
Vol. 28 no. 20 2012, pages 2592–2599

BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/bts505

Sequence analysis Advance Access publication August 24, 2012

RazerS 3: Faster, fully sensitive read mapping

David Weese*, Manuel Holtgrewe and Knut Reinert
Department of Mathematics and Computer Science, Freie Universität Berlin, Takustr. 9, 14195 Berlin, Germany

Associate Editor: Michael Brudno

ABSTRACT

Motivation: During the past years, next-generation sequencing has

become a key technology for many applications in the biomedical

sciences. Throughput continues to increase and new protocols pro-

vide longer reads than currently available. In almost all applications,

read mapping is a first step. Hence, it is crucial to have algorithms and

implementations that perform fast, with high sensitivity, and are able to

deal with long reads and a large absolute number of insertions and

deletions.

Results: RazerS is a read mapping program with adjustable sensitivity

based on counting q-grams. In this work, we propose the successor

RazerS 3, which now supports shared-memory parallelism, an add-

itional seed-based filter with adjustable sensitivity, a much faster,

banded version of the Myers’ bit-vector algorithm for verification,

memory-saving measures and support for the SAM output format.

This leads to a much improved performance for mapping reads, in

particular, long reads with many errors. We extensively compare

RazerS 3 with other popular read mappers and show that its results

are often superior to them in terms of sensitivity while exhibiting prac-

tical and often competitive run times. In addition, RazerS 3 works

without a pre-computed index.

Availability and Implementation: Source code and binaries are freely

available for download at http://www.seqan.de/projects/razers.

RazerS 3 is implemented in Cþþ and OpenMP under a GPL license

using the SeqAn library and supports Linux, Mac OS X and Windows.

Contact: david.weese@fu-berlin.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on March 3, 2012; revised on August 6, 2012; accepted on

August 9, 2012

1 INTRODUCTION

Next-generation sequencing allows researches to produce billions

of base pairs (bp) within days in the form of reads of length

100bp and more. It has become an invaluable technology for a

multitude of applications, e.g. the detection of single-nucleotide

polymorphisms (SNPs) and large structural genome variations,

targeted or de novo genome or transcriptome assembly,

isoform prediction and quantification, identification of transcrip-

tion factor binding sites or methylation patterns. In many of

these applications, mapping sequenced reads to their potential

genomic origin is the first fundamental step for subsequent

analyses.

A variety of tools have been designed specifically for the pur-

pose of mapping short reads. In a recent publication, Li and

Homer (2010) give a survey and categorize the existing tools

into approaches using a q-gram index for a seed-and-extend

strategy (e.g. Ahmadi et al., 2011; Alkan et al., 2009; Bauer

et al., 2010; David et al., 2011; Weese et al., 2009) or recursively

descending a suffix tree (Hoffmann et al., 2009) or prefix tree

(Langmead et al., 2009; Langmead and Salzberg, 2012; Li et al.,

2009; Li and Durbin, 2009) of the reference genome.

Recursive approaches are usually designed for the fast search

of one or a few locations where reads map with low error rates.

These search algorithms are mostly based on heuristics and opti-

mized for speed instead of enumerating all possible locations.

Conversely, approaches based on the seed-and-extend strategy

allow such an (often approximate) enumeration. The first class

of approaches aims at directly finding the ‘best’ location for

mapping a read (best-mappers), whereas the second class aims

at enumerating a comprehensive set of locations (all-mappers).

RazerS (Weese et al., 2009) is an all-mapper that uses q-gram

counting for read mapping with controllable sensitivity. This

means it can guarantee to find all locations a read maps to in

a reference sequence. At the same time, it works with practicable

performance.

Since the original publication in 2009, sequencing technology

has advanced to produce longer reads. The increasing length

leads to a larger absolute number of errors to be considered, a

problem that is aggravated by new technologies that have a

higher error rate (e.g. PacBio). Older read mappers have difficul-

ties mapping long reads with high number of errors with a high

sensitivity.

In this article, we address this problem and propose a new read

mapper RazerS 3, which is able to map reads of arbitrary length

with a large number of insertions and deletion (indel) errors. Our

novel contributions are as follows: (1) The use of OpenMP to

provide a shared-memory parallelization with dynamic load bal-

ancing. (2) In addition to the q-gram counting filter used in

RazerS, we implemented a pigeonhole-based filter with control-

lable sensitivity, since it proved to be superior for low error rates.

(3) An implementation of a banded version of Myers’ bit-vector

algorithm, which we use for the verification, similar to Hyyrö

(2003), which is up to four times faster than the previous,

unbanded version.

These algorithmic improvements lead to a running time that is

an order of magnitude faster than RazerS while keeping the

guarantee for full sensitivity. Various extensive benchmarks

show higher sensitivity when compared with other approaches,

especially best-mappers. Furthermore, the running time is super-

ior to the considered all-mappers and competitive or superior to

best-mappers on medium-sized genomes. On large genomes, the

running time is still practical and only about three times slower

than that of BWA while being more sensitive. RazerS 3 does not*To whom correspondence should be addressed.

2592 � The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
8
/2

0
/2

5
9
2
/2

0
6
9
4
7
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



rely on a pre-computed index like the tree-based tools and is in

this respect more flexible.

