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Abstract. This paper investigates the propagation of Rayleigh surface
waves in a rotating semi-infinite solid medium, permeated by an initial
magnetic field in the context of linear nonlocal elasticity. Frequency equa-
tions are derived and the combined effect of magnetic field and rotation
on Rayleigh wave propagation, based on the linear theory of nonlocal
elasticity has been studied. Effects of magnetic field, as well as rota-
tion on Rayleigh wave propagation in a nonlocal medium, have also been
analyzed in details as special cases. Numerical calculations, graphs and
discussions presented in this paper lead us to some important conclusions.
Fourier double integral transform technique has been applied to solve the
problem.
Key words: Rayleigh wave, rotation, magneto-elasticity, nonlocal elas-
ticity, attenuation exponent.

1. Introduction

Propagation of Rayleigh surface waves plays a very important role in
the areas like engineering sciences, seismology, geophysics and geodynamics.
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Ivanov [1], Abd-Alla et al. [2], Shams and Ogden [3] discussed various prob-
lems on Rayleigh surface wave propagation in isotropic linear and nonlinear
elastic half spaces. Acharya and Sengupta [4, 5] deduced and discussed microp-
olar thermoelastic Rayleigh wave velocity equation from two dimensional wave
propagation, without stretch [4] and with stretch [5], in an infinite plate of finite
thickness. Love [6] proved that Rayleigh surface wave, under the linear theory
of classical elasticity, is non-dispersive in nature. But, experiments show that
the atomic theory of lattices predicts otherwise. Gazis et al. [7], Eringen and
Kim [8] treated such type of problems from the view point of lattice dynamics.
The existence of dispersive character in such waves has been confirmed in the
investigation made by Maradudin et al. [9]. However, no systematic studies of
continuum theory exist, which may lead to similar conclusion in all such prob-
lems. Eringen [10], in his research paper indicated that a continuum approach
to such problem has special advantages, due to many facts. Such a continuum
approach leads us to the theory of nonlocal elasticity. The volume of literature
on the subject of nonlocal continuum mechanics has been increasing gradually
such as Inan and Eringen [11], Inan [12], Acharya and Mondal [13], Lazar et al.
[14], Zhou and Wang [15], Chakraborty [16], due to its impressive agreements
of the theoretical results with experimental studies. In this theory, the distant
neighbours of a point have a role to play in the waves propagation. The stress
at(~x, t), in this case, depends on the strain at all other points

{

~x′
}

of the body, at
time t. Eringen [11] in his above mentioned paper investigated Rayleigh surface
waves with small wave length, under the linear nonlocal theory of elasticity and
observed, that Rayleigh surface waves are definitely dispersive in nature, while
the rate of amplitude attenuations of waves remains the same as in classical
elasticity.

The study of elastic wave propagation in a rotating medium was ini-
tiated by Schoenberg and Censor [17]. Chandrasekharaiya [18], Sharma and
Othman [19], Tomar and Ogden [20], Ogden and Singh [21] considered rotation
in their problem under different situation. Effect of rotation on Rayleigh sur-
face waves under the nonlocal theory of elasticity has been studied by Acharya
and Mondal [22].

An increasing attention is being devoted to the interactions between
magnetic and strain fields. Interactions between these two fields take place by
means of Lorentz forces, which appear in the equations of motion, as well as by
means of a term entering Ohm’s law and describing the electric field, produced
by the velocity of the material particle, moving in a magnetic field. Moreover,
the earth is subject to its own magnetic field and the propagation of seismic
waves on, or near the surface of the earth is affected by the presence of such
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magnetic field. Some of the most recent papers, published in this field, may
be mentioned as Ezzat and Youssef [23], Bakshi et al. [24], Singh et al. [25],
Shekhar and Pervez [26]. Hajdo and Eringen [27] investigated application of
nonlocal theory to electromagnetic dispersion.

It is found during our review process that hardly any attention has
been given to the effect of magnetic field on the propagation of Rayleigh waves
based on the nonlocal theory of elasticity. In this research work, we investigate
the combined effect of rotation and magnetic field on nonlocal Rayleigh surface
waves in a semi-infinite medium. Effects of rotation and magnetic field on
nonlocal Rayleigh waves have been studied and discussed in details as special
cases. Numerical computations are performed in different cases and graphs
are depicted to highlight the effect of rotation and magnetic field, as well as
their combined effect on the propagation of Rayleigh waves in a nonlocal elastic
medium. Some important observations have also been pointed out.

