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Rayleigh wave propagation in transversely
isotropic magneto-thermoelastic medium
with three-phase-lag heat transfer and
diffusion
Iqbal Kaur* and Parveen Lata

Abstract

The present research deals with the propagation of Rayleigh wave in transversely isotropic magneto-thermoelastic

homogeneous medium in the presence of mass diffusion and three-phase-lag heat transfer. The wave

characteristics such as phase velocity, attenuation coefficients, specific loss, and penetration depths are computed

numerically and depicted graphically. The normal stress, tangential stress components, temperature change, and

mass concentration are computed and drawn graphically. The effects of three-phase-lag heat transfer, GN type-III,

and LS theory of heat transfer are depicted on the various quantities. Some particular cases are also deduced from

the present investigation.
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Introduction
There are two types of surface waves namely Rayleigh

wave and Love wave. These waves have primary import-

ance in earthquake engineering. Rayleigh (1885) first in-

vestigated the waves that exist near the surface of a

homogeneous elastic half-space and named it as Rayleigh

waves. Rayleigh wave exists in a homogeneous, elastic

half-space whereas Love wave requires a surficial layer

of lowers wave velocity than the underlying half-space.

The propagation of waves in thermoelastic materials has

numerous applications in various fields of science and

technology, earthquake engineering, seismology, nuclear

reactors, aerospace, submarine structures, and in the

non-destructive evaluation in material process control

and fabrication.

Green and Naghdi (1992, 1993) dealt with the linear

and the nonlinear theories of thermoelastic body with

and without energy dissipation. Three new thermoelastic

theories were proposed by them, based on entropy

equality. Their theories are known as thermoelasticity

theory of type I, the thermoelasticity theory of type II

(i.e., thermoelasticity without energy dissipation), and

the thermoelasticity theory of type III (i.e., thermoelasti-

city with energy dissipation). On linearization, type I be-

comes the classical heat equation whereas on linearization

type-II as well as type-III, theories give a finite speed of

thermal wave propagation.

The effects of heat conduction upon the propagation

of Rayleigh surface waves in a semi-infinite elastic solid

is studied for transversely isotropic thermoelastic (TIT)

materials by Sharma, Pal, and Chand (2005) and Sharma

and Singh (1985). Marin (1997) had proved the Cesaro

means of the kinetic and strain energies of dipolar bod-

ies with finite energy. Ting (2004) explored a surface

wave propagation in an anisotropic rotating medium.

Othman and Song (2006, 2008) presented different hy-

potheses about magneto-thermoelastic waves in a homo-

geneous and isotropic medium. Kumar and Kansal

(2008a) investigated the effect of rotation on the charac-

teristics of Rayleigh wave propagation in a homoge-

neous, isotropic, thermoelastic diffusive half-space in the

context of different theories of thermoelastic diffusion,

including the Coriolis and Centrifugal forces. Sharma

and Kaur (2010) considered Rayleigh waves in rotating

thermoelastic solids with the void. Mahmoud (2011)
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investigated the Rayleigh wave velocity under the effect

of rotation, initial stress, magnetic field, and gravity field

in a granular medium. Abouelregal (2011) studied Ray-

leigh wave propagation in thermoelastic half-space in

the context of dual-phase-lag mode. Abd-Alla, Abo-

Dahab, and Hammad (2011); Abd-Alla, Abo-Dahab,

Hammad, and Mahmoud (2011); and Abd-Alla and

Ahmed (1996) studied Rayleigh waves in an orthotropic

thermoelastic medium under the influence of gravity,

magnetic field, and initial stress.

Marin, Baleanu, and Vlase (2017) have discussed the

effect of micro-temperatures for micropolar thermoelas-

tic bodies. Mahmoud (2014) studied the effect of the

magnetic field, gravity field, and rotation on the propa-

gation of Rayleigh waves in an initially stressed non-

homogeneous orthotropic medium. Singh, Kumari, and

Singh (2014) solved the basic equations for the Rayleigh

wave on the surface of TIT dual-phase-lag material

under magnetic field. Kumar and Kansal (2013) investi-

gated the propagation of Rayleigh waves in a TIT diffu-

sive solid half-space. Kumar and Gupta (2015)

investigated the effect of phase lags on Rayleigh wave

propagation in the thermoelastic medium. Biswas,

Mukhopadhyay, and Shaw (2017) dealt with the propa-

gation of Rayleigh surface waves in a homogeneous,

orthotropic thermoelastic half-space in the context of

three-phase-lag models of thermoelasticity. Kumar,

Sharma, Lata, and Abo-Dahab (2017) and Lata, Kumar,

and Sharma (2016) investigated the Rayleigh waves in a

homogeneous transversely isotropic magneto-

thermoelastic (TIM) medium with two temperatures,

Hall current, and rotation. Despite this, several re-

searchers worked on a different theory of thermoelasti-

city as Chauthale and Khobragade (2017); Ezzat and AI-

Bary (2016, 2017); Ezzat, El-Karamany, and El-Bary

(2017); Ezzat, El-Karamany, and Ezzat (2012); Hassan,

Marin, Ellahi, and Alamri (2018); Kumar, Kaushal, and

Sharma (2018); Kumar, Sharma, and Lata (2016a, 2016b,

2016c); Lata and Kaur (2019a, 2019b, 2019c, 2019d,

2019e); Lata et al. (2016); Marin (2009, 2010); Marin and

Craciun (2017); Marin, Ellahi, and Chirilă (2017); Marin

and Nicaise (2016); and Othman and Marin (2017).

