ ≤ t, (1.3)

to which we refer to as the “kernel condition” and which characterizes the positivity of F0 (see
Proposition 2.2). Moreover, the nonnegativity of F0 was characterized in [9] in terms of

x(t) ∈ Im X(t) for all t ∈ [a, b] (1.4)

for every admissible z = (x, u) with x(a) = 0 = x(b). We refer to (1.4) as the “image condition”
(see Proposition 2.3). Other recent results related to the theory of linear Hamiltonian systems
without controllability, such as the Riccati matrix differential equations, can be found in [5,
Section 6].

The notion of multiplicities of proper focal points for the abnormal case was introduced in
[14, 15]. The associated self-adjoint eigenvalue problem

(Hλ), x(a) = 0 = x(b), (E)

where (Hλ) is the linear Hamiltonian system

x′ = A(t) x + B(t) u, u′ = C(t) x − AT (t) u − λW (t) x, t ∈ [a, b], (Hλ)

was first studied in [14, 15] and later in [10] in a more general setting on time scales. In these
references, the main result is the so-called oscillation theorem, which says that the number of
proper focal points in (a, b] of a special conjoined basis of the system (Hλ) is the same as the
number of finite eigenvalues of (E) which are less or equal to λ (see Theorem 2.9). These results
require that W (·) is a real and symmetric n × n matrix-function on [a, b] such that W ∈ Cp

and
W (t) ≥ 0 for all t ∈ [a, b]. (1.5)

The Rayleigh principle presented in this paper is a natural continuation of the above program
for possibly abnormal linear Hamiltonian systems. We consider the quadratic functional

Fλ(z) := F0(z) − λ ⟨z, z⟩W , ⟨z, z̃⟩W :=

∫ b

a

{xT Wx̃}(t) dt, (1.6)

where z = (x, u) and z̃ = (x̃, ũ) are admissible and λ ∈ R. We say that two functions z and z̃
are orthogonal (with respect to the bilinear form ⟨·, ·⟩W ) and write z ⊥ z̃, provided ⟨z, z̃⟩W = 0.
If we denote by

A :=
{

z, such that z = (x, u) is admissible and x(a) = 0 = x(b)
}

(1.7)

the space of admissible functions for the functional Fλ (i.e., admissible with Dirichlet boundary
conditions), then the main result of this paper reads as follows.

Theorem 1.1 (Rayleigh principle). Assume (1.2) and (1.5) and suppose that the functional
Fλ is positive definite for some λ < 0, i.e., Fλ(z) > 0 for all z ∈ A with x(·) ̸≡ 0. Let λ1 ≤
· · · ≤ λm ≤ . . . be the finite eigenvalues of the eigenvalue problem (E) with the corresponding
orthonormal finite eigenfunctions z1, . . . , zm, . . . . Then for each m ∈ N ∪ {0}

λm+1 = min

{

F0(z)

⟨z, z⟩W
, z ∈ A, (Wx)(·) ̸≡ 0, and z ⊥ z1, . . . , zm

}

. (1.8)
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When m = 0, the orthogonality condition in (1.8) becomes empty. The number of finite eigen-
values may be finite (or even equal to zero) by our general assumptions, see Corollary 4.1 below.
The assumption on the positivity of Fλ allows to apply the oscillation theorem and ensures that
the finite eigenvalues of (E) are isolated and bounded from below (see Theorem 2.9), so that
the list λ1 ≤ · · · ≤ λm ≤ . . . makes sense.

For the precise definition of finite eigenvalues and finite eigenfunctions of (E) we refer to
Subsection 2.2. We always count the finite eigenvalues as well as the proper focal points
including their multiplicities. The above theorem is a direct generalization of [8, Theorem 1] or
[7, Theorem 7.7.1] (reduced to the Dirichlet boundary conditions) to linear Hamiltonian systems
without the normality assumption. Our Theorem 1.1 can also be viewed as the continuous time
counterpart of the Rayleigh principle for discrete symplectic systems in [1, Theorem 4.6]. And
as in the latter reference, the Rayleigh principle is a promising tool for a general Sturmian
theory for possibly abnormal linear Hamiltonian systems.

The set up of the paper is the following. In the next section we recall the central notions
of proper focal points for conjoined bases of (H) and finite eigenvalues of (E) from [15], and
we present several other needed auxiliary results from this reference and from [9]. In Section 3
we establish an extended Picone formula, which involves the finite eigenfunctions of (E) and
which is the key tool for the proof of the Rayleigh principle. This proof is then presented
in Section 4, where we also provide applications of the Rayleigh principle in the form of the
expansion theorem and a result on the coercivity of F0. In order to keep this paper complete and
self-contained, we include in Appendix A the proof of the geometric characterization of finite
eigenvalues used in the results of this paper, and in Appendix B the proof of the oscillation
theorem (Theorem 2.9). These proofs are simpler and shorter than those in [15] and they
are essentially extracted from more general oscillation results on time scales in [10], which we
specialize to the continuous time setting.

2. Basic notions and auxiliary tools

In this section we present the basic terminology and other auxiliary topics needed in this
paper.

2.1. Proper focal points. The following is a fundamental result behind the general proper
focal point definition.

Theorem 2.1 (Piecewise constant kernel). Assume (1.2). Then every conjoined basis (X,U)
of (H) has Ker X(·) piecewise constant on [a, b]. More precisely, there are points a = t0 < t1 <
· · · < tk = b such that

Ker X(t) ≡ Ker X(t−i ) ⊆ Ker X(ti) for all t ∈ (ti−1, ti), i = 1, . . . , k, (2.1)

Ker X(t) ≡ Ker X(t+
i ) ⊆ Ker X(ti) for all t ∈ (ti, ti+1), i = 0, . . . , k − 1. (2.2)

Proof. See [9, Theorem 3]. �

From the above result it is clear that the Legendre condition (1.2) is essential for this theory
and it will be assumed further on. According to [15, Definition 1.1], a point t0 ∈ (a, b] is called
a proper focal point of a conjoined basis (X,U) of (H), if Ker X(t−0 ) $ Ker X(t0), and then
m := def X(t0) − def X(t−0 ) is its multiplicity. This definition means that the multiplicity of
t0 ∈ (a, b] as a proper focal point of (X, U) is “somehow” the dimension of vectors which are
in the kernel of X(t0) but which are not in the kernel of X(t−0 ). More precisely,

m = dim
(

[Ker X(t−0 )]⊥ ∩ Ker X(t0)
)

. (2.3)
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When a conjoined basis does not have proper focal points in (a, b], then by (2.1), Ker X(t−) =
Ker X(t) for all t ∈ (a, b], which together with the inclusion in (2.2) yields the kernel condition
(1.3). And this kernel condition characterizes the positivity of F0.

We say that the functional F0 is positive definite (and write F0 > 0) if F0(z) > 0 for every
z ∈ A with x(·) ̸≡ 0. We say that F0 is nonnegative (and write F0 ≥ 0) if F0(z) ≥ 0 for all
z ∈ A.

Proposition 2.2 (Positivity). We have F0 > 0 if and only if condition (1.2) holds and there
exists a conjoined basis of (H) which has no proper focal points in (a, b].

Proof. See [9, Theorem 1 and Remark 3(i)]. �

A similar result to Proposition 2.2 holds for the nonnegativity of F0, but with the image
condition (1.4) instead of the kernel condition (1.4).

