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The effect of the temperature and initial hydrostatic stress has been shown on the propa-
gation of Rayleigh waves in a viscoelastic half-space. It has been explained how the veloc-
ity of Rayleigh waves depends not only on the parameters pertaining to the viscoelastic
properties of the half-space, but on the temperature and the initial hydrostatic stress of the
half-space also. The variations of the phase velocity of Rayleigh waves in dimensionless
form with respect to the magnitude of the initial hydrostatic stress under certain practical
assumptions have been depicted in graphs after numerical computations. If the tempera-
ture and the initial hydrostatic stress of the half-space are neglected, the results obtained
are in perfect agreement with the classical case as obtained by Caloi for the propagation
of Rayleigh waves in a viscoelastic medium.

1. Introduction

The propagation of thermoelastic waves has been discussed long ago by Lockett [5] and
Nowacki and Sokołowski [7] in different media. Recently, this has been explained in a
different manner by some authors such as Chandrasekharaiah [3]. The effect of viscosity
on the propagation of these waves has also been shown by a few authors such as Das and
Sengupta [4]. But none of them considered the initial stress that might be present in the
media. But the earth is an initially stressed medium. Hence it should be of geophysical
interest to see how the initial stress influences the propagation of waves in elastic or a
viscoelastic medium when the medium is heated.

This paper has discussed the effect of the temperature as well as the initial hydro-
static stress on the propagation of Rayleigh waves in a viscoelastic half-space. Here, a
new frequency equation of viscoelastic Rayleigh waves has been derived, which involves
the parameters connected with the temperature and the initial hydrostatic stress besides
the viscoelastic properties of the half-space. The values of the phase velocity of Rayleigh
waves have been computed for different values of the initial hydrostatic stress of the half-
space in dimensionless form for certain values of the coupling coefficient of temperature
and strain fields. These graphs show that the phase velocity of Rayleigh waves changes
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Figure 2.1. Viscoelastic half-space under initial hydrostatic stress in presence of temperature field.

remarkably with respect to the initial hydrostatic stress of the half-space as well as the
coupling coefficient of temperature and strain fields of the medium.

2. Formulation and solution of the problem

Let us consider a Voigt-type viscoelastic half-space y ≥ 0, the boundary of which y = 0 is
free from tractions, but does permit heat exchange with the surroundings. Let the half-
space be under an initial hydrostatic stress H at an initial temperature To (see Figure 2.1).
When the temperature of the half-space is changed, incremental thermal stresses si j to-
gether with incremental strains ei j are produced in it, which are measured with reference
to the rotated axes as explained by [1].

The dynamical equations of equilibrium under initial hydrostatic stress are given by
[1]

∂s11

∂x
+
∂s12

∂y
= ρ∂

2u

∂t2
,

∂s12

∂x
+
∂s22

∂y
= ρ∂

2v

∂t2
. (2.1)

Here, s11, s22 are the incremental normal thermal stresses along x- and y-axes, respec-
tively. s12 is the incremental shear thermal stress in the xy plane. u and v are the displace-
ment components along x- and y-axes, respectively.

The stress-strain relations in the Voigt-type viscoelastic half-space under thermal con-
dition are given by

s11 =
[

(λ+ 2µ) + (λ′ + 2µ′)
∂

∂t

]
exx +

[
λ+ λ′

∂

∂t

]
eyy − γT ,

s22 =
[
λ+ λ′

∂

∂t

]
exx +

[
(λ+ 2µ) + (λ′ + 2µ′)

∂

∂t

]
eyy − γT ,

s12 = 2
[
µ+µ′

∂

∂t

]
exy ,

(2.2)

where γ = (3λ+ 2µ)αt, αt is the coefficient of linear expansion, and T is the incremental
change of temperature from the initial state. The incremental strain components are given
by [6]

exx = ∂u

∂x
, eyy = ∂v

∂y
, exy = 1

2

[
∂v

∂x
+
∂u

∂y

]
. (2.3)
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Figure 2.2. ∈=−0.1.

Equation (2.1) with the help of (2.2) and (2.3) changes to

[
λ+ 2µ+ (λ′ + 2µ′)

∂

∂t

]
∂2u

∂x2
+
[

(λ+µ) + (λ′ +µ′)
∂

∂t

]
∂2v

∂x∂y

+
[
µ+µ′

∂

∂t

]
∂2u

∂y2
= ρ∂

2u

∂t2
+ γ

∂T

∂x
,

[
λ+ 2µ+ (λ′ + 2µ′)

∂

∂t

]
∂2v

∂y2
+
[
λ+µ+ (λ′ +µ′)

∂

∂t

]
∂2u

∂x∂y

+
(
µ+µ′

∂

∂t

)
∂2v

∂x2
= ρ∂

2v

∂t2
+ γ

∂T

∂y
.