Inspite of these, not much work has been carried out in

the study of the Rayleigh wave propagation in a trans-

versely isotropic magneto-thermoelastic medium with

fractional order three-phase-lag heat transfer. In this

paper, we have attempted to study the Rayleigh wave

propagation with fractional order three-phase-lag heat

transfer in a transversely isotropic magneto-thermoelastic

medium.

Basic equations
The basic governing equations for homogeneous, aniso-

tropic, generalized thermodiffusive elastic solids in the

absence of body forces, heat and mass diffusion sources

following Kumar and Kansal (2008b) are

tij ¼ cijklekl þ aijT þ bijC; ð1Þ

1þ τq
∂

∂t
þ τ2q

∂
2

∂t2

� �

˙qi ¼ −

�

K ij 1þ τT
∂

∂t

� �

˙T
; j

þK �
ij 1þ τv

∂

∂t

� �

T
; j

�

;

ð2Þ

ρST 0 ¼ ρCET þ aT 0C−aijeijT 0; ð3Þ

P ¼ bklekl þ bC−aT ð4Þ

ηi ¼ −α�ijP; j ð5Þ

Here, Cijkl are elastic parameters and having symmetry

(Cijkl =Cklij =Cjikl = Cijlk). The basis of these symmetries

of Cijkl is due to

1. The stress tensor is symmetric, which is only

possible if (Cijkl = Cjikl)

2. If a strain energy density exists for the material, the

elastic stiffness tensor must satisfy Cijkl = Cklij

3. From stress tensor and elastic stiffness, tensor

symmetries infer (Cijkl = Cijlk) and Cijkl = Cklij =

Cjikl = Cijlk

The simplified Maxwell’s linear equation (Rafiq et al.

2019) of electrodynamics for a slowly moving and per-

fectly conducting elastic solid are

curl h
!

¼ j
!

þ ε0
∂ E
!

∂t
; curl E

!
¼ −μ0

∂ h
!

∂t
; E
!

¼ −μ0
∂ u!

∂t
� H
!

� �

; div h
!

¼ 0: ð6Þ

From Eq. (6), we obtain

E
!

¼ μ0H0 ˙w; 0;−˙uð Þ ð7Þ

h
!

¼ 0;−H0e; 0ð Þ; ð8Þ

j
!

¼ −h
;z−ε0μ0H0€w; 0;−h

;x−ε0μ0H0€u
� �

ð9Þ

The equation of motion, entropy equation, and mass

conservation equation following Kumar and Kansal

(2009) are

tij; j þ F i ¼ ρ€ui; ð10Þ

qi;i þ ρT 0˙S−ρM þ Pηi;i ¼ 0; ð11Þ

ηi;i ¼ ˙C þ ρN ð12Þ

where
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F i ¼ μ0 j
!

� H
!

� 	

i

F
!

¼ Fx; Fy; Fz

� �

¼ μ0H
2
0e;x−ε0μ

2
0H

2
0€u; 0; μ0H

2
0e;z−ε0μ

2
0H

2
0€w

� �

are the components of the Lorentz force that appeared

due to initially applied a magnetic field, the total mag-

netic field is given by H
!

¼ H
!

0 þ h
!

, H
!

0 is the external

applied magnetic field intensity vector, and M and N are

the strengths of the heat source and mass diffusion

source per unit mass.

The medium is supposed to be perfectly electrically

conducting and is half-space (x, 0, z) such that all the

variables are independent of the dimension y. Let H
!

0

¼ ð0;H0; 0Þ:

The heat conduction equation following Othman and

Said (2018), we have

K ij 1þ τt
∂

∂t

� �

˙T
;ji þ K�

ij 1þ τv
∂

∂t

� �

T
;ji

¼ 1þ τq
∂

∂t
þ τq
� �2 ∂

2

∂t2

� �

ρCE
€T þ aijT0ёij þ aT 0

€C

 �

;

ð13Þ

where

aij ¼ −aiδij; bij ¼ −biδij; α�ij ¼ α�i δij; K �
ij

¼ K�
i δij; K ij ¼ K iδij

Method and solution of the problem
We consider a perfectly conducting homogeneous trans-

versely isotropic magneto-thermoelastic medium in the

context of the three-phase-lag model of thermoelasticity

initially at a uniform temperature T0, an initial magnetic

field H
!