Proposition 2.3 (Nonegativity). We have F0 ≥ 0 if and only if condition (1.2) holds and
there exists a conjoined basis of (H) satisfying the image condition (1.4) for every admissible
z = (x, u) with x(a) = 0 = x(b).

Proof. See [9, Theorem 2] and the continuous time version of [13, Corollary 4.3]. �

In fact, the conjoined basis in Propositions 2.2 and 2.3 can be always chosen to be the principal
solution (X̂, Û) of the system (H), which is the solution of (H) given by the initial conditions

X̂(a) = 0 and Û(a) = I. To the contrary with the traditional theory (see e.g. [7, Theo-
rem 8.2.6]), in the general abnormal setting the nonnegativity of F0 is not equivalent to the
nonexistence of proper focal points in the open interval (a, b), see for example [9, Remark 12]

where [a, b] = [0, 2π], F0 ≥ 0, but t0 = π ∈ (0, 2π) is a proper focal point of (X̂, Û). However,
the sufficiency of those conditions is clear from the global Picone formula (Theorem 2.11) below
and from the relation between the kernel condition and the image condition (Lemma 2.5).

Corollary 2.4. Assume that (1.2) holds and there exists a conjoined basis of (H) which has
no proper focal points in (a, b). Then F0 ≥ 0.

Next we establish the relation between the kernel condition (1.3) and the image condition
(1.4).

Lemma 2.5. Let (X,U) be a conjoined basis of (H) satisfying the kernel condition (1.3). Then
for any admissible z = (x, u) with x(a) ∈ Im X(a) we have x(t) ∈ Im X(t) for all t ∈ [a, b].

Proof. This follows from [9, Corollary 4]. From this reference we have that for every t0 ∈ [a, b]
the reachable set Ea(t0) at the point t0 is equal to Im X(t0), where Ea(t0) is by definition the
set of vectors d ∈ Rn for which there exists an admissible z = (x, u) with x(a) ∈ Im X(a) and
x(t0) = d. �

2.2. Finite eigenvalues. Next we proceed with the properties of the eigenvalue problem (E)
introduced in Section 1. Here we use the algebraic definition of finite eigenvalues from [10,
Definition 2.4] as opposed to the geometric definition in [15, Definition 1.2]. However, both
definitions are equivalent under condition (1.5), as it is shown in Theorem A.2 in the appendix

or in [10, Theorem 5.2]. Let
(

X̂(·, λ), Û(·, λ)
)

be the principal solution of (Hλ), i.e., X̂(a, λ) = 0

and Û(a, λ) = I for all λ ∈ R.

Definition 2.6. A number λ0 ∈ R is called a finite eigenvalue of the eigenvalue problem (E)
provided

θ(λ0) := r(b) − rank X̂(b, λ0) > 0, where r(b) := max
λ∈R

rank X̂(b, λ). (2.4)
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In this case we call θ(λ0) the algebraic multiplicity of the finite eigenvalue λ0.

The above definition is motivated by the discrete time theory in [3, Definition 2]. A solution
z(·, λ0) = (x(·, λ0), u(·, λ0)) of (E) with λ = λ0 is called a finite eigenfunction corresponding to
the finite eigenvalue λ0 provided W (·) x(·, λ0) ̸≡ 0, and then the dimension of

{

W (·) x(·, λ0), z = (x, u) solves (E) with λ = λ0

}

(2.5)

is called the geometric multiplicity of λ0.

Remark 2.7. (i) Under condition (1.5), the eigenvalue problem (E) enjoys traditional proper-
ties of self-adjoint differential eigenvalue problems, such as that all finite eigenvalues are real,
the algebraic and geometric multiplicities of a finite eigenvalue λ0 are equal, and the finite
eigenfunctions corresponding to different finite eigenvalues are orthogonal with respect to the
bilinear form ⟨·, ·⟩W defined in (1.6), see [15, Remark 1.3] and Appendix A. In particular, for ev-
ery finite eigenvalue λ0 with multiplicity θ(λ0) ≥ 1 there are exactly θ(λ0) linearly independent
finite eigenfunctions, which can be orthonormalized by the standard procedure.

(ii) As it is proven in [10, Corollary 5.5], under the normality assumption our Definition 2.6
reduces to the classical definition of eigenvalues of (E) e.g. in [7, pp. 42–43], where r(b) = n

and λ0 is an eigenvalue of (E) if and only if the matrix X̂(b, λ0) is singular.

Remark 2.8. The number of finite eigenvalues of (E) depends in general on W (·) but also on
B(·). For example, if B(·) ≡ 0, then every admissible z = (x, u) with x(a) = 0 has x(·) ≡ 0, so
that there are no finite eigenvalues at all in this case.

2.3. Oscillation theorem. The following oscillation theorem is an important tool for our
theory. Let

(

X̂(·, λ), Û(·, λ)
)

be the principal solution of (Hλ). We will always count the
proper focal points of conjoined bases of (Hλ) as well as the finite eigenvalues of (E) including
their multiplicities. Denote by

n1(λ) := the number of proper focal points of
(

X̂(·, λ), Û(·, λ)
)

in (a, b], (2.6)

n2(λ) := the number of finite eigenvalues of (E) which are less or equal to λ. (2.7)

Theorem 2.9 (Oscillation theorem). Assume (1.2) and (1.5). Then

n1(λ) = n2(λ) for all λ ∈ R (2.8)

if and only if there exists λ < 0 such that the functional Fλ is positive definite. In this case the
finite eigenvalues of (E) are bounded from below.

Proof. See Appendix B (or [15, Corollary 1.7] or [10, Corollary 6.4]), where we provide the
proof of this oscillation theorem. �

The crucial assumption Fλ > 0 for some λ < 0 in Theorem 1.1 (and in Theorem 2.9) is
satisfied if W (t) > 0 on [a, b]. More precisely, we have the following lemma (compare with [10,
Theorem 9.5]).

Lemma 2.10 (Positivity). Assume (1.2) and W (t) > 0 on [a, b]. Then there exists ω > 0 and
λ < 0 such that for all λ ≤ λ

Fλ(z) ≥ ω (−λ)

∫ b

a

|x(t)|2 dt

for all z = (x, u) ∈ Cp. In particular, Fλ(z) > 0 if x(·) ̸≡ 0.
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Proof. By continuity, there exists ω > such that W (t) ≥ 2ωI on [a, b]. Hence, by (1.2), for
a piecewise continuous z = (x, u) we have that

Fλ(z) ≥

∫ b

a

{xT Cx}(t) dt − λ

∫ b

a

2ω |x(t)|2 dt ≥ ω (−λ)

∫ b

a

|x(t)|2 dt,

provided λ ≤ λ for a sufficiently small λ < 0. �

2.4. Other auxiliary tools. Next we present other important tools which we need in the
proof of the Rayleigh principle. The first result of this kind is a global Picone formula providing
a lower bound (the nonnegativity) for the functional F0. For a function f on [a, b] we use the
notation f(t) |ba = f(b) − f(a).

Theorem 2.11 (Global Picone formula). Assume (1.2). Let (X, U) be a conjoined basis of
(H) and let z = (x, u) be admissible satisfying the image condition (1.4). Then

F0(z) ≥

∫ b

a

{wT Bw}(t) dt + (xT UX†x)(t)
∣

∣

b

a
,

where w := u − UX†x on [a, b]. If, in addition, (X, U) satisfies the kernel condition (1.3),
∫ b

a
{wT Bw}(t) dt = 0, and x(b) = 0, then x(t) ≡ 0 on [a, b].