2. Basic equations

We introduce an elastic half space, occupying a region x2 ≥ 0 in the
rectangular Cartesian coordinate system Ox1x2x3, the origin O is situated at
any point on the plane boundary x2 = 0 and Ox2 points vertically downwards
into the bulk of the material medium, as shown in Fig. 1. The elastic medium
is rotating with a uniform angular velocity Ω = Ωn, where Ω is the magnitude
of the vector Ω and n is a unit vector representing the direction of the axis
of rotation. The displacement equation of motion in the rotating frame of
reference has two additional terms (Schoenberg and Censor [17]): Centripetal
acceleration, Ω × (Ω× u) due to time varying motion only and the Coriolis

1
x

O

2

3

x

x

Fig. 1. Problem geometry
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acceleration 2Ω ×
.
u, where u is the dynamic displacement vector and

.
u (dot

indicates differentiation with respect to time) represents the particle velocity.
Introduction of an initial magnetic field H = (0, 0,H0) gives rise to an induced
magnetic field h = (0, 0, h) and an induced electric field E.

For a slowly moving homogeneous, electrically conducting elastic solid
medium, the simplified linear equations of electrodynamics are (Ezzat and
Youssef [23], Singh, et al. [25]):

(1) curl h = J,

(2) curl E = −µ0

.

h,

(3) div h = 0,

(4) E = −µ0

( .
u×H

)

,

where
.
u is the particle velocity of the medium, J is the current density vector,

µ0 is the magnetic permeability. Moreover, the deformation is supposed to be
small.

Due to the application of an initial magnetic field H, the relevant con-
stitutive equations of linear nonlocal elasticity, the equations of motion and the
stress tensor in a medium which rotates with a uniform angular velocity Ω, are
given by Othman and Song [28], Acharya and Mondal [22], Eringen [10]:

(5) σij,i + µ0 (J×H)j = ρ
[

..
uj + {Ω× (Ω× u)}j +

(

2Ω×
.
u
)

j

]

,

(6) σij = λur,rδij + µ (ui,j + uj,i) +

∫

V

[

λ′ur,r′δij + µ′
(

ui,j′ + uj,i′
)]

dV
(

x′
)

,

where, σij, ρ and ui are stress tensor, mass density and displacement vector,
respectively. µ0 (J×H) are the components of Lorentz force. λ, µ are Lame’
elastic constants, λ′, µ′ are nonlocal elastic modulii, which depend on

∣

∣x− x′
∣

∣

for homogeneous solid:

u = ui, σij,i ≡
∂σij
∂xi

, ui,j ≡
∂ui (x, t)

∂xj
, ui,j′ ≡

∂ui (x
′, t)

∂x′j
,

.
ui ≡

∂ui (x, t)

∂t
,

..
ui ≡

∂2ui (x, t)

∂t2
, x = xi ≡ (x1, x2, x3) , x′ = x′i ≡

(

x′1, x
′

2, x
′

3

)

, t = time.
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Since the stress at (x, t) depends on the strain at all other points
{

x′
}

of the body at time t, introduction of the volume integral in (6) has been
made which indicates the effect of distant neighbour of a point x. This creates
the basic difference between the classical elasticity and the nonlocal elasticity
(Eringen [10]).

3. Basic assumptions

For a two dimensional problem, one has to consider the domain of x1 as
−∞ < x1 < +∞ and that of x2 as 0 < x2 < ∞. Moreover, it is assumed that
everything is uniform in the x3 direction. We consider here the possibility of a
type of wave travelling in the direction of x1 axis in such a manner, that the
disturbance is largely confined in the neighbourhood of the boundary and at
any instant all particles on any line parallel to Ox3 possess equal displacement.
Due to the first assumption, the wave is a surface one, which is an essential
condition of Rayleigh wave and the second assumption induces that all partial
derivatives with respect to x3 are zero. In this case, the volume integral in (6)
is reduced to a surface integral over x′1 and x′2 in their ranges.

4. Boundary conditions

We now describe the following boundary conditions to be satisfied for
the considered problem:

a. Since the boundary surface x2 = 0 is stress free, we have:

(7) σ21 = σ22 = 0 for x2 = 0.

b. Since the Rayleigh wave is a surface wave, we have:

(8) u1, u2 → 0 as x2 → ∞.