0 ¼ ð0;H0; 0Þ towards y-axis. Moreover, we

considered x, y, z taking origin on the surface (z = 0)

along the z-axis directing vertically downwards inside

the medium. For the 2D problem in the xz-plane, we

take

u ¼ u; 0;wð Þ

Now using the transformation on Eqs. (7–9) following

Slaughter (2002) is as under:

C11
∂
2u

∂x2
þ C13

∂
2w

∂x∂z
þ C44

∂
2u

∂z2
þ

∂
2w

∂x∂z

� �

−a1
∂T

∂x

−b1
∂C

∂x
þ μ0H

2
0

∂e

∂x
−ϵ0μ

2
0H

2
0

∂
2u

∂t2

� �

¼ ρ
∂
2u

∂t2

� �

;

ð14Þ

C13 þ C44ð Þ
∂
2u

∂x∂z
þ C44

∂
2w

∂x2
þ C33

∂
2w

∂z2
−a3

∂T

∂z

−b3
∂C

∂z
þ μ0H

2
0

∂e

∂z
−ϵ0μ

2
0H

2
0

∂
2w

∂t2

� �

¼ ρ
∂
2w

∂t2

� �

;

ð15Þ

K1 1þ τt
∂

∂t

� �

∂
2
˙T

∂x2
þ K3 1þ τt

∂

∂t

� �

∂
2
˙T

∂z2

þK�
1 1þ τv

∂

∂t

� �

∂
2T

∂x2
þ K �

3 1þ τv
∂

∂t

� �

∂
2T

∂z2

¼ 1þ τq
∂

∂t
þ τq
� �2 ∂

2

∂t2

� ��

ρCE

∂
2T

∂t2

þT0 a1
∂€u

∂x
þ a1

∂€w

∂z

� 

þ aT 0
€C

�

;

ð16Þ

α�1 b1
∂
3u

∂x3
þ b3

∂
3w

∂x2∂z

� �

þ α�3 b1
∂
3u

∂x∂z2
þ b3

∂
3w

∂z3

� �

−α�1b
∂
2C

∂x2
−α�3b

∂
2C

∂z2
þ α�1a

∂
2T

∂x2
þ α�3a

∂
2T

∂z2

¼ − ˙Cð Þ:

ð17Þ

and

txx ¼ C11exx þ C13exz−a1T ; ð18Þ

tzz ¼ C13exx þ C33ezz−a3T ; ð19Þ

txz ¼ 2C44exz; ð20Þ

where

a1 ¼ C11 þ C12ð Þα1 þ C13α3;
a3 ¼ 2C13α1 þ C33α3; b1

¼ C11 þ C12ð Þα1c þ C13α3c;:

Using dimensionless quantities,

x
0

; z
0

;u
0

;w
0

� 	

¼
ω�
1

C1
x; z;u;wð Þ; ρC2

1 ¼ C11;ω
�
1

¼
ρC2

1CE

K 1
T

0

¼
a1T

ρC2
1

;C
0

¼
b1C

ρC2
1

; t
0

; τ
0

0; τ
00

; τ
0

T ; τ
0

v; τ
0

q

� 	

¼ ω�
1 t; τ0; τ

0
; τT ; τv; τq

� �

:

ð21Þ

Making use of (21) in Eqs. (14–17), after suppressing

the primes, yield
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1þ δ4ð Þ
∂
2u

∂x2
þ δ1 þ δ4ð Þ

∂
2w

∂x∂z
þ δ2

∂
2u

∂z2
−

∂T

∂x
−

∂C

∂x

¼ 1þ δ5ð Þ
∂
2u

∂t2
;

ð22Þ

δ1 þ δ4ð Þ
∂
2u

∂x∂z
þ δ2

∂
2w

∂x2
þ δ3 þ δ4ð Þ

∂
2w

∂z2

−δ7
∂T

∂z
−δ8

∂C

∂z
¼ 1þ δ5ð Þ

∂
2w

∂t2

ð23Þ

1þ τT
∂

∂t

� �

δ9
∂
2
˙T

∂x2
þ δ12

∂
2
˙T

∂z2

� �

þ 1þ τv
∂

∂t

� �

δ10
∂
2T

∂x2
þ δ11

∂
2T

∂z2

� �

¼ 1þ τq
∂
α

∂tα
þ τq

2 ∂
2

∂t2

� �

δ9 €T þ δ13
∂€u

∂x
þ δ14

∂€w

∂z
þ δ15 €C

� �

:

ð24Þ

q1
∂
3u

∂x3
þ q2

∂
3w

∂x2∂z
þ q3

∂
3u

∂x∂z2
þ q4

∂
3w

∂z3

�

3
þ q5

∂
2C

∂x2
þ q6

∂
2C

∂z2

þq7
∂
2T

∂x2
þ q8

∂
2T

∂z2
þ q9

∂C

∂t
¼ 0

ð25Þ

where

δ1 ¼
c13 þ c44

c11
; δ2 ¼

c44

c11
; δ3 ¼

c33

c11
; δ4 ¼

μ0H
2
0

ρC2
1

; δ5 ¼
ε0μ

2
0H

2
0

ρ
;

