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Abstract: This work is mainly concerned with the exponential stability of time-changed stochastic func-

tional differential equations with Markovian switching. By expanding the time-changed Itô formula and the

Razumikhin theorem, we obtain the exponential stability results for the time-changed stochastic functional

differential equations with Markovian switching. What’s more, we get many useful stability results by

applying our new results to several important types of functional differential equations. Finally, an example

is given to demonstrate the effectiveness of the main results.
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1 Introduction

The research for stochastic differential equations (SDEs) is a mature field, which plays an important role

in modeling dynamic system considering uncertainty noise in many applied areas such as economics and

finance, physics, engineering and so on. Many qualitative properties of the solution of stochastic functional

differential equations (SFDEs) have been received much attention. In particular, the stability or asymptotic

stability of SFDEs has been studied widely by more and more researchers ([1–5]).

Recently, Chlebak et al.[6] discussed sub-diffusion process and its associated fractional Fokker-Planck-

Kolmogorov equations. The fractional partial differential equations arewell known to be connectedwith limit

process arising from continuous-time random walks. The limit process is time-changed Lev́y process, which

is the first hitting time process of a stable subordinator (see [7–9] for details). The existence and stability

of SDE with respect to time-changed Brownian motion recently have received much attention([10, 11]). Wu

[12, 13] established the time-changed Itô formula of time-changed SDE, and then obtained the stability results.

Subsequently, Nane and Ni [14] established the Itô formula for time-changed Lévy noise, then discussed the

stability of the solution.

However, to the best of our knowledge, there are no results for the time-changed stochastic functional

differential equations with Markovian switching published till now. Motivated strongly by the above, in this

paper, we will study the stability of time-changed SFDEs with Markovian switching. By applying the time-

changed Itô formula and Lyapunov function, we present the Razumikhin-type theorem([15, 16]) of the time-
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690 | Xiaozhi Zhang and Chenggui Yuan

changed SFDEs with Markovian switching. More precisely, we consider the following SFDEs with Markovian

switching driven by time-changed Brownian motions:

dx(t) = h(xt , t, Et , r(t))dt + f (xt , t, Et , r(t))dEt + g(xt , t, Et , r(t))dBEt (1.1)

on t ≥ 0 with {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ Cb
F0

([−τ, 0];Rn), where h, f , g are appropriately specified later.

In the remaining parts of this paper, further needed concepts and related backgroundwill be presented in

Section 2. In Section 3, the exponential stability results of the time-changed SFDEs withMarkovian switching

will be given.Many useful types of results of stochastic delay differential equations and stochastic differential

equations are presented in Section 4 and Section 5 respectively. Finally, an example is given to show the

availability of the main results.

2 Preliminary

Throughout this paper, let (Ω,F , {F}t≥0, P) be a complete probability space with the filtration {F}t≥0

which satisfies the usual condition(i.e. {F}t≥0 is right continuous andF contains all the P-null sets inF ). Let

{U(t), t ≥ 0} be a right continuous with left limit (RCLL) increasing Lévy process that is called subordinator

starting from 0. For a subordinator U(t), in particular, is a β-stable subordinator if it is a strictly increasing

process denoted by Uβ(t) and characterized by Laplace transform

E[exp(−sUβ(t))] = exp(−tsβ), s > 0, β ∈ (0, 1).

For an adapted β-stable subordinator Uβ(t), define its generalized inverse as

Et := Eβt = inf{s > 0 : Uβ(s) > t},

which means the first hitting time process. And Et is continuous since Uβ(t) is strictly increasing.

Let Bt be a standard Brownian motion independent on Et, define the following filtration as

Ft =
⋂

s>t

{

σ[Br : 0 ≤ r ≤ s] ∨ σ[Er : r ≥ 0]
}

,

where σ1 ∨ σ2 denotes the σ-algebra generated by the union of σ-algebras σ1 and σ2. It concludes that the

time-changed Brownian motion BEt is a square integrable martingale with respect to the filtration {FEt}t≥0.