2 METHODS

The RazerS algorithm consists of a filtration and a verification part. In

the filtration part, the genome is scanned for regions that possibly contain

read matches. The results from the filtration are then subjected to a

verification algorithm.

Formally, we consider the read mapping problem: the input is a ref-

erence sequence S, a set of reads R, a distance function � and a maximal

distance k. The solution of the problem is the set of all locations

(matches) in S where the read r is found with distance � k under � for

each read r.

Common distance measures are Hamming and edit distance. The

Hamming distance counts the minimal number of replacements, whereas

the edit distance allows indels. Under edit distance, matches can be am-

biguous. The authors explained how to treat such ambiguities and how to

derive a gold standard benchmark for read mapping in Holtgrewe et al.

(2011). This is summarized in Section 2.3.

RazerS 3 supports both Hamming and edit distance read mapping.

Both modes can be run with full or user-definable sensitivity on multiple

CPU cores, which allows for time-sensitivity trade-off.

2.1 Filtration

To make RazerS 3 applicable to a broad spectrum of use cases, we im-

plemented two fast filtration algorithms, which differ in filtration speci-

ficity and processing speed. In Section 3.1, we analyze which filter

performs best under different typical read mapping scenarios. The first

filter, based on the SWIFT algorithm, was already used in RazerS and is

hence only shortly described here. It is still operational in RazerS 3 since

it is superior to the second filter for high error rates.

2.1.1 SWIFT The first filter is a modified SWIFT algorithm

(Rasmussen et al., 2006), which divides the dot plot between genome

and reads into overlapping parallelograms. In a linear scan over the ref-

erence sequence, the number of common exact q-grams between read and

the reference subsequence is counted for each parallelogram.

Parallelograms that contain a sufficient number of common exact q-

grams are considered as candidate regions of semi-global alignments be-

tween reads and reference sequences with a tolerated number of errors.

For more details, we refer the reader to Weese et al. (2009).

2.1.2 Pigeonhole principle The second filter is new and is based on

the pigeonhole principle which states that if a read is cut into kþ 1 pieces,

then in every approximate match of the read with at most k errors occurs

at least one piece without error (Baeza-Yates and Navarro, 1999). If all

reads have the same length m, they are cut into "mþ 1b c pieces of length

q ¼
�

m= "mþ 1b c
�

, where " is the tolerated error rate. For reads of ar-

bitrary length, the minimal q is chosen to build a q-gram index over the

pieces of the reads. These pieces are then searched in a linear scan of the

reference sequence. For every exact match, the dot plot parallelogram,

consisting of the diagonals that are at most k diagonals apart of the

matching piece, is considered as a candidate region for a match within

the tolerated edit distance. In Hamming distance mode, only the diag-

onals that cover matching pieces are considered as candidate regions.

The candidate parallelograms of all matching pieces are recorded and

verified in the subsequent verification step. Compared with the SWIFT

filter, this filter requires less processing time and, due to non-overlapping

seeds, less indexed q-grams at the expense of less filtration specificity

and more verifications (more results can be found in Supplementary

Table S1).

2.2 Lossy filtration and prediction of sensitivity

Both filters are fully sensitive if parameterized as described above, i.e.

every occurrence of a read within the tolerated edit or Hamming distance

will be detected as a candidate region and positively verified in the veri-

fication step. In our previous work, the use of a lossy filter could improve

the overall running time by an order of magnitude while still detecting

99% of all matches (see Weese et al., 2009). Our approach is based on

given positional error probabilities pi, i.e. the probability that in a ran-

domly chosen true match of any read there is an error at position i. As

errors we consider base miscalls and mutations, and before mapping

compute the error profile pi based on base-call quality values and a

user-specific mutation rate. Given the error profile and specific filtration

parameters, we propose how to estimate the probability to miss a random

match and vice versa how to choose more efficient filtration parameters

that guarantee a specific minimal sensitivity. We sketch the procedure

shortly for the SWIFT filter and then elaborate the method for the

pigeonhole filter.

2.2.1 Predicting SWIFT sensitivity The SWIFT filter has two

parameters, the q-gram shape Q and the threshold t. The shape is a set

of relative positions of the q considered characters. For example, ##-#

corresponds to a 3-gram with shape Q¼ {0, 1, 3} and the two 3-grams

with shape Q in the string GTTCA are GTC and TTA. Of all overlapping

q-grams with shape Q contained in a read, the threshold t is the minimal

number of q-grams occurring without error in the reference a candidate

region must have. By increasing q or t, the number of candidate regions

and also the overall running time can be reduced at the expense of filtra-

tion sensitivity.

To decide whether an arbitrary Hamming distance match is detected as

a candidate region, it suffices to consider the positions of replacements

between read and reference instead of whole sequences and count the

number of q-grams without a replacement. Assuming the independence

of errors, the occurrence probability of this match can be computed by

the given positional error probabilities. In Weese et al. (2009), we devised

an algorithm to efficiently compute the sensitivity using dynamic pro-

gramming instead of exhaustive search for both Hamming and edit

distance.

2.2.2 Predicting pigeonhole sensitivity A lossless pigeonhole filter

divides a read into at least kþ 1 fragments and uses them as seeds to

detect all k-error matches. As fragments we use the first kþ 1

non-overlapping read q-grams where q is chosen as large as possible.