δ7 ¼
a3

a1
; δ8 ¼

b3

b1
; δ9 ¼

ρω�3
1

a1
; δ10 ¼

ρω�2
1 K �

1

a1K1
;

δ11 ¼
ρω�2

1 K�
3

a1K1
; δ12 ¼

ρω�3
1 K3

a1K1
; δ13 ¼

T0ω
�2
1 a1

K1
; δ14 ¼

T0ω
�2
1 a3

K1
;

δ15 ¼
aρC2

1T0ω
�2
1

K1b1
:

Rayleigh wave propagation
We pursue Rayleigh wave solution of the equations of

the form

u

w

T

C

0

B

B

@

1

C

C

A

¼

1
W

S

R

0

B

B

@

1

C

C

A

Ueiξ xþmz−ctð Þ ð26Þ

where c ¼ ω
ξ

is the non-dimensional phase velocity and

m is an unknown parameter. 1, W, S, and R are the amp-

litude ratios of displacements u, w, temperature change

T, and concentration C, respectively.

Upon using Eq. (26) in Eqs. (22–25), we get

U l1 þ l6 þ l2m
2


 �

þW l3m½ � þ S l5½ � þ R l5½ � ¼ 0; ð27Þ

U l3m½ � þW l2 þ l6 þ l7m
2


 �

þ S l8m½ � þ R l9m½ � ¼ 0; ð28Þ

U l12½ � þW l13m½ � þ S l10 þ l11m
2


 �

þ R l14½ � ¼ 0; ð29Þ

U l15 þ l16m
2


 �

þW l17mþ l18m
3


 �

þ S l21 þ l22m
2


 �

þR l19 þ l20m
2


 �

¼ 0;

ð30Þ

where

l1 ¼ −ξ2 1þ δ4ð Þ; l2 ¼ −δ2ξ
2
; l3 ¼ −ξ2 δ1 þ δ4ð Þ; l5 ¼ −iξ;

l6 ¼ 1þ δ5ð Þξ2c2; l7 ¼ −ξ2 δ3 þ δ4ð Þ; l8 ¼ −iξδ7;

l9 ¼ −iξδ8;

l10 ¼ −δ10 1−iξcτvð Þξ2 þ δ9 1−iξcτTð Þiξ3c−δ9ξ
2c2 1−iξcτq−

τq
2ξ2c2

2

� �

;

l11 ¼ −δ11 1−iξcτvð Þξ2 þ δ12 1−iξcτTð Þiξ3c;

l12 ¼ −δ13iξ
3c2 1−iξcτq−

τq
2ξ2c2

2

� �

;

l13 ¼ −δ14iξ
3c2 1−iξcτq−

τq
2ξ2c2

2

� �

;

l14 ¼ −δ15ξ
2c2 1−iξcτq−

τq
2ξ2c2

2

� �

;

l15 ¼ −q1iξ
3
; l16 ¼ −q3iξ

3
; l17 ¼ −q2iξ

3
; l18 ¼ −q4iξ

3
;

l19 ¼ −q5ξ
2
−q9iξc; l20 ¼ −q6ξ

2
; l21 ¼ −q7ξ

2
;

l22 ¼ −q8ξ
2
; q1 ¼

α�1b1ω
�2
1

c21
; q2 ¼

α�1b3ω
�2
1

c21
; q3 ¼

α�3b1ω
�2
1

c21
;

q4 ¼
α�3b3ω

�2
1

c21
; q5 ¼ −

α�1bω
�2
1 ρ

b1
q6 ¼ −

α�3bω
�2
1 ρ

b1
;

q7 ¼ −

α�1aω
�2
1 ρ

a1
; q8 ¼

α�3aω
�2
1 ρ

a1
; q9 ¼ −

ω�
1c

2
1ρ

b1
:

and from (27–30), the characteristic equation is a biqua-

dratic equation in m2 given by

m8 þ
B

A
m6 þ

C

A
m4 þ

D

A
m2 þ

E

A
¼ 0; ð31Þ

where

A ¼ l2l7l11l20−l2l9l18l11;

B ¼ l1l7l11l20−l1l9l18l11 þ l2l6l11l20 þ l2l7l10l20−l14l2l22l7

þl14l2l8l18 þ l2l9l13l22−l2l9l13l22−l10l9l2l18 þ l2l11l17l9

−l3l3l11l20 þ l3l9l16l11 þ l5l3l11l18 þ l5l7l11l15 þ l2l8l13l20;