(2.4)

The displacement components u and v may be expressed in terms of the potential
functions φ and ψ as follows:

u= ∂φ

∂x
− ∂ψ

∂y
, v = ∂φ

∂y
+
∂ψ

∂x
. (2.5)

Equations (2.4) and (2.5) show that potential functions φ and ψ satisfy the wave equa-
tions

(λ+ 2µ)∇2φ+ (λ′ + 2µ′)
∂

∂t

(∇2φ
)= ρ∂2φ

∂t2
+ γT , (2.6a)

µ∇2ψ +µ′
∂

∂t

(∇2ψ
)= ρ∂2ψ

∂t2
, (2.6b)

where∇2 = ∂2/∂x2 + ∂2/∂y2.
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Figure 2.3. ∈= 0.

The heat conduction equation is given by [6]

∇2T − Sρ

δ

∂T

∂t
− γTo

δ
∇2 ∂φ

∂t
= 0, (2.7)

where S is the specific heat capacity and δ is the thermal conductivity of the medium.
To find the solution of (2.6a), (2.6b), and (2.7), it is assumed that

φ(x, y, t)= φ1(y)exp
[
i(κx−ωt)], (2.8a)

ψ(x, y, t)= ψ1(y)exp
[
i(κx−ωt)], (2.8b)

T(x, y, t)= T1(y)exp
[
i(κx−ωt)], (2.8c)

which are plane harmonic waves moving along the x-axis.
Using (2.8a) and (2.8c), T is eliminated from (2.6a) and (2.7), and we get

[
∇2− Sρ

δ

∂

∂t

][
∇2− 1

c2
1 − iωc′21

∂2

∂t2

]
φ− γ2To[

(λ+ 2µ)− iω(λ′ + 2µ′)
]
δ
∇2
(
∂φ

∂t

)
= 0.

(2.9a)

Equation (2.6b) with the help of (2.8b) can be written as

[
∇2− 1

c2
2 − iωc′22

∂2

∂t2

]
ψ = 0, (2.9b)
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where

c2
1 =

(λ+ 2µ)
ρ

, c′21 =
(λ′ + 2µ′)

ρ
, c2

2 =
µ

ρ
, c′2

2 = µ′

ρ
. (2.10)

Introducing (2.8a) into (2.9a) and (2.8b) into (2.9b), we obtain the following differ-
ential equations:

(
∂2

∂y2
− λ2

1

)(
∂2

∂y2
− λ2

2

)
φ1(y)= 0,

(
∂2

∂y2
− ν2

)
ψ1(y)= 0,

(2.11)

where

λ1
2 = κ2− k1

2, λ2
2 = κ2− k2

2, ν2 = κ2− τ2, τ = ω2(
c2

2− iωc′22) . (2.12)

Here, k1
2 and k2

2 are the roots of the biquadratic equation

k4− k2[σ2 + q(1+∈)
]

+ qσ2 = 0, (2.13)

where k2 =−∇2 and the roots k1
2 and k2

2 are given by

k1
2 = q

[
1 +

q ∈
q− σ2

]
, k2

2 = σ2
[

1− q ∈
q− σ2

]
, (2.14)

where

σ2 = ω2

c2
1 − iωc′12 , q = iωSρ

δ
, ∈= γ2To

Sρ
[
(λ+ 2µ)− iω(λ′ + 2µ′)

] . (2.15)

The requirement that the stresses and hence the potential functions φ and ψ vanish as
x2 + y2 tends to infinity leads to the following solution of (2.11):

φ1 =Ae−λ1 y +Be−λ2 y , (2.16a)

ψ1 = Ce−νy. (2.16b)

Combining (2.8a), (2.8b), and (2.16a), (2.16b) respectively, we get

φ(x, y, t)= ⌊Ae−λ1 y +Be−λ2 y
⌋

exp
[
i(κx−ωt)], (2.17a)

ψ(x, y, t)= Ce−νy exp
[
i(κx−ωt)]. (2.17b)

Using (2.6a), (2.8c), and (2.17a), we get

T = ρm2

γ

[
Aη1e

−λ1 y +Bη2e
−λ2 y

]
exp

[
i(κx−ωt)], (2.18)
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Figure 2.4. ∈= +0.1. Variation of velocity of Rayleigh waves with initial stress in viscoelastic medium
when λ= 0 and µ= 0 (Figures 2.2, 2.3, 2.4).

where

m2 = c2
1 − iωc′12, η1 = σ2− k1

2, η2 = σ2− k2
2. (2.19)

The boundary conditions on the plane y = 0 are given by [1]

∆ fx = s12−H ∂v

∂x
= 0, ∆ fy = s22 +H

∂u

∂x
= 0,

∂T

∂y
+hT = 0. (2.20)

Here, ∆ fx and ∆ fy are incremental boundary forces per unit initial area along x- and
y-axes, respectively, and h is the ratio between the coefficient of heat transfer and thermal
conductivity.