In expectation, every read q-gram has n=4q occurrences in a genome of

length n. To reduce the number of random candidates and to reduce

the overall running time, we increase q and allow the seeds to overlap.

However, with overlapping seeds, some of the mismatch patterns will be

missed by the filter, e.g. if every odd seed overlap contains an error.

With a ðq,�Þ-seed filter, we denote a filter that uses all q-grams starting

at multiples of � in the read as seeds, with q=2 � � � q, such that ad-

jacent q-grams overlap by q�� characters. To compute the sensitivity of

such a filter, we consider mismatch patterns between a read of length

m and all of its true matches. (A mismatch pattern is a binary string,

with 0’s at matching and 1’s at mismatching positions.) The sensitivity

for matches with e ¼ 0, 1, . . . , k errors is the sum of occurrence

probabilities of e-error mismatch patterns that are detected by the filter

divided by the probability that an e-error mismatch patterns occurs.

Instead of enumerating all possible e-error mismatch patterns, we

devised a DP (dynamic programming) algorithm that virtually split

the mismatch pattern into segments at q-gram boundaries

�, q, 2�,�þ q, . . . , ðkþ 1Þ�, k�þ q and denote the first 2(kþ 1) seg-

ments from left to right as x0, y0,x1, y1 . . . ,xk, yk (see Fig. 1). Our ap-

proach is analogously applicable to edit distance as insertions or deletions

behave like mismatches in relation to destroyed seeds.

2593

RazerS 3

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
8
/2

0
/2

5
9
2
/2

0
6
9
4
7
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



The probability PðjjM½i::jÞ jj 1 ¼ eÞ that a random mismatch pattern

M contains e errors in a segment from position i to j� 1 can be computed

as follows using positional error probabilities pi:

PðjjM½i::iÞ jj1 ¼ eÞ ¼
1, if e ¼ 0

0, else:

�

PðjjM½i::iþ 1Þ jj1 ¼ eÞ ¼

1� pi, if e ¼ 0

pi, if e ¼ 1

0, else:

8

>

<

>

:

PðjjM½i::jÞ jj1 ¼ eÞ ¼ ð1� pj�1Þ � P
�

jjM½i::j� 1Þjj1 ¼ e
�

þ pj�1 � P
�

jjM½i::j� 1Þjj1 ¼ e� 1
�

:

We define L(i, e, y) to be the probability of the event that the first iþ 1

seeds contain overall e errors, each at least one error, and yi contains

y errors. Let Xi and Yi be random variables for the number of errors in

the segments xi and yi, then L can recursively be computed as follows:

Lð0, e, yÞ ¼
0, for e ¼ 0

PðX0 ¼ e� yÞ � P ðY0 ¼ yÞ, else:

�

Lði, e, yÞ ¼
X

e

s¼1

X

s�y

y0¼0

Lði� 1, e� sþ y0, y0Þ � P ðXi ¼ s� y� y0Þ� PðYi¼yÞ :

The probability that all seeds are destroyed with overall e errors is

LallðeÞ ¼
X

e

y¼0

X

e

x¼0

Lðk, e� x, yÞ � PðjjM½k�þ q::nÞjj1 ¼ xÞ,

and consequently the sensitivity of the ðq,�Þ-seed filter for matches with

at most k errors is

Sðq,�, kÞ ¼ 1�
X

k

e¼0

LallðeÞ

PðjjMjj1 ¼ eÞ
:

Before starting the mapping, RazerS 3 estimates the sensitivities of

different filter settings and maximizes the seed length q as it has the

greatest influence on the overall running time. Beginning with the lossless

setting q ¼ � ¼ m=ðkþ 1Þ
� �

, it step-wise increases q as long as the esti-

mated sensitivity is higher than required, q does not exceed the maximal

seed length of 31 and not more than two seeds overlap (q � 2�). The

corresponding step sizes� ¼ ðm� qÞ=k
� �

are chosen such that each read

contains kþ 1 overlapping seeds.

2.3 Verification

The result of the above described filtration part is a set of candidate

regions and reads potentially matching there. A candidate region is a

parallelogram in the dot plot that might contain the alignment trace of

a match and hence has to be verified by the verification part explained in

the following.

2.3.1 Hamming distance verification In Hamming mode, a match

covers solely one dot plot diagonal. Hence, the candidate parallelogram

can be verified by scanning each diagonal while counting the number of

mismatches between read and reference sequence. A diagonal can be

skipped as soon as the counter exceeds the number of tolerated errors.

Otherwise, a match has been found.

2.3.2 Edit distance verification For edit distance verification, we

implemented a banded version of Myers (1999) bit-vector algorithm as it

was proposed in Hyyrö (2003) with small adaptions. The original algo-

rithm by Myers can be used to search a read with at most k edit errors in

the reference sequence. The underlying idea is the same as in Needleman

and Wunsch (1970) but the implementation is much more efficient as it

encodes a whole DP column in two bit-vectors and computes the adjacent

column in a constant number of 12 logical and 3 arithmetical operations.