C ¼ l1l6l11l20 þ l1l7l19l11 þ l1l7l10l20−l1l7l14l22−l14l1l8l18

−l10l1l9l18 þ l1l9l13l22−l1l9l11l17 þ l2l6l11l19 þ l2l6l10l20

−l2l6l14l22 þ l1l7l10l19−l2l7l14l21−l2l8l13l19 þ l1l8l13l20

−l2l8l14l17−l2l9l13l21−l2l9l10l17−l
2
3l11l19−l

2
3l10l20 þ l23l14l22

þl3l8l12l20−l3l8l14l16−l3l9l12l22−l5l3l13l22 þ l5l3l10l18

þl5l3l11l17−l5l6l16l11−l5l7l12l22 þ l5l7l10l16 þ l5l7l11l16

−l5l8l12l18 þ l5l8l16l13 þ l5l3l13l20−l5l3l14l18−l5l7l12l20

þl5l7l14l16 þ l5l9l12l18−l5l9l13l16;
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D ¼ l1l6l11l19 þ l1l6l10l20−l1l6l14l22 þ l1l7l10l19 þ l5l7l10l15

−l1l7l14l21−l1l8l13l19−l1l8l14l17 þ l1l9l13l21−l5l8l12l17

−l1l9l10l17 þ l2l6l10l19−l2l6l14l21−l
2
3l10l19 þ l5l8l13l15

þl23l14l21 þ l3l8l12l19−l3l8l14l15−l3l9l12l21 þ l5l3l13l19

þl3l9l10l15−l3l5l13l21 þ l3l5l10l17 þ l5l6l12l22−l5l6l12l20

−l10l5l6l16−l5l3l14l17−l5l6l10l16−l5l6l15l11−l5l7l12l21

þl5l6l14l16−l5l7l12l19 þ l5l7l14l15 þ l5l9l12l17−l5l9l13l15

þl5l6l14l15;

E ¼ l1l6l10l19−l1l6l14l21−l5l6l12l21−l5l6l10l15−l5l6l12l19:

The characteristic in Eq. (27) gives four roots m2
pwhere

p = 1, 2, 3, 4. Since we consider only the surface waves,

therefore, motion is restricted to the free surface z = 0 of

the half-space, hence, satisfy the radiation conditions

Re(mp) ≥ 0.

The displacements, temperature change, and concen-

tration can be written as

u

w

T

C

0

B

B

@

1

C

C

A

¼
X

4

p¼1

1
n1p
n2p
n3p

0

B

B

@

1

C

C

A

Ape
iξ xþimpz−ctð Þ ð32Þ

where Ap (p = 1, 2, 3, 4) are arbitrary constants and

coupling constants are

Boundary conditions
The boundary conditions at z = 0 are given by

tzz ¼ 0; tzx ¼ 0;

∂T

∂z
þ hT ¼ 0;P ¼ 0: ð33Þ

After applying dimensionless quantities from Eq. (21),

the above boundary conditions reduces to

δ1−δ2ð Þ
∂u

∂x
þ δ3

∂w

∂z
−δ7T−δ8C ¼ 0;

δ2
∂w

∂x
þ
∂u

∂z

� �

¼ 0;

∂T

∂z
þ hT ¼ 0;

∂u

∂x
þ ϵ2

∂w

∂z
−η2C þ η1T ¼ 0;

where

η1 ¼
aC11

a1b1
; η2 ¼

bC11

b21
;

Derivations of the secular equations
By using the values of u, w, T, and C from (28) in (29),

we get four linear equations as

n1p ¼

−l9l16l11 þ l3l11l20ð Þm5
p þ

l3l11l19 þ l3l10l20−l3l14l22
−l8l12l20 þ l8l14l16 þ l9l12l22

� �

m3
p þ

l3l10l19 þ l3l14l21−l8l12l19
þl8l14l15 þ l9l12l21−l9l15l10

� �

mp

l7l11l20
−l9l18l11

� �

m6
p þ

l6l11l20 þ l7l11l19 þ l7l10l20−l7l14l22
þl8l13l20−l8l14l18 þ l9l13l22−l9l10l18

� �

m4
p þ

l6l11l19 þ l6l10l20−l6l14l22 þ l7l10l19−l7l14l21
−l8l13l19−l8l14l17 þ l9l13l21−l9l10l17

� �

m2
p þ

l6l10l19
−l6l14l21

� � ;

n2p ¼

l3l13l20−l3l14l18−l7l12l20
þl7l14l16 þ l9l12l18−l9l13l16

� �

m4
p þ

l3l13l19−l3l14l17−l6l12l20 þ l6l11l16−l7l12l19
þl7l14l15 þ l9l12l17−l9l13l15

� �

m3
p þ −l6l12l19 þ l6l14l15ð Þ

l7l11l20
−l9l18l11

� �

m6
p þ

l6l11l20 þ l7l11l19 þ l7l10l20−l7l14l22
þl8l13l20−l8l14l18 þ l9l13l22−l9l10l18

� �

m4
p þ

l6l11l19 þ l6l10l20−l6l14l22 þ l7l10l19−l7l14l21
−l8l13l19−l8l14l17 þ l9l13l21−l9l10l17

� �

m2
p þ

l6l10l19
−l6l14l21

� � ;

n3p ¼

−l3l11l18
−l7l11l15

� �

m6
p þ

l3l13l22−l3l10l18−l3l11l17 þ l6l11l16−l7l12l22
−l7l10l16−l7l11l16 þ l8l12l18−l8l16l13