By using (2.2), (2.3), (2.5), (2.17a), (2.17b), and (2.20), we change these boundary
conditions to

A
[
κλ1
{
i(2µ−H) + 2ωµ′}]+B

[
κλ2
{
i(2µ−H) + 2ωµ′

}]
+C

[
κ2{(2µ−H)− 2iωµ′

}− τ2(µ− iωµ′)]= 0,

A
[
ρm2(κ2− σ2)− κ2{(λ+H)− iωλ′}]+B

[
ρm2(κ2− σ2)− κ2{(λ+H)− iωλ′}]

+C
[− κν

{
2µ′ω+ i(2µ−H)

}]= 0,

A
[
η1
(
h− λ1

)]
+B
[
η2
(
h− λ2

)]= 0.
(2.21)
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Eliminating A, B, C from (2.21), we get the following frequency equation of Rayleigh
waves:


[
κλ1
{
i(2µ−H) + 2µ′ω

}] [
κλ2
{
i(2µ−H) + 2µ′ω

}] [
κ2
{

(2µ−H)− 2iωµ′
}

−τ2(µ− iωµ′)][
ρm2

(
κ2− σ2

) [
ρm2

(
κ2− σ2

) [− κν
{

2µ′ω+ i(2µ−H)
}]

−κ2(λ+H − iωλ′)] −κ2(λ+H − iωλ′)]
η1
(
h− λ1

)
η2
(
h− λ2

)
0



= 0.

(2.22)

If we ignore the presence of the initial stress and the temperature field in the half-space,
then H and q both vanish, h= 0 and λ1 = κ and (2.22) reduces to




[
κ2 2iρω2

k2
β

] [
κ
√
κ2− k2

α
2iρω2

k2
β

] [
2κ2ρω2

k2
β

− ρω2
]

[
ρω2

k2
α

(
κ2− k2

α

)− κ2ρω2
(

1
k2
α
− 2
k2
β

)] [
ρω2

k2
α

(
κ2− k2

α

)− κ2ρω2
(

1
k2
α
− 2
k2
β

)] [
−2iρω2

k2
β

κ
√
κ2− k2

β

]

−κk2
α 0 0



=0,

(2.23)

where we have used

k2
α =

ρω2

(λ+ 2µ)− iω(λ′ + 2µ′)
, k2

β =
ρω2

µ− iωµ′ . (2.24)

Expanding the determinant (2.23) and simplifying, we get

1− 8
κ2

k2
β

+
[

24− 16
k2
α

k2
β

]
κ4

k4
β

− 16
(

1− k2
α

k2
β

)
κ6

k6
β

= 0, (2.25)

which is the same equation as obtained by Caloi [2] for the propagation of Rayleigh waves
in a viscoelastic half-space without initial stress and temperature.

But considering the initial hydrostatic stress and the temperature field to be present
in the half-space and assuming that λ = µ and λ′ = (2/3)µ′; σ , k1, k2, and ∈ all change,
respectively, to σ ′, k′1, k′2, and ∈′ are given by

σ ′2 = ω2

c2
01− iωc′201

, c2
01 =

2µ
ρ

, c′201 =
8µ′

3ρ
,

k′1
2 = q

[
1 +

q ∈′
q− σ ′2

]
, k′2

2 = σ ′2
[

1− q ∈′
q− σ ′2

]
, ∈′= 3γ2To

Sρ
[
9µ− iω8µ′

] .
(2.26)

Then, (2.22) reduces to




2iβ1
(xµ− iωµ′)
(µ− iωµ′) 2iβ2

(xµ− iωµ′)
(µ− iωµ′)

τ2

κ2
− 2(xµ− iωµ′)

(µ− iωµ′)
2(xµ− iωµ′)

(µ− iωµ′) − τ2

κ2

2(xµ− iωµ′)
(µ− iωµ′) − τ2

κ2

2iβ3(xµ− iωµ′)
(µ− iωµ′)

η1
(
h− κβ1

)
η2
(
h− κβ2

)
0



= 0, (2.27)
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where

β1 =
√

1− k′1
2

κ2
, β2 =

√
1− k′2

2

κ2
, β3 =

√
1− τ2

κ2
, x = 1− H

2µ
. (2.28)