For reads up to length 64bp, CPU registers can be used directly. For

longer reads, bit-vectors and operations must be emulated using multiple

words where only words affecting a possible match needs to be updated

(Ukkonen, 1985). However, the additional processing overhead results in

a performance drop for reads of length 65bp and longer. The variant

proposed by Hyyrö computes a banded semi-global alignment between

read and reference, i.e. it only computes DP cells that are covered by a

parallelogram. Hence, only the columns of the parallelogram need to be

encoded by bit-vectors which makes it applicable to parallelograms of

width up to 63 without the need for bit-vector emulation. However, the

banded variant proposed in Hyyrö (2003) requires bitmasks consisting of

multiple words for each read as preprocessing information. We imple-

mented a banded variant of Myers’ algorithm that requires no prepro-

cessing information at all as we update the five single-word bitmasks

(we consider the alphabet �¼ {A, C, G, T, N}) during each verification.

This strategy is faster than that of Hyyrö and saves memory. Further

improvements like the support of clipped parallelograms are explained in

Supplementary Section S1.

In contrast to Hamming distance verification, where the difference

between begin and end position of every match equals the read length,

Myers’ algorithm outputs only the end of a match. More precisely, it

determines the minimal number of errors for a fixed end position and a

free begin position. To determine a corresponding begin position, we

search the read backwards with a fixed end position. As edit distance

scores mismatches and indels equally, there can be multiple best match

beginnings. We choose the largest best match to optionally shrink it later

using an alignment algorithm for affine gap costs (Gotoh, 1982) where we

penalize gaps slightly more than mismatches and penalize an opened gap

more than an extended a gap. More implementation details of our

banded variant of Myers’ algorithm can be found in Supplementary

Section S1.

2.3.3 Island criterion Another improvement in RazerS 3 addresses

the problem of defining the term match for read mapping. This is dis-

cussed in detail by Holtgrewe et al. (2011) when defining the Rabema

benchmark. We will give a summary of this here.

Read alignments under edit distance can be ambiguous if more than

one error is allowed. Say, for example, a read aligns perfectly except for

the first base where we observe a mismatch. Let the beginning of the read

be ACT . . . and align with the genome stretch . . .ACCT . . . . Then, there

may be two optimal alignments where the read starts with either

ACT . . .or A-CT. . ..

Such and other ambiguities lead to possibly several local minima

(in terms of edit distance) around a match. The model for matches

defined in Holtgrewe et al. (2011) describes a relaxation of the naive

requirement to enumerate all edit distance alignments. RazerS 3 uses

this model and writes out at least one result record for each Rabema

match.

2.4. Parallelization

2.4.1 Match management The overlapping parallelograms of the

SWIFT filter or the multiple seeds the pigeonhole filter may find in a

Fig. 1. A ðq,�Þ-seed filter, with q¼ 8 and � ¼ 6, for searching matches

with up to k¼ 3 errors (seed i consists of segments yi�1,xi and yi, except

for i¼ 0)

2594

D.Weese et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
8
/2

0
/2

5
9
2
/2

0
6
9
4
7
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



single match result in multiple identical or nearly identical matches found

in the verification step. To filter these duplicates, we regularly search for

matches of the same read that have an identical begin or end position and

keep only those with a minimal number of errors. In addition, we use a

heuristic in the pigeonhole filter, that for multiple seeds on the same

diagonal only one candidate region is generated.

If the user specifies a maximal number M of matches per read, we sort

all matches ascendingly by the number of errors and remove all but the

first M matches of each read. For a read, the number of errors e in the

M-th match is used to dynamically adjust the filter and verifier in order to

search only for matches with less than e errors. If e equals 0, the read can

be disabled completely.

2.4.2 Processing in window and batches RazerS 3 collects all can-

didates from windows of a configured size (default: 500kb). The resulting

candidates are split into work packages of a configured size (default: 100)

or a larger size if a configured number of packages is exceeded for a

window (default: 100 packages). Each package is then verified by a

single thread.

Thus, the filtration is performed in a window-based fashion and veri-

fication is performed in batches. Locks for shared data structures only

have to be obtained once for each window or batch. This way, lock

contention and overhead are kept small while still allowing for fine-

granular load balancing.

2.4.3 Load balancing scheme We implemented a mixture of static

and dynamic load balancing: for filtration, reads are statically assigned to

threads in subsets of equal size. Each thread has a filter for its owned

reads as well as a verifier, shown as large green/blue rectangles in

Figure 2. Filtration results (green squares) are written to a global work

queue.

After thread Ti completes the filtration in its current window, it takes

candidate packages from the global queue until empty and verifies it.

Thus, the verification work is distributed over threads and dynamically

load balanced.

Each thread has a queue for each other thread and itself (labeled with

the thread id) acting as a post box. Thread Ti then writes the verification

results (blue square) to the post box for the owner of its current work

package. It then writes the longest consecutive stretch of globally avail-

able verification results addressed to itself back into its local result con-

tainer. (The arrays of matches are subdivided into work packages, of

which each has an index. A consecutive sequence of packages is a

sequence of packages whose indices are consecutive.) Matches are

masked when written back. At the end of the program run, each

thread performs a global compaction step on its result. A detailed ana-

lysis of influence of the chosen filter on load balancing is given in

Supplementary Section S2.

2.4.4 Further improvements Another optimization in RazerS 3 is a

reduction of running time of the masking step by conducting local sorting

instead of global sorting. As a memory optimization, each filter uses an

open addressing q-gram index whose memory footprint is linear in the

number of stored q-grams (see Supplementary Sections S3 and S4 for

details).