Proof. This global Picone formula is a special case of the corresponding time scale result in
[13, Theorem 3.19], which is here reduced to the continuous time setting. The idea of the
proof can also be followed in [9, Proposition 6], where the special choice of the conjoined basis

(X, U) = (X̂, Û) is considered. �

For z = (x, u) and ẑ = (x̂, û) we define the function

Λ(z, ẑ)(t) := {xT Cx̂ + uT Bû}(t), t ∈ [a, b]. (2.9)

Lemma 2.12. Let z = (x, u) be admissible and suppose that ẑ = (x̂, û) has û ∈ C1
p. Then

∫ b

a

Λ(z, ẑ)(t) dt := (xT û)(t)
∣

∣

b

a
−

∫ b

a

{xT (û′ − Cx̂ + AT û)}(t) dt. (2.10)

Proof. Formula (2.10) follows by the integration by parts. �

Next we derive formulas for the values of F0(z) and ⟨z, z⟩W when z is a linear combination
of finite eigenfunctions of (E).

Lemma 2.13. Let z1, . . . , zm be orthonormal finite eigenfunctions of (E) corresponding to the
(not necessarily distinct and not necessarily consecutive) finite eigenvalues λ1, . . . , λm. For any
β1, . . . , βm ∈ R we set ẑ :=

∑m

i=1 βi zi. Then ẑ = (x̂, û) is admissible, x̂(a) = 0 = x̂(b), and

F0(ẑ) =
m

∑

i=1

λi β
2
i and ⟨ẑ, ẑ⟩W =

m
∑

i=1

β2
i . (2.11)

Proof. Both formulas follow from the orthonormality relation between the finite eigenfunctions,
i.e., ⟨zi, zj⟩W = δij. More precisely, the first formula in (2.11) is a consequence from Lemma 2.12,
because

F0(ẑ) = (x̂T û)(t)
∣

∣

b

a
−

∫ b

a

{x̂T (û′ − Cx̂ + AT û)}(t) dt

= −

∫ b

a

m
∑

i=1

βi {x̂
T (u′

i − Cxi + AT ui)}(t) dt
(Hλi

)
=

m
∑

i=1

βi λi ⟨ẑ, zi⟩W =
m

∑

i=1

λi β
2
i .
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The second formula in (2.11) is straightforward. �

3. Extended global Picone formula

In this section we establish an extended global Picone formula, which involves the finite eigen-
functions of (E), comparing to the global Picone formula in Theorem 2.11. For the Dirichlet
boundary conditions it is a generalization of [7, Theorem 2.2.3] to the case of possibly nonin-
vertible X(·) on [a, b].

Theorem 3.1 (Extended global Picone formula). Assume (1.2) and (1.5). Let (X, U) be
a conjoined basis of (Hλ) for some fixed λ ∈ R. Let λ1 ≤ · · · ≤ λm be finite eigenvalues
of (E) with the corresponding orthonormal finite eigenfunctions z1, . . . , zm, that is, for every
i ∈ {1, . . . ,m}

x′
i = Axi + Bui, u′

i = Cxi − AT ui − λiWxi on [a, b], (3.1)

xi(a) = 0 = xi(b), (Wxi)(·) ̸≡ 0. (3.2)

For any β1, . . . , βm ∈ R we set ẑ :=
∑m

i=1 βi zi. Finally, let z = (x, u) be admissible with
x(a) = 0 = x(b) and z ⊥ z1, . . . , zm and such that z̃ = (x̃, ũ) := z + ẑ satisfies the image
condition

x̃(t) ∈ Im X(t) for all t ∈ [a, b]. (3.3)

Then we have the inequality

Fλ(z) ≥

∫ b

a

{w̃T Bw̃}(t) dt +
m

∑

i=1

(λ − λi) β2
i , (3.4)

where w̃ := ũ − UX†x̃ on [a, b].

Proof. Let z = (x, u) be admissible with x(a) = 0 = x(b) and z ⊥ z1, . . . , zm. First note that
z̃ = z + ẑ is admissible and, by (3.2), x̃(a) = x(a) + x̂(a) = 0 and x̃(b) = x(b) + x̂(b) = 0. By
the global Picone formula (Theorem 2.11) applied to (X,U), system (Hλ), and the admissible
z̃ (using (3.3)), we have

Fλ(z̃) ≥

∫ b

a

{w̃T Bw̃}(t) dt + (x̃T UX†x̃)(t)
∣

∣

b

a
=

∫ b

a

{w̃T Bw̃}(t) dt, (3.5)

where w̃ := ũ − UX†x̃ on [a, b] as in this theorem and in Theorem 2.11. Since z̃ = z + ẑ, it
follows that

Fλ(z̃) = Fλ(z) + Fλ(ẑ) + 2

∫ b

a

Λ(z, ẑ)(t) dt, (3.6)

where Λ(z, ẑ)(t) is defined in (2.9). Formula (2.11) of Lemma 2.13 yields

Fλ(ẑ) = F0(ẑ) − λ ⟨ẑ, ẑ⟩W =
m

∑

i=1

(λi − λ) β2
i , (3.7)
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while from Lemma 2.12 (with zi instead of ẑ) and using x(a) = 0 = x(b) we get

∫ b

a

Λ(z, ẑ)(t) dt =
m

∑

i=1

βi

∫ b

a

Λ(z, zi)(t) dt

=
m

∑

i=1

βi

(

{xT ui}(t)
∣

∣

b

a
−

∫ b

a

{xT (u′
i − Cxi + AT ui)}(t) dt

)

(3.1)
=

m
∑

i=1

βi λi ⟨z, zi⟩W = 0, (3.8)

where the last equality follows from the orthogonality of z and z1, . . . , zm. Hence, by inserting
formulas (3.5), (3.7), and (3.8) into equation (3.6), we obtain

Fλ(z) = Fλ(z̃) −Fλ(ẑ) − 2

∫ b

a

Λ(z, ẑ)(t) dt ≥

∫ b

a

{w̃T Bw̃}(t) dt −
m

∑

i=1

(λi − λ) β2
i ,

which is what we needed to prove inequality (3.4). �

4. Proof of the Rayleigh principle and applications

Let
(

X̂(·, λ), Û(·, λ)
)

be the principal solution of (Hλ), i.e., X̂(a, λ) ≡ 0 and Û(a, λ) ≡ I for

λ ∈ R. Let n1(λ) and n2(λ) denote the number of proper focal points of
(

X̂(·, λ), Û(·, λ)
)

in
(a, b] and the number of finite eigenvalues of (E) in (−∞, λ], respectively, as in (2.6) and (2.7).

Proof of Theorem 1.1. We start by applying Theorem 2.1, which yields that the matrix X̂(·, λ)

from the principal solution
(

X̂(·, λ), Û(·, λ)
)

of (Hλ) has piecewise constant kernel on [a, b] for
every λ ∈ R. Next, since we assume that Fλ is positive definite for λ sufficiently negative,
then by the oscillation theorem (Theorem 2.9) equality (2.8) holds, and by Proposition 2.2 the

principal solution
(

X̂(·, λ), Û(·, λ)
)

of (Hλ) has no proper focal points in (a, b].
Consider the first m + 1 finite eigenvalues λ1 ≤ · · · ≤ λm+1 of (E) with the corresponding

orthonormal finite eigenfunctions z1, . . . , zm+1. Suppose first that λ ∈ (λm, λm+1), i.e., n2(λ) =
m and λ is not a finite eigenvalue of (E). Then, by (2.4),

rank X̂(b, λ) = r(b) = max
µ∈R

rank X̂(b, µ),

which in turn implies that

n − def X̂(b, λ) = rank X̂(b, λ) = r(b) = rank X̂(b, λ) = n − def X̂(b, λ).