5. Problem formulation

The components of magnetic intensity vector in the medium are taken
as:

(9) Hx1
= 0, Hx2

= 0, Hx3
= H0 + h (x1, x2, t) .

The electric intensity vector is normal to magnetic intensity vector.
Thus, it has components:

(10) Ex1
= E1, Ex2

= E2, Ex3
= 0.
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The current density vector J is parallel to E. Thus:

(11) Jx1
= J1, Jx2

= J2, Jx3
= 0.

Hence, the components of Lorentz forces for the present problem are:

(12)
µ0 (J ×H)1 = µ0H

2
0 (u1,11 + u2,12)

µ0 (J ×H)2 = µ0H
2
0 (u1,21 + u2,22)

µ0 (J ×H)3 = 0







.

Moreover, we set Ω = (0, 0, ω3).
The dynamical equations of motion may be deduced from (5), as:

(13) σ11,1 + σ21,2 + µ0H
2
0 (u1,11 + u2,12) = ρ

..
u1 − ρ

(

ω2
3u1 + 2ω3

.
u2

)

,

(14) σ12,1 + σ22,2 + µ0H
2
0 (u1,21 + u2,22) = ρ

..
u2 − ρ

(

ω2
3u2 − 2ω3

.
u1

)

.

6. Problem solution

Following Eringen [10], we introduce Fourier double integral transform
in the following form:

(15) ui (x1, x2, t) =
1

2π

∞
∫

−∞

∞
∫

−∞

ui (ξ, x2, ω) e
−i(ξx1+ωt)dξdω.

Applying the transform (15) in (5), (13) and (14) one obtains:

(16) −iξσ11+σ21,2+
{

ρ
(

ω2 + ω2
3

)

− µ0H
2
0ξ

2
}

u1−2iρωω3u2−iξµ0H
2
0u2,2 = 0,

(17) −iξσ12+σ22,2+ρ
(

ω2 + ω2
3

)

u2+2iρωω3u1−iξµ0H
2
0u1,2+µ0H

2
0u2,22 = 0,

where:

(18) σ11 = −iξ (λ+ 2µ) u1 + λu2,2 +

∞
∫

0

[

−iξ
(

λ′ + 2µ′
)

u1 + λ
′

u2,2′
]

dx′2,

(19) σ12 = µ (u1,2 − iξu2) +

∞
∫

0

µ′
(

u1,2′ − iξu2

)

dx′2,
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(20) σ22 = −iξλu1 + (λ+ 2µ) u2,2 +

∞
∫

0

[

−iξλ
′

u1 +
(

λ
′

+ 2µ′

)

u2,2′
]

dx′2.

Since λ′ and µ′ tend to zero rapidly as
∣

∣x′ − x
∣

∣ → ∞, we may assume
the expressions for λ′ and µ′ in the following forms (Eringen [10]):

(21)
λ
′

= λ (ξ) δ
(∣

∣x′2 − x2
∣

∣

)

,
µ′ = µ (ξ) δ

(∣

∣x′2 − x2
∣

∣

)

}

,

where, δ is the Dirac delta function.

Using (21), the stress components (18), (19) and (20) take the forms:

(22) σ11 = −iξ
{(

λ+ λ
)

+ 2 (µ+ µ)
}

u1 +
(

λ+ λ
)

u2,2,

(23) σ12 = (µ+ µ) (u1,2 − iξu2) ,

(24) σ22 = −iξ
(

λ+ λ
)

u1 +
{(

λ+ λ
)

+ 2 (µ+ µ)
}

u2,2.

Replacing the expressions for σ11, σ12, and σ22 from (22), (23) and (24)
in (16) and (17) and then substituting:

(25) uk (ξ, x2, ω) = Uk (ξ, ω) e
−αx2 ,

equations (16) and (17) transform to:

(26)

[

α2 −
k2

h2
ξ2 + k2

]

U1 + iαξ

[

k2

h2
− 1−

2k2ωω3

αξ
(

ω2 + ω2
3

)

]

U2 = 0,

(27) iαξ

[

k2

h2
− 1 +

2k2ωω3

αξ
(

ω2 + ω2
3

)

]

U1 +

[

α2 k
2

h2
− ξ2 + k2

]

U2 = 0,

where:

(28)

k2 =
ρ
(

ω2 + ω2
3

)

(µ+ µ)
,

h2 =
ρ
(

ω2 + ω2
3

)

(

λ+ λ
)

+ 2 (µ+ µ) + µ0H2
0















.
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Elimination of U1 and U2from (26) and (27) leads to a quadratic equa-
tion in α2, its roots are given by:

(29)

α2
1 + α2

2 = 2ξ2 − h2 − k2,

α2
1α

2
2 = ξ4 − ξ2k2 − ξ2h2 + k2h2 −

4k2h2ρ2ω2ω2
3

(

ω2 + ω2
3

)2











.