3 EXPERIMENTAL RESULTS

We compared RazerS 3 with the best-mappers Bowtie 2, BWA

and Soap 2 as well as the all-mappers Hobbes, mrFAST and

SHRiMP 2. For running time comparison, we ran the tools

with 12 threads and used local disks for I/O. We used default

parameters, except where stated otherwise. Read mappers that

accept a maximal number of errors (mrFAST, Hobbes and Soap

2) were configured with the same error rate as RazerS 3. For a

fair comparison with best-mappers, we configured RazerS 3 in a

second variant to also output one best match per read. The exact

parameterization is described in Supplementary Section S6.

All read sets are given by their SRA/ENA id. As references we

used whole genomes of Escherichia coli (NCBI NC_000913.2),

Caenorhabditis elegans (WormBase WS195), Drosophila melano-

gaster (FlyBase release 5.42) and human (GRCh37.p2).

The mapping times were measured on a cluster of nodes with

72 GB RAM and 2 Intel Xeon X5650 processors (each with six

cores) per node running Linux 3.2.0.

3.1 Comparing the SWIFT and pigeonhole filters

RazerS 3 provides support for two string metrics (Hamming and

edit distance) and two filter variants (SWIFT and pigeonhole

filter). To investigate which filter performs best on which kind

of input and metric, we conducted an experimental evaluation of

the time required to map different real datasets for varying map-

ping settings.

For this reason, we ran RazerS 3 in both filtration modes for

reads of lengths 30, 50, 70 and 100bp for the references of E. coli,

C. elegans and chr. 2 of human with error rates of 0–10%.

Figure 3 shows an excerpt of the resulting experimental map

for mapping reads to chr. 2 of human using Hamming and

edit distance at 100% sensitivity. Supplementary Figure S5

shows the full result set and Supplementary Table S2 describes

the datasets we used.

Fig. 3. Experimental map for human chr. 2 with different read lengths

and error rates. Ratios between the mapping times with pigeonhole and

SWIFT are color coded in the plots

Fig. 2. Overview of RazerS 3. Large green/blue rectangles represent the

filter/verification states (in the figure with two threads T1 and T2). Small

green/blue squares represent filtration/verification work packages. Gray/

green funnels represent the masking/compaction step

2595

RazerS 3

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
8
/2

0
/2

5
9
2
/2

0
6
9
4
7
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



The result shown in Figure 3 is representative for our overall

results and shows the running time ratios between mapping with

the pigeonhole and SWIFT filter. We observe that for edit dis-

tance, the pigeonhole filter always leads to shorter running times

than the SWIFT filter. For Hamming distance, the pigeonhole

filter is well suited for low error rates (up to 6%), whereas the

SWIFT filter yields better mapping times for higher error rates.

Astonishingly, the factors between the two methods range from

1:32 to 32:1.

The differences in mapping times can be explained by the dif-

ferent characteristics of both filters. Compared with SWIFT, the

simpler but less specific pigeonhole filter requires no counting

and hence less processing overhead, which compensates the

increased number of verifications for low error rates. With an

increase in error rate, the specificity of both filters deteriorates

equally for edit distance. For Hamming distance, gapped shapes

compensate this degradation and make the SWIFT filter much

more specific than the pigeonhole filter, which is based on

ungapped q-grams. Supplementary Section S2 gives a detailed

comparison of the influence of the filter choice on the running

time and load balancing.

In the following, we will denote RazerS 3 in edit distance mode

using the pigeonhole filter with given sensitivity rate as R3-100

and R3-99. Similarly, we will denote RazerS 3 using SWIFT in

edit distance mode with R3-SW-99 and R3-SW-100.

3.2 Verification of expected pigeonhole sensitivity

In this experiment, we examine the accuracy of the sensitivity

estimation for our new pigeonhole filter.

We used 10M fly reads of length 75 bp (SRR060093) and

10M human reads of length 100bp (ERR012100). For each

read set, we computed a reference set consisting of all reads

that can be mapped uniquely with up to 5% errors. From the

mapping results, we determined positional error probabilities

and used them to estimate the fraction of k-error matches lost

by a ðq,�Þ-seed filter (loss rate) while varying the q-gram length

q¼ 16, . . . , 31 and the q-gram overlap q�� ¼ 0, . . . , 10. The

estimated loss rates were compared with the loss rates observed

after mapping the reference read sets with the same filtration

settings and are shown on the left-hand side in Figure 4. As a

sanity check, we simulated 10M reads of length 75 and 100bp

from the fly and human genome and implanted errors with the

same positional error profile and repeated the whole comparison.

The results are shown on the right-hand side in Figure 4. Dots

below the diagonal correspond to experiments with an empirical

sensitivity higher than estimated and above the diagonal the em-

pirical sensitivity was overestimated. As a measure of accuracy,

we use the relative difference between empirical and estimated

loss rate. The dashed line shows the mean relative difference of

all experiments up to a certain estimated loss rate. We observe a

high level of agreement for simulated reads with a mean relative

difference51% for loss rates between 0 and 10%. On real data,

the predicted loss rates between 0 and 10% show a mean relative

difference of 3% on the fly and 14% on the human read set.

We explain this deviation by a correlation of sequencing errors

at adjacent positions, whereas our model assumes independence

of errors. This error correlation has also been observed in

Dohm et al. (2008) and may be the result of molecules, which

are out of phase for multiple cycles in the sequencing process and

lead to interferences with signals of adjacent bases. However, this

correlation shows no negative influence as in none of our experi-

ments the effective sensitivity was overestimated by our model.