� �

m4
p þ

l3l13l21−l3l10l17−l6l12l22 þ l6l10l16 þ l6l11l15
þl7l12l21−l7l15l10 þ l8l12l17−l8l15l13

� �

m2
p þ

l6l10l15
−l6l12l21

� �

l7l11l20
−l9l18l11

� �

m6
p þ

l6l11l20 þ l7l11l19 þ l7l10l20−l7l14l22
þl8l13l20−l8l14l18 þ l9l13l22−l9l10l18

� �

m4
p þ

l6l11l19 þ l6l10l20−l6l14l22 þ l7l10l19−l7l14l21
−l8l13l19−l8l14l17 þ l9l13l21−l9l10l17

� �

m2
p þ

l6l10l19
−l6l14l21

� � :
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X

4

p¼1

QjpAp ¼ 0; j ¼ 1; 2; 3; 4: ð34Þ

where

Q1p ¼ δ1−δ2ð Þ þ δ3impn1p þ
iδ7n2p

ξ
þ
iδ8n3p

ξ
;

Q2p ¼ imp þ n1p;

Q3p ¼ −ξmp þ h
� �

n2p;

Q4p ¼ 1þ iϵ2mpn1p−
iη1n2p

ξ
þ
iη2n3p

ξ
:

Secular equations are

Q11

Q21

Q31

Q41

Q12

Q22

Q32

Q42

Q13

Q23

Q33

Q43

Q14

Q24

Q34

Q44

2

6

6

4

3

7

7

5

¼ 0; or

−Q31D1 þ Q32D2−Q33D3 þ Q34D4 ¼ 0;

ð35Þ

where

D1 ¼
Q12 Q13 Q14

Q22 Q23 Q24

Q42 Q43 Q44

2

4

3

5

;

D1 ¼ Q12 Q23Q44−Q24Q43ð Þ−Q13 Q22Q44−Q24Q42ð Þ þ Q14 Q22Q43−Q23Q42ð Þ;

D2 ¼
Q11 Q13 Q14

Q21 Q23 Q24

Q41 Q43 Q44

2

4

3

5

;

D2 ¼ Q11 Q23Q44−Q24Q43ð Þ−Q13 Q21Q44−Q24Q42ð Þ þ Q14 Q21Q43−Q23Q41ð Þ;

D3 ¼
Q11 Q12 Q14

Q21 Q22 Q24

Q41 Q42 Q44

2

4

3

5

;

D3 ¼ Q11 Q22Q44−Q24Q42ð Þ−Q12 Q21Q44−Q24Q41ð Þ þ Q14 Q21Q42−Q22Q41ð Þ;

D4 ¼
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

2

4

3

5

;

D4 ¼ Q11 Q22Q33−Q23Q32ð Þ−Q12 Q21Q33−Q2Q31ð Þ þ Q13 Q21Q32−Q22Q31ð Þ:

These secular equations have entire information re-

garding the wavenumber, phase velocity, and attenu-

ation coefficient of Rayleigh waves in the transversely

isotropic magneto-thermoelastic medium. Moreover, If

we write

c−1 ¼ v−1 þ Fiω−1
; ð36Þ

then ξ = E + iF, where E ¼ ω
v

; v (velocity), and F (attenu-

ation coefficient) are real.

The roots of the characteristic in Eq. (27) are com-

plex and therefore, we assume that mp =Qp + ipq, so

that the exponent in Rayleigh wave solutions (28)

becomes

iE x−imi
pz−vt

� 	

−E
F

E
xþmr

pz

� �

; ð37Þ

where

mr
p ¼ Qp−pq

F

E
;mi

p ¼ pq þ Qp

F

E
:

Equation (28) can be written as

u

w

T

C

0

B

B

@

1

C

C

A

¼
X

4

p¼1

1
n1p
n2p
n3p

0

B

B

@

1

C

C

A

Ape
−Fx−χrpð Þ � ei E x−vtð Þ−χ ip½ �

; ð38Þ

where

χrp

�

�

�

�

�

�

2

− χ ip

�

�

�

�

�

�

2

¼ E2 mr
p

� 	2

− mi
p

� 	2
� 

;

χrp

�

�

�

�

�

� χ ip

�

�

�

�

�

�cosθ ¼
1

2
E2mr

pm
i
p;

θ is the angle between the real and imaginary part of

the vector χp.