Since u1, u2 → 0 as x2 → ∞, the expressions for u1, u2 may be taken
as:

(30)
u1 = e−α1x2U11 + e−α2x2U12,

u2 = γ1e
−α1x2U11 + γ2e

−α2x2U12

}

,

where:

(31) γj =

−iαj

[

ξ

h2 − ξ

k2
+ 2ωω3

αj(ω2+ω2

3)

]

[

α2

j

h2 − ξ2

k2
+ 1

] .

Using (30) in (22), (23), (24) and then applying boundary conditions
(7), one obtains the following:

(32)

(α1 + iξγ1)U11 + (α2 + iξγ2)U12 = 0,
[

iξ

{

k2 − 2h2

k2h2
−

µ0H
2
0

(µ+ µ) k2

}

+

{

1

h2
−

µ0H
2
0

(µ+ µ) k2

}

α1γ1

]

U11+
[

iξ

{

k2 − 2h2

k2h2
−

µ0H
2
0

(µ+ µ) k2

}

+

{

1

h2
−

µ0H
2
0

(µ+ µ) k2

}

α2γ2

]

U12 = 0























.

Elimination of U11 and U12from (32) leads to the following equation:
(33)
[

iξ

{

k2 − 2h2

k2h2
−

µ0H
2
0

(µ+ µ) k2

}

+

{

1

h2
−

µ0H
2
0

(µ+ µ) k2

}

α2γ2

]

(α1 + iξγ1)−
[

iξ

{

k2 − 2h2

k2h2
−

µ0H
2
0

(µ+ µ) k2

}

+

{

1

h2
−

µ0H
2
0

(µ+ µ) k2

}

α1γ1

]

(α2 + iξγ2) = 0.

Equation (33) gives the frequency equation for Rayleigh waves in a
medium, which rotates with a uniform angular velocity (0, 0, ω3) under the
theory of nonlocal elasticity, due to the application of initial magnetic field
(0, 0,H0).
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In the absence of magnetic field, the above frequency equation for
Rayleigh waves in a rotating medium under the theory of nonlocal elasticity
may be presented as:
(34)

[

iξ
k2 − 2h2

k2h2
+

α2γ2
h2

]

(α1 + iξγ1)−

[

iξ
k2 − 2h2

k2h2
+

α1γ1
h2

]

(α2 + iξγ2) = 0,

where:

(35) k2 =
ρ
(

ω2 + ω2
3

)

(µ+ µ)
, h2 =

ρ
(

ω2 + ω2
3

)

(

λ+ λ
)

+ 2 (µ+ µ)
.

The equation (34) represents the frequency equation for Rayleigh waves
in a rotating medium, based on the theory of nonlocal elasticity and is in perfect
agreement with the result obtained by Acharya and Mandal [22].

In the absence of rotation, the frequency equation for Rayleigh waves
in magneto elastic nonlocal medium is given by the same equation (33), but
the expressions for k2, h2, γj , α

2
1, α

2
2 are revised as:

(36)

k2 =
ρω2

(µ+ µ)
, h2 =

ρω2

(

λ+ λ
)

+ 2 (µ+ µ) + µ0H2
0

,

γj =
−iαj

[

ξ

h2 − ξ

k2

]

[

α2

j

h2 − ξ2

k2
+ 1

] , α2
1 = ξ2 − h2, α2

2 = ξ2 − k2































.

In the absence of rotation and magnetic field, the frequency equation
for Rayleigh waves, under the theory of nonlocal elasticity, may be presented
as:

(37)

(

k2

ξ2
− 2

)4

= 16

(

1−
h2

ξ2

)(

1−
k2

ξ2

)

,

where:

(38)

k2 =
ρω2

(µ+ µ)
, h2 =

ρω2

(

λ+ λ
)

+ 2 (µ+ µ)
,

γj =
−iαj

[

ξ

h2 − ξ

k2

]

[

α2

j

h2 − ξ2

k2
+ 1

] , α2
1 = ξ2 − h2, α2

2 = ξ2 − k2































.
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This equation is in complete agreement with that obtained by Eringen
[10].