3.3 Rabema benchmark results

Next, we used the Rabema benchmark (Holtgrewe et al., 2011)

(v1.1) for a thorough evaluation and comparison of read map-

ping sensitivity. As datasets, we simulated 100 k reads of length

100 bp from the whole human genome with Mason (Holtgrewe,

2010) and distributed sequencing errors like in a typical Illumina

experiment (see Supplementary Section S9 for more details).

The benchmark contains the categories all, all-best, any-best

and recall. In the categories all, all-best and any-best, a read

mapper has to find all, all of the best or any of the best edit

distance matches for each read. The category recall requires a

read mapper to find the original location of each read, which is a

measure independent of the used scoring model (edit-distance or

quality-based). The benchmark was performed for an error rate

of 5%.

To compare the sensitivity fairly, we configured read mappers

as best-mappers and as all-mappers if possible (BWA, Bowtie 2

and RazerS 3). We parametrized the best-mappers for high sen-

sitivity and multiple matches. We do not consider running time

here, since best-mappers are not designed for finding all matches

and consequently consume more time (up to 3h in a run com-

pared with several minutes). The aim here was to investigate

sensitivity and recall.

The results are shown in the left part of Table 1. As expected,

the all-mappers generally perform better than the best-mappers.

Fig. 4. Validation of the estimated sensitivity. We compared the esti-

mated with the observed loss rate (1-sensitivity) of unique matches with

different numbers of errors for ðq,�Þ-seed filters with q ¼ 16, . . . , 31 and

overlaps between 0 and 10. We evaluated real (left) and simulated reads

(right) using the observed error profile

2596

D.Weese et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
8
/2

0
/2

5
9
2
/2

0
6
9
4
7
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



In addition, as expected, mappers lose more of the high-error

locations than low-error locations. Surprisingly, Bowtie 2 and

BWA are better than the all-mapper Hobbes. Soap 2 is low sen-

sitive to reads with more than two errors as it allows at most two

mismatches in total and by chance aligns some of the reads with

more errors by replacing all N’s in the reads by a G’s. R3-100 is

the most sensitive method, followed by mrFAST (which is not

fully sensitive for higher error rates), SHRiMP 2 and Bowtie 2.

Even when configured as a best-mapper (i.e. only reporting one

best match), RazerS 3 achieves the best scores.

3.4 Variant detection

The next experiment analyzes the applicability of RazerS 3 and

other read mappers in sequence variation pipelines. Similarly to

the evaluation in David et al. (2011), we generated 5 million read

pairs of length 2� 100bp with sequencing errors, SNPs and

indels from the whole human genome such that each read has

an edit distance of at most five to its genomic origin. To distrib-

ute sequencing errors according to a typical Illumina run, we

used the read simulator Mason with the default profile settings.

The reads (pairs) were grouped according to the numbers of

contained SNPs and indels, where the group (s and i) consists

of reads (pairs) with s SNPs and i indels in total. We mapped the

reads both as single and paired-end reads and measured the

sensitivities separately for each class and read mapper.

A read (pair) was mapped correctly if an alignment (paired

alignment) has been found within 10 bp of the genomic origin. It

is considered to map uniquely if only one alignment was reported

by the mapper. For each class, we define recall to be the fraction

of all contained reads (pairs) and precision the fraction of

uniquely mapped reads (pairs) that were mapped correctly. The

right side of Table 1 shows the results for each read mapper and

class, where the upper and lower table contain the single-end and

paired-end results. An extended version of this table is given in

Supplementary Section S11.

Comparing the all-mappers results, R3-100 shows the highest

recall and precision values on both the single and paired-end

datasets. mrFAST is also full sensitive on the single-end dataset

but has a low recall value of 8% for pairs with 5-bp indels.

SHRiMP 2 shows full precision in all classes and experiments

but misses some non-unique alignments. Hobbes seems to have

problems with indels and shows the lowest sensitivities in the

all-mapper comparison.

Surprisingly, R3-100 is the most sensitive best-mapper even in

the non-variant class (0,0) where the simulated qualities could

possibly give quality-based mappers an advantage. For

paired-end reads where matches are also ranked by their devi-

ation from the library size, it is even more sensitive than the

all-mappers Hobbes and mrFAST. As observed in David et al.

(2011), quality-based mappers like Bowtie 2, BWA and Soap 2

are not suited to reliably detect the origin of reads with variants.

Their recall values deteriorate with more variants as they prefer

alignments where mismatches can be explained by sequencing

errors instead of natural sequence variants. The low sensitivity

of Soap 2 is again due to its limitation to at most two

mismatches.

3.5 Performance comparison

In the last experiment, we compare the real-world performance

of RazerS 3 with other read mappers. To this end, we mapped

four different sets of 10 million Illumina read pairs of length

2� 100bp from E. coli, C. elegans, fly and human, as well as

six simulated datasets consisting of 1 million simulated read pairs

of length 2� 200bp, 2� 400bp and 2� 800bp from fly and

human to their reference genomes. We mapped the reads both

as single and paired-end reads with 4% error rate and measured

running times, peak memory consumptions, mapped reads

(pairs) and reads (pairs) mapped with minimal edit distance.