Hence, def X̂(b, λ) = def X̂(b, λ). This yields that b is not a proper focal point of the principal

solution
(

X̂(·, λ), Û(·, λ)
)

. Consequently, there are exactly n1(λ) proper focal points (including
multiplicities) in the open interval (a, b) and n1(λ) = n2(λ) = m, by (2.8). Let us denote these
proper focal points by a < τ1 < · · · < τl < b with the corresponding multiplicities m1, . . . , ml,
where

∑l

j=1 mj = m. By the definition of a proper focal point, in particular by (2.3), we have

mj = dim
(

[Ker X̂(τ−
j , λ)]⊥∩ Ker X̂(τj, λ)

)

= def X̂(τj, λ)−def X̂(τ−
j , λ), j = 1, . . . , l. (4.1)

Consider now a linear combination ẑ = (x̂, û) of the finite eigenfunctions z1, . . . , zm, that is,
ẑ =

∑m

i=1 βi zi for at this moment unspecified coefficients β1, . . . , βm ∈ R. Then, by (3.1)–(3.2),
ẑ is admissible and x̂(a) = 0 = x̂(b).
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For the function z̃ = (x̃, ũ) := ẑ we consider the homogeneous system of linear equations
determined by the conditions

x̃(τj) ∈
(

[Ker X̂T (τ−
j , λ)]⊥ ∩ Ker X̂T (τj, λ)

)⊥
, j = 1, . . . , l. (4.2)

Here β1, . . . , βm are the unknown variables. Since for every j ∈ {1, . . . , l}

def X̂T (τj, λ) − def X̂T (τ−
j , λ) = rank X̂T (τ−

j , λ) − rank X̂T (τj, λ)

= rank X̂(τ−
j , λ) − rank X̂(τj, λ)

= def X̂(τj, λ) − def X̂(τ−
j , λ) = mj,

and since the points τ1, . . . , τl ∈ (a, b), it follows from (4.1) that there are exactly
∑l

j=1 mj = m

linear and homogeneous equations in system (4.2) for the m variables β1, . . . , βm.
We proceed by showing by induction with respect to j ∈ {0, 1, . . . , l + 1} that

x̃(t) ∈ Im X̂(t, λ) for all t ∈ [a, b], (4.3)

where we set τ0 := a and τl+1 := b. To start the induction, we have x̃(τ0) = 0 ∈ Im X̂(τ0, λ).

Suppose now that for some index j ∈ {0, . . . , l} we have x̃(t) ∈ Im X̂(t, λ) for all t ∈ [a, τj].
Then, by (2.2), the kernel condition

Ker X̂(t, λ) ⊆ Ker X̂(τ, λ) for all t, τ ∈ [τj, τj+1), τ ≤ t,

is satisfied, so that Lemma 2.5 on [τj, τj+1) (more precisely, on [τj, s] for every s ∈ (τj, τj+1))
and the induction hypothesis yield the image condition

x(t) ∈ Im X̂(t, λ) for all t ∈ [a, τj+1). (4.4)

If we prove that also x̃(τj+1) ∈ X̂(τj+1, λ), then the image condition (4.3) will be established.
To this end, we first suppose that j < l. Then, by (4.2) and the De Morgan law for the
orthogonal complement of the intersection of two subspaces, we have

x̃(τj+1) ∈ Ker X̂T (τ−
j+1, λ) + [Ker X̂T (τj+1, λ)]⊥. (4.5)

Since the continuity of X̂T (·) yields Ker X̂T (τ−
j+1, λ) ⊆ Ker X̂T (τj+1, λ), i.e.,

[Ker X̂T (τj+1, λ)]⊥ ⊆ [Ker X̂T (τ−
j+1, λ)]⊥,

it follows that the sum of the subspaces in (4.5) is a direct sum. Furthermore, by the continuity
of x̃(·) and the already proven image condition (4.4), we also have

x̃(τj+1) = x̃(τ−
j+1) ∈ Im X̂(τ−

j+1, λ) = [Ker X̂T (τ−
j+1, λ)]⊥. (4.6)

Hence, from (4.5) and (4.6) we obtain

x̃(τj+1) ∈ [Ker X̂T (τj+1, λ)]⊥ = Im X̂(τj+1, λ),

which is what we wanted to prove. On the other hand, if j = l holds, then by using τl+1 = b

and the definition of x̃(b) we get x̃(τl+1) = x̃(b) = 0 ∈ X̂(τl+1, λ). The image condition (4.3) is
therefore established.

We now apply the extended global Picone formula (Theorem 3.1) with z := 0 to get

0 = Fλ(z) ≥

∫ b

a

{w̃T Bw̃}(t) dt +
m

∑

i=1

(λ − λi) β2
i ≥ 0,

because (1.2) is assumed and λ > λi for all i = 1, . . . , m. Consequently, β1 = · · · = βm = 0, so
that the linear system representing conditions (4.2) possesses only the trivial solution. In turn,
the coefficient matrix of the system in (4.2) is invertible.



10 Werner Kratz and Roman Šimon Hilscher

Let now z = (x, u) be admissible with x(a) = 0 = x(b) and z ⊥ z1, . . . , zm. Then for z̃ := z+ẑ
the conditions in (4.2) represent a linear system for β1, . . . , βm (in general this system may be
nonhomogeneous) with invertible coefficient matrix, as we just proved. Therefore, there exist
unique β1, . . . , βm ∈ R satisfying the linear system in (4.2), which implies as in the previous part
of the proof that the image condition (4.3) holds for this z̃ = (x̃, ũ). Hence, by the extended
global Picone formula (Theorem 3.1) and assumption (1.2),

Fλ(z) ≥

∫ b

a

{w̃T Bw̃}(t) dt +
m

∑

i=1

(λ − λi) β2
i ≥ 0

due to λ > λi for all i = 1, . . . , m. This yields that

F0(z) ≥ λ ⟨z, z⟩W for every λ ∈ (λm, λm+1). (4.7)

If we now take the limit as λ → λ−
m+1, we obtain from (4.7) that F0(z) ≥ λm+1 ⟨z, z⟩W . Now

since zm+1 is a solution of (Hλm+1
), it follows that Fλm+1

(zm+1) = 0, that is, F0(zm+1) =
λm+1 ⟨zm+1, zm+1⟩W = λm+1. And since zm+1 = (xm+1, um+1) is admissible, xm+1(a) = 0 =
xm+1(b), and zm+1 ⊥ z1, . . . , zm, the minimum in (1.8) is indeed attained at z = zm+1.

If λm+1 = · · · = λm+p is a multiple finite eigenvalue (with multiplicity p ≥ 1), then any
admissible z = (x, u) with x(a) = 0 = x(b) and z ⊥ z1, . . . , zm+q (for any 1 ≤ q ≤ p) satisfies
automatically z ⊥ z1, . . . , zm. Therefore, by the previous argument we have for such z

F0(z) ≥ λm+1 ⟨z, z⟩W = · · · = λm+q ⟨z, z⟩W , 1 ≤ q ≤ p.