The frequency equation for classical Rayleigh waves may also be de-
duced from (33) as special case. The form of this equation is the same, as in
(37), but the expressions for k2 and h2 are given by:

k2 =
ρω2

µ
and h2 =

ρω2

λ+ 2µ
.

For numerical calculations and discussions, following assumptions are
performed:

1. The media is made of Poisson’s solid i.e. λ = µ,
2. Following Eringen [10], the concept of Poisson’s material is extended to

include λ = µ,
3. Making parallel assumptions as Chandrasekharaiya [18] (ω3 = ω), we take

ω3 = Rω,
4. We also set µ0H

2
0 = M (µ+ µ),

where R and M are defined as rotational parameter and Alfven wave velocity
parameter, respectively.

On the basis of the above assumptions and in view of (28), (29) and
(31), the frequency equation may be transformed to a four degree equation in
k2/ξ2. Thus, using (28), one obtains the wave velocity (c = ω/ξ) for Rayleigh
waves propagated in a nonlocal rotating magneto elastic solid, in the following
form:

(39) c =

√

(

k2
/

ξ2
)

1 +R2

√

µ

ρ

(

1 +
µ

µ

)1/2

,

where: µ is a function of ξ.
Equation (39) may be considered as a more generalized formula for find-

ing Rayleigh wave velocity in the sense, that it includes the effects of magnetic
field, rotation of the body and nonlocal character of the medium. Rayleigh
wave velocity, in presence of magnetic field, Rayleigh wave velocity for a rotat-
ing body in a linearly elastic nonlocal medium, as well as for classical elasticity
may be deduced from (39) as special cases, by making required modifications.
Rayleigh wave velocity for nonlocal, non-rotating elastic solid in the absence of
magnetic field may also be deduced from (39), as:

(40) c = 0.9194

√

µ

ρ

(

1 +
µ

µ

)1/2

,
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or:
c

cr
=

(

1 +
µ (ξ)

µ

)1/2

,

where: cr = 0.9194
√

µ/ρ =classical Rayleigh wave velocity for Poisson’s solid.
In contrast with the classical situation, as pointed out by Eringen, Rayleigh
wave velocity in nonlocal solids is definitely dispersive in nature, due to the
presence of µ, which is a function of ξ in the equation (40). Such a dispersive
nature in a nonlocal medium persists whether the body rotates or not and
irrespective of the presence or absence of magnetic field.

Using equation (29), the attenuation exponents α1 and α2 under the
above assumptions may be obtained from the following formulas:

(41)

α2
1

ξ2
+

α2
2

ξ2
= 2−

k2

ξ2

(

M + 4

M + 3

)

α2
1

ξ2
×

α2
2

ξ2
= 1−

k2

ξ2

(

M + 4

M + 3

)

+

(

k2

ξ2

)2
1

(M + 3)

(

1−R2

1 +R2

)2















,

where: k2
/

ξ2may be found by solving equation (33). If we further assume:

R = 1 (i.e. ω3 = ω, Chandrasekharaiya[18]), then
α2
1

ξ2
= 1 and

α2
2

ξ2
= 1 −

k2

ξ2

(

M + 4

M + 3

)

, which shows that one of the attenuation exponents, α2
1

/

ξ2 is

independent of magnetic field. Moreover, in the absence of magnetic field one
obtains k2

/

ξ2 = 0.6667 and hence, α2
1

/

ξ2 = 1 and α2
2

/

ξ2 = 0.1111. This result
is in perfect agreement with the corresponding result obtained by Acharya
and Mondal [22]. For a nonlocal, non-rotating elastic solid in the absence of
magnetic field attenuation exponents are given by α2

1

/

ξ2 = 0.7182 and α2
2

/

ξ2 =
0.1547, which are the same as linear classical elasticity.