We compared RazerS 3 in default mode with other all-mappers

and configured it to output only one best match per read for the

best-mapper comparison. Since mrFAST supports no

shared-memory parallelization, we split the reads into packages

of 500k reads and mapped them with 12 concurrent processes of

mrFAST. Hobbes’ large memory consumption also required to

Table 1. Rabema benchmark results (left) and variant detection results (right)

Rabema scores are given in percent (average fraction of matches found per read. Large numbers are the total scores in each Rabema category and small numbers show the

category scores separately for reads with 0 1 2

3 4 5

� �

errors. Variant detection results are shown for single-end (top right) and paired-end read (bottom right). The percentages of

found origins (recall) and fractions of unique reads mapped to their origin (precision) are grouped by reads with s SNPs and i indels (s, i).

2597

RazerS 3

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
8
/2

0
/2

5
9
2
/2

0
6
9
4
7
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



map the reads package-wise but with a single process and 12

threads.

For the evaluation, we use the commonly used measure of

percentage of mapped reads (pairs), i.e. the fraction of reads

(pairs) that are reported as aligned in the result file of the

mapper. However, as some mappers report alignments without

constraints on the number of errors, we also determine the frac-

tion of reads (pairs) whose best match has an error rate of at

most 0%, . . . , 4% (small numbers in the mapped reads (pairs)

column in Tables 2 and 3).

We call a read (pair) "-mappable, if it can be aligned with

an error rate of " (by any mapper). As a more stringent measure

for edit distance mappers, we call an "-mappable read (pair)

correctly mapped if at least one (paired) alignment has

been found with an error rate of ". For each mapper, we

measured the percentage of correctly mapped reads (pairs),

i.e. the fraction of "-mappable reads (pairs) for " 2 ½0, 4%�

that are correctly mapped. For a more detailed analysis,

we additionally give the percentages separately for sets of

" ¼ 0, " 2 ð0, 1%�, . . . , " 2 ð3, 4%�.

The results for the fly and human Illumina datasets as well as

the simulated 800-bp fly dataset are shown in Tables 2 and 3.

More detailed tables of all datasets are given in Supplementary

Section S12.

As can be seen, R3-100 aligns all reads with the minimal

number of errors and achieves the best percentage of correctly

mapped reads followed by R3-95 in all experiments. A decrease

in the specified sensitivity results in a decrease in running time

and on the human genome R3-95 is up to twice as fast as R3-100.

As in the previous experiments, the actual sensitivity is always

higher than specified.

3.5.1 All-mapper comparison For the single-end 100-bp data-

sets, mrFAST is as sensitive but four times slower than R3-100.

On paired-end reads, it is less sensitive and apparently has prob-

lems to map long reads with an increased number of absolute

Table 2. Mapping times and accuracy of single-end mapping

The left side shows the results for the first 10M� 100 bp single-end reads of two Illumina datasets. The dataset on the right consists of 1M� 800 bp simulated single-end

reads with a stretched Illumina sequencing error profile. Hobbes could not be run on reads longer than 100bp. In large, we show the percentage of totally mapped reads and in

small the percentages of reads that are mapped with up to 0 1% 2%

3% 4%

� �

errors. Correctly mapped reads show the fractions of reads that were mapped with the overall minimal

number of errors.

Table 3. Mapping times and accuracy of paired-end mapping with the same setting as in Table 2

As datasets we used 10M� 2� 100 bp paired-end Illumina reads (left) and 1M� 2� 800bp simulated paired-end reads with a stretched Illumina sequencing error profile

(right). There were none of the 2� 800bp pairs without error (denoted by a ‘–’ in the 0-error class).

2598

D.Weese et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
8
/2

0
/2

5
9
2
/2

0
6
9
4
7
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



errors. In the results of the Illumina paired-end datasets, we

found some alignments with actual more errors than asserted

by mrFAST and an error rate44%. Thus, the number of totally

mapped pairs is slightly higher compared with R3-100 on the

Illumina paired-end reads.

On single-end reads, Hobbes is about two times slower and

only on human paired-end reads faster (up to two times) than

R3-100. It maps 5–15% less reads correctly and also the total

number of mapped reads is less. Hobbes is not able to map reads

longer than 100bp and some single-end read packages could not

be mapped due to repeated crashes (4 of 20 for C. elegans and 1

of 20 for human). As SHRiMP 2 does not use a maximal error

rate, it outputs more mapped reads than R3-100 in total.

However, the percentages of correctly mapped reads are less in

all experiments. This could be due to its different scoring scheme,

where two mismatches costs less than opening a gap, but does

not explain why it misses reads with 0 errors. SHRiMP 2 is 5–23

times slower than R3-100 on the Illumina datasets and up to 600

times slower on the 800 bp datasets.

3.5.2 Best-mapper comparison Compared with other

best-mappers, R3-95 is faster or equally fast on all E. coli, C.

elegans and fly datasets. For human reads of length 100–200bp,

it is two to three times slower than BWA and equally fast or

faster for longer reads. BWA and Bowtie 2 could not be run with

a maximal error rate and hence map more reads than R3-100 in

total, but less correctly (in terms of edit distance) as they opti-

mize for errors at low-quality bases. With longer reads, BWA

becomes less sensitive and BWA-SW might be the better choice.