Expanding the determinant in (2.27), we get

[
2(xµ− iωµ′)

(µ− iωµ′) − τ2

κ2

]2

= 4β3

[
xµ− iωµ′
µ− iωµ′

]2[κβ1β2
(
η1−η2

)
+h
(
β1η2−β2η1

)
h
(
η2−η1

)
+ κ
(
β1η1−β2η2

) ]
. (2.29)

In deducing this equation, we assumed a convection condition for the temperature on
the boundary of the half-space. For thermal insulation, h= 0 and (2.29) reduces to

[
2(xµ− iωµ′)

(µ− iωµ′) − τ2

κ2

]2

= 4β3

[
xµ− iωµ′
µ− iωµ′

]2 β1β2
(
η1−η2

)
(
β1η1−β2η2

) . (2.30)

Assuming heat transfer to be infinitely large, h=∞ and (2.29) reduces to

[
2(xµ− iωµ′)

(µ− iωµ′) − τ2

κ2

]2

= 4β3

[
xµ− iωµ′
µ− iωµ′

]2 (β1η2−β2η1
)

(
η2−η1

) . (2.31)

Expressing the quantities λ1, λ2, ν, η1, and η2 in terms of the quantities β1, β2, and β3,
we find that (2.29) reduces to

[
2(xµ− iωµ′)

(µ− iωµ′) − c2

c2
2 − iωc′22

]2[
β2

1 +β2
2 +β1β2− 1 +

c2(
c2

01− iωc′201

)]

− 4
[
xµ− iωµ′
µ− iωµ′

]2

β1β2β3
(
β1 +β2

)

= h

κ

[{
2(xµ− iωµ′)

(µ− iωµ′) − c2

c2
2 − iωc′22

}(
β1 +β2

)

− 4
(
xµ− iωµ′
µ− iωµ′

)2

β3

(
β1β2 + 1− c2

c2
01− iωc′201

)]
,

(2.32)

where c2 = ω2/κ2 is the phase velocity of Rayleigh waves.
The quantity 1/Re(1/c) is a measure of the phase velocity and ωIm(1/c) is a measure

of the damping of Rayleigh waves propagating along the positive x-axis.
Under the assumptions λ= µ and λ′ = (2/3)µ′, (2.13) changes to

k′1
2 + k′2

2 = σ ′2 + q(1+∈′), k′1
2k′2

2 = σ ′2q. (2.33)
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Using (2.28) and (2.33), we get

β2
1 +β2

2 = 2− c2

c2
01− iωc′201

− ic2(1+∈′)
f
(
c2

01− iωc′201

) ,

β2
1β

2
2 = 1− c2

c2
01− iωc′201

− ic2

f
(
c2

01− iωc′201

)[1+∈′ − c2

c2
01− iωc′201

]
,

(2.34)

where f = δω/Sρ(c2
01− iωc′201) is the reduced frequency.

Substituting (2.34) into (2.32), expanding the quantities β1, β2 in a series of “ f ,” and
neglecting the terms of the order f 1/2, we get

[(
xµ− ρc2

2

)
− iωµ′

]2

= (xµ− iωµ′)2
(

1− ρc2

µ− iωµ′
)1/2(

1− 3ρc2

(1+∈′)(9µ− 8iωµ′)

)1/2

.

(2.35)
Considering a liquid medium, we write λ= µ= 0 and (2.35) simplifies to

[
H

2
+
ρc2

2
+ iωµ′

]2

=
(
H

2
+ iωµ′

)2(
1− iρc2

ωµ′

)1/2(
1− 3iρc2

8
(
1 + i∈0

)
ωµ′

)1/2

, (2.36)

where ∈0= 3γ2T0/8ρSωµ′, which is deduced from (2.26).
Also, from (2.28), xµ= (1−H/2µ)µ=−H/2.
Rationalizing and squaring (2.36), we get

(
H

2ωµ′
+

ρc2

2ωµ′
+ i
)4

=
(

H

2ωµ′
+ i
)4(

1− iρc2

ωµ′

)(
1− 3ρc2 ∈0

8
(
1 +∈0

2
)
ωµ′

− 3iρc2

8
(
1 +∈0

2
)
ωµ′

)
.