The proof of the Rayleigh principle in Theorem 1.1 is now complete. �

Next we make a comment about the existence of finitely or infinitely many finite eigenvalues.
With the definition of the set A of admissible functions with Dirichlet boundary conditions in
(1.7), we now define the space

W := { (Wx)(·), z = (x, u) ∈ A}.

Then all the finite eigenfunctions zi = (xi, ui) belong to W (or more precisely, the functions
(Wxi)(·) belong to W). Therefore, the number of finite eigenvalues cannot be larger than
dimW . Consequently, our Rayleigh principle in Theorem 1.1 yields the following.

Corollary 4.1. Assume (1.2) and (1.5) and Fλ is positive definite for some λ < 0.

(i) The eigenvalue problem (E) has infinitely many finite eigenvalues −∞ < λ1 ≤ λ2 . . .
with λm → ∞ as m → ∞ if and only if dimW = ∞.

(ii) The eigenvalue problem (E) has exactly p ∈ N ∪ {0} finite eigenvalues if and only if
dimW = p. In this case for every m ∈ {0, . . . , p} equality (1.8) holds, in which we put
λp+1 := ∞ when m = p.

The above corollary is a generalization of [7, Corollary 7.7.5] (for the Dirichlet boundary con-
ditions) to the case of abnormal linear Hamiltonian systems.

Remark 4.2. If a set {λ1 ≤ λ2 ≤ . . . } with λm → ∞ as m → ∞ of finite eigenvalues of (E)
satisfies the Rayleigh principle in Theorem 1.1, then it is complete, that is, there are no further
finite eigenvalues of (E). This follows from Theorem 1.1 in the same way as in the case of
controllable systems in [7, Remark 7.7.2].

The following supplement – the expansion theorem – is a traditional result connected to
the Rayleigh principle. Denote by ∥z∥W :=

√

⟨z, z⟩W the (semi)norm in the space A of ad-
missible functions with Dirichlet boundary conditions induced by the inner product ⟨·, ·⟩W .
The following result is a generalization of [7, Theorem 7.7.6] to abnormal linear Hamiltonian
systems.
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Theorem 4.3 (Expansion theorem). Assume (1.2) and (1.5) and Fλ is positive definite for
some λ < 0. Denote by I the index set which is equal to N if dimW = ∞ and which is equal
to {1, . . . , p} if dimW = p ≥ 1. Let z = (x, u) be admissible with x(a) = 0 = x(b). Then

x =
∑

i∈I

ci xi, i.e., lim
m→∞

∥

∥

∥

∥

z −
m

∑

i=1

ci zi

∥

∥

∥

∥

W

= 0, where ci := ⟨z, zi⟩W for every i ∈ I. (4.8)

Proof. Let z = (x, u) be admissible with x(a) = 0 = x(b) and define ci by (4.8) for i ∈ I.
Case 1 (I = N). For every index m ∈ N we define z̃ = (x̃, ũ) by z̃m := z − ẑm, where

ẑm = (x̂m, ûm) :=
∑m

i=1 ci zi. Then z̃m is admissible, x̃m(a) = 0 = x̃m(b), and z̃m ⊥ z1, . . . , zm,
because for each j ∈ {1, . . . , m}

⟨z̃m, zj⟩W = ⟨z, zj⟩W −

m
∑

i=1

ci ⟨zi, zj⟩W = cj − cj = 0.

Therefore, the Rayleigh principle (Theorem 1.1) yields

F0(z̃m) ≥ λm+1 ⟨z̃m, z̃m⟩W . (4.9)

On the other hand,

F0(z̃m) = F0(z) − 2
m

∑

i=1

ci

∫ b

a

Λ(z, zi)(t) dt + F0(ẑm), (4.10)

where, by Lemma 2.12 and Lemma 2.13,
∫ b

a

Λ(z, zi)(t) dt = λi ⟨z, zi⟩W = λi ci and F0(ẑm) =
m

∑

i=1

λi c
2
i .

Hence, from (4.10) we get

F0(z̃m) = F0(z) −
m

∑

i=1

λi c
2
i ≤ F0(z) − λ1

m
∑

i=1

c2
i ,

which together with inequality (4.9) implies that

λm+1 ⟨z̃m, z̃m⟩W ≤ F0(z̃m) ≤ F0(z) − λ1

m
∑

i=1

c2
i . (4.11)

Take now the index m so large that λm+1 > 0, which is possible due to λm → ∞. Then from
inequality (4.11) we obtain

∥z − ẑm∥
2
W = ⟨z̃m, z̃m⟩W ≤

1

λm+1

(

F0(z) − λ1

m
∑

i=1

c2
i

)

→ 0 as m → ∞.

Case 2 (I = {1, . . . , p}). In this situation the proof is similar to the proof of the expansion
theorem in the discrete time case in [1, Theorem 4.7]. One first shows by using Corollary 4.1(ii)
that any admissible z = (x, u) with x(a) = 0 = x(b) which is orthogonal to all finite eigen-
functions z1, . . . , zp satisfies F0(z) ≥ λ ⟨z, z⟩W for all λ ∈ R. However, this is possible only if
⟨z, z⟩W = 0, i.e., (Wx)(·) ≡ 0. Take now a new admissible z = (x, u) with x(a) = 0 = x(b).
Then z̃ = (x̃, ũ) := z −

∑p

i=1 ci zi is admissible, x̃(a) = 0 = x̃(b), and z̃ ⊥ z1, . . . , zp. Then,
by the previous step in the proof, (Wx̃)(·) ≡ 0, that is, equation (4.8) holds. The proof of the
expansion theorem is now complete. �
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Remark 4.4. Suppose dimW = p < ∞ and m ∈ {0, . . . , p}. If an admissible z minimizes the
Rayleigh quotient in (1.8), that is, if F0(z) = λm+1 ⟨z, z⟩W for such an admissible z = (x, u)
with x(a) = 0 = x(b) and z ⊥ z1, . . . , zm, then for x̃(·) := x(·) and ũ(·) :=

∑m

i=1 ci ui(·) the pair
z̃ = (x̃, ũ) satisfies the Euler equation

ũ′(t) = C(t) x̃(t) − AT (t) ũ(t) − λm+1W (t) x̃(t), B(t) ũ(t) = B(t) u(t), t ∈ [a, b].

The proof is the same as in the discrete case in [1, Theorem 4.8] and it is here omitted.

Our second application of the Rayleigh principle concerns the coercivity of the quadratic
functional F0. The functional F0 is coercive if there exists α > 0 such that

F0(z) ≥ α

∫ b

a

|x(t)|2 dt for every admissible z = (x, u) with x(a) = 0 = x(b).

As we shall see, it follows from Theorem 1.1 that F0 is coercive if and only if the eigenvalue
problem

x′ = A(t) x + B(t) u, u′ = C(t) x − AT (t) u − λx, t ∈ [a, b]

x(a) = 0 = x(b),

}

(E1)

that is, the eigenvalue problem (E) with W (·) ≡ I, has the smallest eigenvalue λ1 > 0 (so that
we can take α := α1 in the definition of the coercivity of F0). Note that since W (·) ≡ I is
now positive definite, then the assumption on Fλ > 0 for some λ < 0 in Theorem 1.1 can be
dropped, as the statement of Lemma 2.10 asserts.

Theorem 4.5 (Coercivity). The functional F0 is positive definite if and only if it is coercive.