Phase velocity

Phase velocity defines the speed at which waves oscillat-

ing at a particular frequency propagate and it depends

on the real component of the wave number. The phase

velocities are given by

V ¼
ω

Re ξð Þ
ð39Þ

Attenuation coefficient

The attenuation coefficient is the gradual loss of flux in-

tensity through a medium, and it depends on the im-

aginary component of the wavenumber. The attenuation

coefficient is defined as

Q ¼ Img ξð Þ; ð40Þ

Specific loss

The specific loss is the most direct way of defining in-

ternal resistance for a material. The specific loss W is

given by

W ¼
ΔW

W

� �

¼ 4π
Img ξð Þ

Re ξð Þ

�

�

�

�

�

�

�

�

; ð41Þ

Penetration depth

Penetration depth describes how deep a wave can pene-

trate into a material and describes the decay of waves in-

side of a material. The penetration depth S is defined by
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S ¼
1

Img ξð Þ
ð42Þ

Particular cases

1. If τT ≠ 0, τv ≠ 0, τq ≠ 0, we obtain results for

Rayleigh wave propagation in transversely isotropic

magneto-thermoelastic solid with diffusion and with

and without energy dissipation and TPL (three-

phase-lag) effects.

2. If τT = 0, τv = 0, τq = 0, and K∗

≠ 0, we obtain results

for Rayleigh wave propagation in magneto-

thermoelastic transversely isotropic solid with

diffusion and GN-III theory (thermoelasticity with

energy dissipation).

3. If τT = 0, τv = 0, τq = 0, and K∗ = 0, we obtain results

for Rayleigh wave propagation in magneto-

thermoelastic transversely isotropic solid with

diffusion and GN-II theory (generalized

thermoelasticity without energy dissipation).

4. If τT ≠ 0, τv ≠ 0, τq ≠ 0 , and K∗ = 0, we obtain results

for Rayleigh wave propagation in magneto-

thermoelastic transversely isotropic solid with

diffusion and GN-II theory with TPL effect

5. If τT = 0, τv = 0, τq = τ0 > 0, and K∗ = 0, and ignoring

τ2q , we obtain results for Rayleigh wave propagation

in magneto-thermoelastic transversely isotropic

solid with diffusion and Lord-Shulman (L-S)

model.

6. If τT = 0, τv = 0, and τq = 0 and if the medium is

not permitted with the magnetic field, i.e., μ0 =

H0 = 0, then we obtain results for Rayleigh wave

propagation in transversely isotropic

thermoelastic solid with diffusion and without

TPL effect

7. If C11 ¼ C33 ¼ λþ 2μ;C12 ¼ C13 ¼ λ;C44 ¼ μ; α1

¼ α3 ¼ α
0
; a1 ¼ a3 ¼ a; b1 ¼ b3 ¼ b;K1 ¼ K3 ¼ K ;

K�
1 ¼ K�

3 ¼ K �, we obtain expressions for Rayleigh

wave propagation in magneto-thermoelastic isotropic

materials with diffusion and with and without energy

dissipation with TPL effect.

Numerical results and discussion
In order to illustrate our theoretical results in the pro-

ceeding section and to show the effect of Hall current

and fractional order parameter, we now present some

numerical results. Following Dhaliwal and Sherief

(1980), cobalt material has been taken for thermoelastic

material as

c11 ¼ 3:07� 1011Nm−2
; c33 ¼ 3:581� 1011Nm−2

;

c13 ¼ 1:027� 1010Nm−2
; c44 ¼ 1:510� 1011Nm−2

;

β1 ¼ 7:04� 106Nm−2 deg−1;

β3 ¼ 6:90� 106Nm−2 deg−1; ρ ¼ 8:836� 103Kgm−3
;

CE ¼ 4:27� 102jKg−1 deg−1;

K1 ¼ 0:690� 102Wm−1Kdeg−1;

K 3 ¼ 0:690� 102Wm−1K−1
;T 0 ¼ 298 K;

H0 ¼ 1Jm−1nb−1; ε0 ¼ 8:838� 10−12Fm−1
; L ¼ 1:

Using the above values, the graphical representa-

tions of stress components, temperature change, and

concentration, Rayleigh wave velocity, attenuation co-

efficient, specific loss, and penetration depth of Ra-

leigh wave in the transversely isotropic thermoelastic

medium have been investigated with three-phase-lag,

GN-III, and LS theory of thermoelasticity and demon-

strated graphically as

1. The solid line relates to the three-phase lag theory

τT ≠ 0, τv ≠ 0, τq ≠ 0,

2. The dashed line relates to GN-III theory τT = 0, τv =

0, τq = 0, and K∗

≠ 0,

3. The dotted line relates to LS theory τT = 0, τv = 0,

τq = τ0 > 0, and K∗ = 0.

Figure 1 illustrates the deviations of tangential stress

tzx with wave number. From the graph, we observe that

tangential stress tzx decreases with wave number in all

the three theories with a little difference in magnitude.