(2.37)

Expanding (2.37) and equating the real parts only, we get

(
σ0 +

V 2
0

2

)4

− 6
(

σ0 +
V 2

0

2

)2

+ 1= (σ0
4− 6σ0

2 + 1
)[

1− 3V 2
0 ∈0

8
(
1 +∈0

2
) − 3V 4

0

8
(
1 +∈0

2
)]

+ 4V 2
0 σ0
(
σ0

2− 1
)[

1− 3V 2
0 ∈0

8
(
1 +∈0

2
) +

3
8
(
1 +∈0

2
)],

(2.38)

where V 2
0 = c2/ωµ′/ρ and σ0 =H/2ωµ′.

For different values of σ0 =H/2ωµ′, the values of V0 are calculated for some specific
value of ∈= γ2To/Sρ[(λ+ 2µ)− iω(λ′ + 2µ′)] and the results are plotted in graphs. From
these graphs, we find that the maximum value of the phase velocity V0 of Rayleigh waves
in viscoelastic liquid decreases as ∈ changes from −0.1 to 0.1.

When∈=−0.1, V0 vanishes at σ0 =H/2ωµ′ = 0. It attains its maximum value 0.77850
at σ0 = 0.1, then decreases gradually as σ0 increases, and finally vanishes again at σ0 = 0.5
(Figure 2.2).

When∈= 0, V0 vanishes at σ0 =H/2ωµ′ = 0, attains a maximum value 0.43444 at σ0 =
0.2, then gradually decreases as σ0 increases and vanishes again at σ0 = 0.5 (Figure 2.3).
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Figure 2.5. θ = 1/2.
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Figure 2.6. θ = 1/3.

When ∈= +0.1, V0 vanishes at σ0 =H/2ωµ′ = 0, attains a maximum value 0.34443 at
σ0 = 0.2, then decreases gradually as σ0 increases, and vanishes again at σ0 = 0.5 (Figure
2.4).

In all the above three cases, the phase velocityV0 ceases to exist at two particular values
of σ0, which are σ0 = 0 and σ0 = 0.5, that is, when there is no initial stress and when
the initial stress is equal to the product of the angular frequency ω of Rayleigh waves
and the rigidity µ′ of the fluid. But the maximum values of V0 are different for different
values of ∈.
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Figure 2.7. θ = 1/4. Variation of velocity of Rayleigh waves with initial stress when viscous effect is
neglected (Figures 2.5, 2.6, 2.7).

If we neglect the viscous properties of the half-space, then µ′ = 0 and (2.35) reduces to

[
2(1− σ)−V 2]2 = 4(1− σ)2[1−V 2]1/2[

1−V 2θ
]1/2

, (2.39)

where σ=H/2µ, V 2 = c2/c2
2, and θ = c2

2/(1+∈)c2
1.

Ignoring the initial stress, that is, with H = 0, (2.39) reduces to

[
2−V 2]2 = 4

[
1−V 2]1/2[

1−V 2θ
]1/2

. (2.40)

This frequency equation for Rayleigh waves in an elastic solid medium is in perfect
agreement with that obtained by Lockett [5]. Comparing (2.39) and (2.40), we find that
in the result obtained by Lockett, the phase velocity of Rayleigh waves depends on the
coupling coefficient θ = c2

2/(1+ ∈)c2
1 between temperature and strain fields, but the re-

sults of the present authors show that the phase velocity depends on the initial stress also,
besides the factor θ in an elastic solid medium.

If we vary σ keeping θ fixed, then the trend of phase velocity of Rayleigh waves changes
remarkably, which is quite a new result in this paper. This fact may be used to understand
the nature of Rayleigh waves accurately in seismology.

For different values of σ=H/2µ, the values of V are calculated for some specific values
of θ = c2

2/(1+ ∈)c2
1 and these results are plotted in graphs. From these graphs, we find

that the maximum and minimum values of phase velocity of Rayleigh waves are the same
which are 1 and 0, respectively, for ζ = 0 and 1 if we take θ = 1/2, 1/3, or 1/4 (Figures
2.5, 2.6, 2.7). Here, ζ = 0 implies that there is no initial stress and ζ = 1 implies that the
initial hydrostatic stress is twice the rigidity of the solid elastic medium. We also note
from the graphs that due to different values of θ, there are slight variations in the overall
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nature of the graphs. This signifies that in an elastic solid medium, the phase velocity of
Rayleigh waves depends much more on the initial stress of the medium than the coupling
coefficient θ between temperature and strain fields. This finding is also of paramount
importance in seismology.

References

[1] M. A. Biot, Mechanics of Incremental Deformations. Theory of Elasticity and Viscoelasticity of
Initially Stressed Solids and Fluids, Including Thermodynamic Foundations and Applications
to Finite Strain, John Wiley & Sons, New York, 1965.

[2] P. Caloi, Comportement des ondes de Rayleigh dans un milieu firmo-élastique indéfini, Publ. Bu-
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