Proof. We only need to show that F0 > 0 implies the coercivity of F0, since the opposite impli-
cation holds trivially. Therefore, assume that F0 is positive definite. Then for any admissible
z = (x, u) with x(a) = 0 = x(b) and x(·) ̸≡ 0 we have F0(z)/⟨z, z⟩ > 0, where ⟨z, z⟩ := ⟨z, z⟩W
for our matrix W (·) ≡ I in (E1). Therefore, by the Rayleigh principle (Theorem 1.1) applied to
the eigenvalue problem (E1), the smallest finite eigenvalue λ1 of (E1) satisfies λ1 ≥ 0. If λ1 = 0,
then there exists a corresponding finite eigenfunction z1 = (x1, u1) with x1(a) = 0 = x1(b) and
x1(·) ̸≡ 0, which is admissible and for which F0(z1) = λ1 ⟨z1, z1⟩ = 0. This, however, contradicts
the assumed positivity of F0. Therefore, we must have λ1 > 0. The Rayleigh principle then
yields that F0(z) ≥ λ1 ⟨z, z⟩ for every admissible z = (x, u) with x(a) = 0 = x(b), or in other
words, the functional F0 is coercive with α := λ1. �

In the proof of [15, Lemma 2.4, pg. 231], M. Wahrheit discusses the notion of a right proper
focal point for a conjoined basis (X,U) of (H). Although this notion has not been used anywhere
else than in that proof, it seems to be a natural dual version of the (left) proper focal point
notion from Subsection 2.1. More precisely, we say that a point t0 ∈ [a, b) is a right proper
focal point of the conjoined basis (X,U) of (H), provided Ker X(t+

0 ) $ Ker X(t0), and then the
number m := def X(t0) − def X(t+

0 ) is its multiplicity. Following (2.3) we then have

m = dim
(

[Ker X(t+
0 )]⊥ ∩ Ker X(t0)

)

. (4.12)

The nonexistence of these right proper focal points in [a, b) means that the kernel of X(·) is
nondecreasing (measuring in the direction from a to b), i.e.,

Ker X(t) ⊆ Ker X(τ) for all t, τ ∈ [a, b], t ≤ τ. (4.13)

The kernel condition in (4.13) is shown to be equivalent to the positivity of F0 in [6, Corol-

lary 6.1], which is a counterpart of Proposition 2.2. If we define the principal solution (X̂a, Ûa)

of (H) at a by the initial conditions X̂a(a) = 0 and Ûa(a) = I, that is, (X̂a, Ûa) ≡ (X̂, Û), and

the principal solution (X̂b, Ûb) of (H) at b by the initial conditions X̂b(b) = 0 and Ûb(b) = −I,
then we get for example the following equivalence.
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Corollary 4.6. Assume (1.2). The principal solution of (H) at a has no (left) proper focal
points in (a, b] if and only if the principal solution of (H) at b has no (right) proper focal points
in [a, b).

Remark 4.7. From this perspective, all the theory of linear Hamiltonian systems without
normality, including the oscillation theorems in Appendix B and the Rayleigh principle in
Theorem 1.1 can be easily formulated and proven by using this alternative notion of right
proper focal points. In addition, the transformation relating the corresponding results in both
theories (of left proper focal points and right proper focal points) is t 7→ a + b− t for t ∈ [a, b].
Note also that the distinction between the left and right proper focal points of (X, U) is possible
only in the abnormal case, because under normality the left and right multiplicities of t0 in
(2.3) and (4.12) are both equal to def X(t0) (see also Section 1).

An application of the corresponding oscillation theorem to this setting then leads, for exam-
ple, to the following improvement of Corollary 4.6.

Corollary 4.8. Assume (1.2) and let m ∈ N ∪ {0} be fixed. The principal solution of (H) at
a has m (left) proper focal points in (a, b] if and only if the principal solution of (H) at b has
m (right) proper focal points in [a, b).

The statement in Corollary 4.8 is a continuous time version of the discrete result in [4, Theo-
rem 1.1].

Appendix A. Geometric characterization of finite eigenvalues

In this section we shall prove that the algebraic and geometric multiplicities of finite eigen-
values of (E) are the same, c.f. Remark 2.7(i). First we need an auxiliary lemma.

Lemma A.1. Assume (1.5) and let
(

X(·, λ), U(·, λ)
)

be a conjoined basis of (Hλ) such that the
initial conditions X(a, λ) and U(a, λ) do not depend on λ, i.e., condition (B.1) of Appendix B
holds, and fix t ∈ [a, b]. Then the kernel of X(t, ·) is piecewise constant with respect to λ on R.
More precisely, for every λ0 ∈ R there exists δ > 0 such that

Ker X(t, λ) = Ker X(t, λ+
0 ) = Ker X(t, λ−

0 ) for all λ ∈ (λ0 − δ, λ0 + δ) \ {λ0}.

Proof. Let λ0 ∈ R and choose a conjoined basis
(

X̃(·, λ), Ũ(·, λ)
)

of (Hλ) according to [7,

Proposition 4.1.1 and Theorem 3.1.2] such that (X̃, Ũ) and (X, U) are normalized conjoined
bases, X̃(t, λ0) is invertible, (X̃−1X

)

(t, λ0) ≥ 0, and the initial conditions X̃(a, λ) and Ũ(a, λ)

do not depend on λ. Put X(λ) := X(t, λ) and X̃(λ) := X̃(t, λ).
Then by continuity, assumption (1.5), and [7, Lemma 4.1.4], there exists ε > 0 such that

X̃(λ) is invertible and (X̃−1X
)

(λ) is nondecreasing on (λ0 − ε, λ0 + ε).

Let µ1(λ) ≤ · · · ≤ µn(λ) denote the eigenvalues of the symmetric matrix (X̃−1X
)

(λ), so that

0 ≤ µ1(λ) ≤ · · · ≤ µn(λ) for λ ∈ [λ0, λ0 + ε).

If λ ∈ [λ0, λ0 + ε) and c ∈ Ker X(λ), then cT (X̃−1X
)

(λ) c = 0, and by the monotonicity of

(X̃−1X
)

(·), we have 0 ≤ cT (X̃−1X
)

(λ0) c ≤ cT (X̃−1X
)

(ν) c ≤ cT (X̃−1X
)

(λ) c = 0, so that
c ∈ Ker X(ν) for all ν ∈ [λ0, λ]. Hence, we proved that Ker X(λ) ⊆ Ker X(ν) for λ0 ≤ ν ≤ λ <
λ0 + ε. Therefore, there exists δ ∈ (0, ε) such that

Ker X(λ) ≡ Ker X(λ0 + δ) = Ker X(λ+
0 ) for all λ ∈ (λ0, λ0 + δ),

and similarly

Ker X(λ) ≡ Ker X(λ0 − δ) = Ker X(λ−
0 ) for all λ ∈ (λ0 − δ, λ0).
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Since the function (X̃−1X
)

(λ) c is entire in its argument λ for every c ∈ Rn, it follows that

either (X̃−1X
)

(λ) c ≡ 0 in (λ0 − δ, λ0 + δ) \ {λ0} or (X̃−1X
)

(λ) c ̸= 0 in (λ0 − δ, λ0 + δ) \ {λ0}.
Then Ker X(t, λ) = Ker X(t, λ+

0 ) = Ker X(t, λ−
0 ). �

Now we state and prove the main result of this section. Here
(

X̂(·, λ), Û(·, λ)
)

denotes the
principal solution of (Hλ) at a as in Definition 2.6.