Figure 2 shows the deviations of normal stress tzz with

Fig. 1 Variations of tangential stress tzx with wavenumber
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wavenumber. Here, we observe that the normal stress tzz
increases with increase in wavenumber with a small

magnitude difference in all the three theories. Figure 3

illustrates the deviations of the attenuation coefficient

with wavenumber. For the TPL theory, we observe that

increase in attenuation coefficient is a gradually in-

creasing which shows that for TPL theory attenuation

coefficient is directly proportional to wavenumber. For

GN-III theory, the attenuation coefficient increases in

the form of a curve with an increase in wavenumber,

while for L-S theory, the value of the attenuation coeffi-

cient decreases with increase in wavenumber. Figure 4

shows the deviations of penetration depth with wave-

number. From the graphs, we observe that the penetra-

tion depth decreases for TPL and GN-II theories, while

for L-S theory, it first increases and then starts decreas-

ing with increase in wavenumber and hence shows the

influence of three different theories on penetration

depth. Figure 5 illustrates the variations of specific loss

with wavenumber. From the graphs, we observe that

the value of specific loss first decreases and then be-

comes stationary with an increase in wavenumber for

TPL theory. In GN-III theory, specific loss increases

with increase in wavenumber, while for L-S theory, the

value of specific loss first increases and then starts de-

creasing after attaining a maximum value at wavenum-

ber = 2.5. Figure 6 shows variations of concentration C

with wavenumber. From the graph, we observe that the

concentration C increases with increase in wavenumber

for all the three theories with a little magnitude differ-

ence. Figure 7 shows variations of Rayleigh wave vel-

ocity with wavenumber. The Rayleigh wave velocity

increases for the GN-III theory case and no change for

TPL case, while for L-S theory, it first decreases and

then remains the same with an increase in wavenum-

ber. Figure 8 shows variations of temperature T with

wavenumber. From the graph, we observe that the

temperature T increases with increase in wavenumber

for all the three theories with a little magnitude differ-

ence. Thus, we conclude that there is a significant influ-

ence of three-phase-lag GN-III and LS on the

deformation wave parameter attenuation coefficients,

specific loss, wave velocity, penetration depth, temperature,

concentration, tangential stress, normal stress components,

and of the transversely isotropic magneto-thermoelastic

medium.

Conclusion
From the above study, we conclude the following:

� A mathematical model to study the Rayleigh wave

propagation in the homogeneous transversely

Fig. 2 Variations of normal stress tzz with wavenumber
Fig. 3 Variations of attenuation coefficient with wavenumber

Fig. 4 Variations of penetration depth with wavenumber
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isotropic magneto-thermoelastic medium in the

presence of mass diffusion and the three-phase-lag

heat transfer has been developed, and various wave

characteristics, i.e., attenuation coefficients, specific

loss, wave velocity, penetration depth, temperature,

concentration, tangential stress, and normal stress

components have been derived and represented

graphically. The secular equation of Rayleigh waves

in the presence of the effect of diffusion in a

transversely isotropic magneto-thermoelastic

medium has been derived. The comparison of

different theories of thermoelasticity, i.e., TPL,

GN-III, and L-S theories are carried out.

� From the graphs, we observe a significant influence

of three-phase-lag, GN-III and LS theories on the

various wave characteristics, i.e., attenuation

coefficients, specific loss, wave velocity, penetration

depth, temperature, concentration, tangential stress,

and normal stress components in transversely

isotropic magneto-thermoelastic medium.

Attenuation of waves increases, whereas the

penetration depth decreases with the increase in

wavenumber.

� The study of elastic wave attenuation particularly in

transversely isotropic magneto-thermoelastic

medium carries information about transversely

isotropic magneto-thermoelastic medium properties

and is important for the design of geophysics and

seismic investigations.

� Significant resemblance and non-resemblance

among the results under TPL, GN-III, and L-S

theory of thermoelasticity have been identified.

� However, the problem is theoretical, but it can

deliver useful information for experimental

Fig. 8 Variations of temperature T with wave number

Fig. 5 Variations of specific loss with wavenumber

Fig. 6 Variations of concentration C with wavenumber

Fig. 7 Variations of Rayleigh wave velocity with wave number
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researchers working in the field of geophysics and

earthquake engineering and seismologist working in

the field of mining tremors and drilling into the

Earth crust.

Nomenclature
δij Kronecker delta

Cijkl Elastic parameters

βij Thermal elastic coupling tensor

T Absolute temperature

T0 Reference temperature

φ Conductive temperature

tij Stress tensors

eij Strain tensors

ui Components of displacement

ρ Medium density

CE Specific heat

aij Tensor of thermal moduli

αij Linear thermal expansion coefficient

Kij Materialistic constant

K�
ij Thermal conductivity

ω Angular frequency

μ0 Magnetic permeability

Ω Angular velocity of the solid and equal to Ωn, where

n is a unit vector

u! Displacement vector

H
!

0 Magnetic field intensity vector

j
!

Current density vector

Fi Components of the Lorentz force

τ0 Relaxation time

ε0 Electric permeability

δ(t) Dirac’s delta function

τt Phase lag of heat flux

τv Phase lag of temperature gradient

τq Phase lag of thermal displacement

α Fractional-order derivative

ξ Wavenumber

bij Tensor of diffusion moduli

C The concentration of the diffusion material

α�ij Diffusion parameters

ηi The flow of diffusion mass vector

qi Components of heat flux vector

P Chemical potential per unit mass

S Entropy per unit mass

k Material constant

ω�
1 Characteristics frequency of the medium

C1 Longitudinal wave velocity
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