However, we could not compare BWA-SW as it does not align

the reads from end to end. As seen before, Soap 2 is low sensitive

to reads with more than two errors.

3.5.3 Memory requirement In all-mode (best-mode), RazerS

3 requires 15GB (9GB) for mapping 10M reads of length 100 bp

to hg18. The memory requirement is proportional to the number

of reads and matches, about 10 GB are required for each add-

itional 10M� 100 bp reads. For the same input set, Bowtie 2

uses 3.3GB, BWA uses 4.5GB, Soap 2 uses 5.4GB and

SHRiMP 2 uses 38GB. Due to the lack of parallelization or a

high memory consumption, we ran mrFAST and Hobbes on

packages of 500 k reads where they required 11 and 70GB of

memory. Supplementary Section S7 contains a detailed discus-

sion of the memory requirements of RazerS 3 and

Supplementary Section S12 contains tables that also show the

full memory requirements. A large read set, e.g. an Illumina

HiSeq run, can be mapped on clusters or low memory machines

by splitting it into blocks of appropriate size and mapping them

separately.

4 DISCUSSION

We presented a read mapping program that is faster than (or at

least competitive to) existing, popular tools while guaranteeing

full sensitivity following a sensible and formal definition for both

Hamming and edit distance. Furthermore, it allows the user to

lower the sensitivity in a controlled fashion to further lower the

running time. Third, RazerS 3 can deal with reads of arbitrary

length and large error rates.

We showed that RazerS 3 has a superior performance in the

presence of sequence variations. Together with some other

recent publications, our work shows that the use of the BWT to-

gether with more or less exhaustive backtracking strategies has its

limitations if the number of absolute indel errors is large.

In addition, the above strategies do not need a pre-computed index.

The banded edit distance verification algorithm presented here

should also be considered as a fast algorithmic ingredient for

future read mappers. Finally, our tool is able to fully leverage

the in-core parallelism of modern processors.

RazerS 3 was implemented using SeqAn (Döring et al., 2008)

and is publicly available at http://www.seqan.de/projects/razers.

Funding: This work was supported by Deutsche Forschungsge-

meinschaft [RE-1712/3-1 to MH] and the Federal Ministry of

Education and Research [16V0080].

Conflict of Interest: none declared.

REFERENCES

Ahmadi,A. et al. (2011) Hobbes: optimized gram-based methods for efficient read

alignment. Nucleic Acids Res., 40, e41.

Alkan,C. et al. (2009) Personalized copy number and segmental duplication maps

using next-generation sequencing. Nat. Genet., 41, 1061–1067.

Baeza-Yates,R.A. and Navarro,G. (1999) Faster approximate string matching.

Algorithmica, 23, 127–158.

Bauer,M.J. et al. (2010) ELANDv2—fast gapped read mapping for Illumina reads.

In ISMB. ISCB.

David,M. et al. (2011) SHRiMP2: sensitive yet practical short read mapping.

Bioinformatics, 27, 1011–1012.

Dohm,J. et al. (2008) Substantial biases in ultra-short read data sets from

high-throughput dna sequencing. Nucleic Acids Res., 36, e105.

Döring,A. et al. (2008) SeqAn an efficient, generic Cþþ library for sequence ana-

lysis. BMC Bioinformatics, 9, 11.

Gotoh,O. (1982) An improved algorithm for matching biological sequences. J. Mol.

Biol., 162, 705–708.

Hoffmann,S. et al. (2009) Fast mapping of short sequences with mismatches,

insertions and deletions using index structures. PLoS Comput. Biol., 5,

e1000502.

Holtgrewe,M. (2010) Mason—a read simulator for second generation sequencing

data. In Technical Report TR-B-10-06 ORGANIZATION. Institut für

Mathematik und Informatik, Freie Universität, Berlin.

Holtgrewe,M. et al. (2011) A novel and well-defined benchmarking method for

second generation read mapping. BMC Bioinformatics, 12, 210.

Hyyrö,H. (2003) A bit-vector algorithm for computing levenshtein and damerau

edit distances. Nord. J. Comput., 10, 29–39.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with Bowtie 2.

Nat. Methods, 9, 357–359.

Langmead,B. et al. (2009) Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome. Genome Biol., 10, R25.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with

burrows-wheeler transform. Bioinformatics, 25, 1754–1760.

Li,H. and Homer,N. (2010) A survey of sequence alignment algorithms for

next-generation sequencing. Brief. Bioinform., 11, 473–483.

Li,R. et al. (2009) SOAP2: an improved ultrafast tool for short read alignment.

Bioinformatics, 25, 1966–1967.

Myers,G. (1999) A fast bit-vector algorithm for approximate string matching based

on dynamic programming. J. ACM, 46, 395–415.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J.

Molecular Biol., 48, 443–453.

Rasmussen,K.R. et al. (2006) Efficient q-gram filters for finding all epsilon-matches

over a given length. J. Comput. Biol., 13, 296–308.

Ukkonen,E. (1985) Finding approximate patterns in strings. J. Algorithms, 6,

132–137.

Weese,D. et al. (2009) RazerS–fast read mapping with sensitivity control. Genome

Res., 19, 1646–1654.

2599

RazerS 3

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
8
/2

0
/2

5
9
2
/2

0
6
9
4
7
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2