Theorem A.2 (Geometric characterization of finite eigenvalues). Assume (1.5). The num-
ber λ0 ∈ R is a finite eigenvalue of the eigenvalue problem (E) with (algebraic) multiplicity

θ(λ0) = r(b) − rank X̂(b, λ0) ≥ 1 if and only if there exists a corresponding finite eigenfunction
z(·, λ0) = (x(·, λ0), u(·, λ0)) of (E) with W (·) x(·, λ0) ̸≡ 0 on [a, b]. In this case the dimension
of the corresponding eigenspace, i.e., the geometric multiplicity of λ0, equals θ(λ0). That is, the
dimension of the space given in (2.5) is θ(λ0).

Proof. By Lemma A.1 with t := b and
(

X(·, λ), U(·, λ)
)

:=
(

X̂(·, λ), Û(·, λ)
)

, the set

V := Ker X̂(b, λ+) = Ker X̂(b, λ−) does not depend on λ ∈ R.

Now z = (x, u) solves (Hλ0
) with x(a) = 0 if and only if

(

x(t)
u(t)

)

=

(

X̂(t, λ0) c

Û(t, λ0) c

)

for all t ∈ [a, b] for some c ∈ Rn.

Then x(b) = 0 means that X̂(b, λ0) c = 0, i.e., c ∈ Ker X̂(b, λ0).
First suppose that z = (x, u) solves (Hλ0

) with x(a) = 0 and with

W (t) x(t) = 0 on [a, b].

Then, for some c ∈ Rn and all λ ∈ R we have
(

x(t)
u(t)

)

=

(

X̂(t, λ)

Û(t, λ)

)

c =

(

X̂(t, λ0)

Û(t, λ0)

)

c on [a, b],

because these functions solve the same initial value problem. Hence, c ∈ V .
Next, let c ∈ V be given. Then X̂(b, λ) c = 0 for all λ ∈ R and

x(t) := [X̂(t, λ) − X̃(t, λ) (X̃−1X
)

(b, λ)] c = X̂(t, λ) c on [a, b]

satisfies x(b) = X̂(b, λ) c = 0 for all λ ∈ R, where
(

X̃(·, λ), Ũ(·, λ)
)

denotes a conjoined basis

of (Hλ) such that X̃(a, λ) and Ũ(a, λ) do not depend on λ, (X̃, Ũ) and (X̂, Û) are normalized
conjoined bases, and where X̃(b, λ0) is invertible (similarly as in the proof of Lemma A.1).
Then, by [7, Lemma 4.1.4],

0 =
d

dλ
cT (X̃−1X

)

(b, λ) c =

∫ b

a

xT (t) W (t) x(t) dt,

so that W (t) x(t) = 0 on [a, b] by (1.5).
Thus, we have shown that a nonzero element of the eigenspace (2.5) of the finite eigenvalue λ0

is of the form W (·) X̂(·, λ0) c for some c ∈ Ker X̂(b, λ0)\V . Then we obtain from Definition 2.6
that the geometric multiplicity of λ0 is equal to (note that dimV = n − r(b))

dim Ker X̂(b, λ0) − dimV = n − rank X̂(b, λ0) − n + r(b) = r(b) − rank X̂(b, λ0) = θ(λ0),

which proves the theorem. �
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Appendix B. Oscillation theorems

In this section we develop the tools which we need in order to prove Theorem 2.9. The
proofs in this section (as well as in the previous section) are extracted from the paper [10] and
specified to the continuous time setting. This yields a considerable simplification of these proofs.
In addition, the central assumptions in [10, Equation (3.7)] now reduce to the assumption (1.2).
Moreover, the proofs presented here turn out to be simpler and shorter than the proofs of the
oscillation theorems in [14, 15].

Let be given a conjoined basis
(

X(·, λ), U(·, λ)
)

of (Hλ) such that the initial conditions
X(a, λ) and U(a, λ) do not depend on λ, i.e.,

X(a, λ) ≡ X(a), U(a, λ) ≡ U(a). (B.1)

Under (1.2) and counting the multiplicities, we denote by

n1(λ) := the number of proper focal points of
(

X(·, λ), U(·, λ)
)

in (a, b], (B.2)

and as before we define

r(t) := max
ν∈R

rank X(t, ν).

Then by using that X(t, ·) is an entire function in λ for a fixed t, we have for all λ ∈ R

r(t) = rank X(t, λ+) = rank X(t, λ−), t ∈ (a, b], (B.3)

r(a) ≡ rank X(a, λ), under (B.1). (B.4)

Our first result in this section is the local oscillation theorem.

Theorem B.1 (Local oscillation theorem). Assume (1.2) and (1.5) and let
(

X(·, λ), U(·, λ)
)

be a conjoined basis of (Hλ) satisfying (B.1). Then for all λ ∈ R we have

n1(λ
+) = n1(λ) < ∞,

n1(λ
+) − n1(λ

−) = r(b) − rank X(b, λ) ≥ 0.

Hence, the function n1(·) is nondecreasing on R, the limit

m := lim
λ→−∞

n1(λ)

exists with m ∈ N ∪ {0}, so that for a suitable λ0 ∈ R, λ0 < 0, we have

n1(λ) ≡ m and r(b) − rank X(b, λ) ≡ 0 for all λ ≤ λ0.

For the proof of this theorem we need some auxiliary lemmas. In the first lemma, let λ ∈ R
be fixed, and therefore can omit the variable λ in the Hamiltonian system and its solutions,
because for the given value of λ the system (Hλ) can be identified with a system of the form
(H) for a suitable matrix C(t).

Lemma B.2. Assume (1.2), let a ≤ α < β ≤ b, and suppose that (X̃, Ũ) is a conjoined basis
of (H) such that (X̃, Ũ) and (X, U) are normalized conjoined bases of (H) and such that

X̃(t) is invertible for all t ∈ [α, β].

Let m̃ denote the number of proper focal points of (X, U) in (α, β]. Then 0 ≤ m̃ ≤ n, and

m̃ = ind(X̃−1X
)

(α) − ind(X̃−1X
)

(β). (B.5)
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Proof. First we assume that

Ker X(t) is constant on the open interval (α, β). (B.6)

Then, by the definition (c.f. (2.3)), there is no proper focal point of (X,U) in (α, β), and

m̃ = dim Ker X(β) − dim Ker X(β−).

Let µ1(t) ≤ · · · ≤ µn(t) denote the eigenvalues of the symmetric matrix (X̃−1X
)

(t). Then the
temporary assumption (B.6) implies

µ1(t) ≤ · · · ≤ µr(t) < 0 = µr+1(t) = · · · = µr+s(t) < µr+s+1(t) ≤ · · · ≤ µn(t)

for all t ∈ (α, β), where

r := ind(X̃−1X
)

(β−) = ind(X̃−1X
)

(α+) and s := def X(β−) = def X(α+),

because no eigenvalue µi(·) can change its sign in (α, β) by the intermediate value theorem,
since the eigenvalues µi(·) are continuous and Ker X(·) is constant on (α, β). By continuity
(c.f. Theorem 2.1) and (B.6), we have that

Ker X(α+) = Ker X(β−) ⊆ Ker X(α) ∩ Ker X(β),

so that s ≤ min{def X(α), def X(β)}. Next, we have by an easy calculation (c.f. [7, Corol-
lary 1.1.4]) that

(X̃−1X
)′

(t) =
(

X̃−1B(X̃T )−1
)

(t) ≥ 0 for all t ∈ [α, β],

where we use the crucial assumption (1.2). Hence, the eigenvalues µi(·) are nondecreasing on
[α, β], which implies that

ind(X̃−1X
)

(α) = r and ind(X̃−1X
)

(β) = r − m̃,

and this yields our assertion (B.5) under the temporary assumption (B.6).
Next, by (1.2) and Theorem 2.1, we have that Ker X(t) is piecewise constant on [α, β], so

that there exists a partition α = τ0 < τ1 < · · · < τk+1 = β of [α, β] such that

Ker X(t) is constant on (τj, τj+1) for every j ∈ {0, . . . , k}.