7. Parametric study and discussion

To highlight the effect of magnetic field, rotation and their combined
effect in the case of Rayleigh wave propagation in a semi-infinite solid medium
based on the nonlocal theory of elasticity, a numerical study is performed. One
of the major parameters for this study is k2

/

ξ2 (= V ), which plays a very im-
portant role for the evaluation of the wave velocity ratio, as well as ratios of
attenuation exponents. To show the variations of V , different type of graphs
are plotted based on numerical calculations, using equation (33), in Figs 2
and 3. The numerical calculations are performed, using commercially avail-
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Fig. 2. Response of V against Alfven wave velocity parameter M and rotational
parameter R

Fig. 3. Variation of V against the Alfven wave velocity parameter M , or rotational
parameter R

able software MATLAB. Variations of square of attenuation exponent ratios
α2
1

/

ξ2 (= A1) and α2
2

/

ξ2 (= A2) to be called attenuation exponent, hence-
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forth, have been demonstrated through Figs 4 to 7. Though the figures are
self-explanatory, brief descriptions are presented to show the behaviour and
trends of plots for the propagation of Rayleigh waves in rotating semi-infinite
solid media, permeated by an initial magnetic field in the context of non-local
elasticity.

Figure 2 exhibits surface plot of variation of V for different values of
M and R. It is noted that V attains its maximum value of 0.85 in the absence
of Alfven wave velocity parameter and rotation parameter (i.e. M = R = 0.0).
Subsequently, for any increment of M and/or R, the wave velocity ratio V ,
continuously decreases to reach its minimum value of 0.65, when both M and R
attain their maximum value 1.0. It is also observed, that the rate of decrement
of V varies differently for variations of M and R. To get an idea of change
rate in wave velocity ratio V , with respect to M and R, graphs are plotted
in Fig. 3. The dotted lines in Fig. 3 show the variations of V against Alfven
wave velocity parameter M for R = 0 and R = 1. The solid lines depict the
variation of V against R for M = 0 and M = 1. It is observed that in the
absence of rotation (R = 0), V continuously decreases from its peak value due
to the increment in M . V decreases slowly for R = 1. For a particular value
of Alfven wave velocity parameter M , V is diminished, due to rotation. Such
diminutions become smaller as M increases. From this figure, it is observed
that V quickly drops down to its smaller values in both the cases of M = 0
and M = 1, as R increases. For a particular value of rotational parameter R,
the value of V decreases as M increases.

Figure 4 shows the response of attenuation exponents A1 or A2 against
Alfven wave velocity parameter M for R = 0 and R = 1. For any particular
value of M in its range, A1 diminishes due to rotation. Such diminution almost
remains same throughout the range of magnetic field. It is observed, that the
attenuation exponents A1 (for R = 0, 1) and A2 (for R = 0) increase slowly
with the increase of magnetic field, while hardly any variation in A2 is observed
when R = 1. For a particular value of M , effect of rotation is to diminish the
value of A1, while A2 increases with rotation.

Figure 5 signifies the effect of rotational parameter R on A1 (for M = 0,
M = 1) and A2 (for M = 0, M = 1). It is observed, that A1 slowly decreases
as R increases irrespective of the presence or absence of the magnetic field.
For a particular value of R, effect of magnetic field is to increase the value of
A1. The effect of magnetic field also causes increment in A2 on the range of
0 ≤ R < 0.7 (approx.), but there is hardly any change in A2 on the range of
0.7 ≤ R ≤ 1. Thus, we conclude that magnet has practically got no effect on
A2 on the range of R > 0.7.
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Fig. 4. Variation of attenuation exponents A1 and A2 against Alfven wave velocity
parameter M

Fig. 5. Variation of attenuation exponents A1 and A2 against rotational parameter R

In order to analyze the combined effect of magnetic field (M) and rota-
tion (R) on the attenuation exponents A1 and A2, two surfaces are plotted in
Figs 6 and 7, respectively. The observations made earlier in Figs 4 and 5 may
also be made from Figs 6 and 7 as special cases.
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Fig. 6. Surface plot of attenuation exponent A1 against Alfven wave velocity
parameter M and rotational parameter R

Fig. 7. Surface plot of attenuation exponent A2, against Alfven wave velocity
parameter M and rotational parameter R
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8. Conclusions

In the present work, the combined effect of rotation and magnetic field
on the propagation of Rayleigh surface waves has been investigated in the con-
text of linear nonlocal elasticity. The results obtained in this paper may be
considered as more general in the sense that it includes rotation of the medium
and the presence of magnetic field. Special cases have also been investigated
with due importance. Variations of wave velocity, attenuation exponents have
been analyzed and discussed elaborately. Based on these studies, it can be
concluded that rotation and magnetic field play significant role on nonlocal
Rayleigh wave propagation. The technique, applied in this research may be
helpful to investigate similar problems for piezoelectric/piezomagnetic compos-
ite materials. This approach may also be extended for Love and Stoneley type
of waves.
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