If m̃(j) denotes the number of proper focal points of (X,U) in (τj, τj+1], then we obtain from
the first part via telescope summation

0 ≤ m̃ =
k

∑

j=0

m̃(j) =
k

∑

j=0

{

ind(X̃−1X
)

(τj) − ind(X̃−1X
)

(τj+1)
}

= ind(X̃−1X
)

(α) − ind(X̃−1X
)

(β) ≤ n,

which is the statement of this lemma. �

Remark B.3. Under the assumptions of Lemma B.2, the function ind(X̃−1X
)

(·) is nonincreas-
ing on [α, β]. The above proof shows that t0 ∈ (α, β] is a proper focal point of the conjoined
basis (X, U) if and only if ind(X̃−1X

)

(t−0 ) > ind(X̃−1X
)

(t0), and in this case the difference

ind(X̃−1X
)

(t−0 )−ind(X̃−1X
)

(t0) is its multiplicity. Note also that in this approach the assertion
0 ≤ m̃ ≤ n is trivial and it corresponds to the Sturmian separation theorem [11, pg. 366].

Now we vary λ using the notation above.
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Lemma B.4. Assume (1.2) and (1.5), let
(

X(·, λ), U(·, λ)
)

be a conjoined basis of (Hλ) sat-
isfying (B.1), and let a ≤ α < β ≤ b. Then for all λ ∈ R we have

m(λ+) = m(λ) < ∞,

m(λ+) − m(λ−) = r(β) − rank X(β, λ) − r(α) + rank X(α, λ),

where m(λ) denotes the number of proper focal points of (X, U) in (α, β].

Proof. First we fix λ0 ∈ R. By continuity and compactness (using also [7, Proposition 4.1.1]),
there exists ε > 0, a finite partition α = τ0 < τ1 < · · · < τk+1 = β, and conjoined bases
(

X̃j(·, λ), Ũj(·, λ)
)

of (Hλ) such that for every j ∈ {0, . . . , k}

(i) X̃j(a, λ) ≡ X̃(a, λ0) and Ũj(a, λ) ≡ Ũ(a, λ0) do not depend on λ,

(ii)
(

X̃j(·, λ), Ũj(·, λ)
)

and
(

X(·, λ), U(·, λ)
)

are normalized conjoined bases of (Hλ),

(iii) X̃j(t, λ) is invertible for all (t, λ) ∈ [τj, τj+1] × [λ0 − ε, λ0 + ε].

Let m(j, λ) denote the number of proper focal points of
(

X(·, λ), U(·, λ)
)

in (τj, τj+1], so that

m(λ) =
k

∑

j=0

m(j, λ) for λ ∈ R (B.7)

is the number of proper focal points of
(

X(·, λ), U(·, λ)
)

in (α, β]. Then, by the previous
Lemma B.2 and assumption (1.2),

0 ≤ m(j, λ) = ind(X̃−1
j X

)

(τj, λ) − ind(X̃−1
j X

)

(τj+1, λ) ≤ n (B.8)

for every j = 0, . . . , k and λ ∈ [λ0 − ε, λ0 + ε]. Hence, m(λ0) < ∞ is finite. Next, fix any
j = 0, . . . , k and t0 ∈ [τj, τj+1], and put Q(λ) := (X̃−1

j X
)

(t0, λ) for λ ∈ [λ0 − ε, λ0 + ε]. By [7,
Lemma 4.1.4] and assumption (1.5) (similarly as in the proof of Theorem A.2), the symmetric
function Q(·) is nondecreasing and continuous on the interval [λ0 − ε, λ0 + ε]. Therefore, the
eigenvalues µ1(λ) ≤ · · · ≤ µn(λ) of Q(λ) are nondecreasing and continuous on [λ0 − ε, λ0 + ε],
too. This implies immediately that

ind Q(λ0) = ind Q(λ+
0 ) and ind Q(λ−

0 ) = ind Q(λ0) + r(t0) − rank X(t0, λ0). (B.9)

Note that the Ker Q(·) is piecewise constant on [λ0 − ε, λ0 + ε], by Lemma A.1. We conclude
from (B.8) and (B.9) with t0 := τj and t0 := τj+1 that for every j = 0, . . . , k

m(j, λ+
0 ) = m(j, λ0), (B.10)

m(j, λ+
0 ) − m(j, λ−

0 ) = r(τj+1) − rank X(τj+1, λ0) − r(τj) + rank X(τj, λ0). (B.11)

It follows from equations (B.7) and (B.10) that m(λ+
0 ) = m(λ0), and from equations (B.7) and

(B.11) via telescope summation that

m(λ+
0 ) − m(λ−

0 ) =
k

∑

j=0

{

r(τj+1) − rank X(τj+1, λ0) − r(τj) + rank X(τj, λ0)
}

= r(β) − rank X(β, λ0) − r(α) + rank X(α, λ0).

The proof of this lemma is complete. �

Now we are ready to prove the local oscillation theorem.

Proof of Theorem B.1. If α = a, then r(a) = rank X(a, λ) for all λ ∈ R by assumption (B.1)
and conclusion (B.4). Hence, Theorem B.1 follows directly from Lemma B.4 with α := a and
β := b, because the additional assertions are clear. �
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Let now
(

X̂(·, λ), Û(·, λ)
)

be the principal solution of (Hλ), whose initial conditions do not
depend on λ and therefore it satisfies condition (B.1). Let n1(λ) be defined by (B.2) through
(

X̂(·, λ), Û(·, λ)
)

, or in this case n1(λ) is defined by (2.6). Furthermore, let n2(λ) be defined
by (2.7).

Theorem B.5 (Global oscillation theorem). Assume (1.2) and (1.5). Then for all λ ∈ R

n2(λ
+) = n2(λ) < ∞,

n2(λ
+) − n2(λ

−) = n1(λ
+) − n1(λ

−) ≥ 0,

and there exists m ∈ N ∪ {0} such that

n1(λ) = n2(λ) + m for all λ ∈ R. (B.12)

Moreover, for a suitable λ0 ∈ R, λ0 < 0, we have

n2(λ) ≡ 0 and n1(λ) ≡ m for all λ ≤ λ0. (B.13)

Proof. This global oscillation theorem follows immediately from the local oscillation theorem
(Theorem B.1), in which we take

(

X(·, λ), U(·, λ)
)

:=
(

X̂(·, λ), Û(·, λ)
)

to be the principal
solution of system (Hλ). �

Proof of Theorem 2.9. From Proposition 2.2 we have that Fλ > 0 if and only if the principal

solution
(

X̂(·, λ), Û(·, λ)
)

of (Hλ) has no proper focal points in (a, b]. By formula (B.12) of
Theorem B.5, this is equivalent to equality (2.8), because in this case we have m = 0. Equation
(B.13) then yields n2(λ) ≡ 0 for λ ≤ λ0, so that there are no finite eigenvalues less than λ0.
Hence, the finite eigenvalues of (E) are bounded from below. �
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