And its quadratic variation satisfies < BEt , BEt >= Et.([17])

Let r(t), t ≥ 0 be a right continuous Markov chain on the probability space taking values in a finite state

space S = {1, 2, . . . , N} with generator Γ = (γij)N×N by

P{r(t + ∆) = j|r(t) = i} =

{

rij∆ + o(∆) if i = ̸ j,

1 + rij∆ + o(∆) if i = j,

where ∆ > 0, γij is the transition rate from i to j if i = ̸ j and γii = −
∑

i= ̸j

γij.We assume that theMarkov chain r(t) is

independent on Brownianmotion, it is well known that almost each sample path of r(t) is a right-continuous

step function.

For the future use, we formulate the following generalized time-changed Itô formula.

Lemma 2.1. (The generalized time-changed Itô formula) Suppose Uβ(t) is a β-stable subordinator and Et is its

associated inverse stable subordinator. Let x(t)be aFEt adapted processdefined in (1.1). IfV : Rn×R+×R+×S →

R is a C2,1,1(Rn ×R+ ×R+ × S;R) function, let

L1V(xt , t, Et , i) = Vt(x, t, Et , i) + Vx(x, t, Et , i)h(xt , t, Et , i) +
N
∑

j=1

γijV(x, t, Et , j)
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Razumikhin-type theorem on time-changed stochastic functional differential equations | 691

and

L2V(xt , t, Et , i) = VEt (x, t, Et , i) + Vx(x, t, Et , i)f (xt , t, Et , i)

+
1

2
trace[gTVxxg(xt , t, Et , i)],

then with probability one

V(x(t), t, Et , r(t)) = V(x0, 0, 0, r(0)) +

t
∫

0

L1V(xs , s, Es , r(s))ds

+

t
∫

0

L2V(xs , s, Es , r(s))dEs

+

t
∫

0

Vx(x(s), s, Es , r(s))g(xs , s, Es , r(s))dBEs

+

t
∫

0

∫

R

[V(x(s), s, Es , i0 + h(r(s), l)) − V(x(s), s, Es , r(s))]µ(ds, dl),

where µ(ds, dl) = ν(ds, dl) − m(dl)ds is a martingale measure, ν(ds, dl) is a Poisson random measure with

density dt × m(dl), in which m is the Lebesgue measure on R.

Proof Let y = [x, t1, t2]
T = [x, t, Et]

T , and G(y(t), r(t)) = V(xt , t, Et , r(t)). Based on the computation rules

([8]), we have

dt · dt = dEt · dEt = dt · dEt = dt · dBEt = dEt · dBEt = 0, dBEt · dBEt = dEt .

Applying the multi-dimensional Itô formula([18]) to G(y(t), r(t)) yields that

G(y(t), r(t)) = G(y(0), r(0)) +

t
∫

0

Gy(y(s), r(s))dy(s) +

t
∫

0

1

2
dyTGyydy +

t
∫

0

N
∑

j=1

γij

G(y(s), j)ds +

t
∫

0

∫

R

[G(y(s), i0 + h(r(s), l), x(s)) − G(y(s), r(s))]µ(ds, dl)

= G(y(0), r(0)) +

T
∫

0

[Vx Vt1 Vt2 ]







hdt + fdEt + gdBEt

dt1
dt2







+

t
∫

0

1

2
trace[gTVxxg]dEt

+

t
∫

0

N
∑

j=1

γijV(x(s), s, Es , j)ds

+

t
∫

0

∫

R

[V(x(s), s, Es , i0 + h(r(s), l)) − V(x(s), s, Es , r(s))]µ(ds, dl)

= V(x0, 0, 0, r(0)) +

t
∫

0

Vx(x(s), s, Es , r(s))g(xs , s, Es , r(s))dBEs

+

t
∫

0

[

VEs (x(s), s, Es , r(s)) + Vx f (xs , s, Es , r(s)) +
1

2
trace(gTVxxg)

]

dEs

+

t
∫

0



Vt(x(s), s, Es , r(s)) + Vxh(xs , s, Es , r(s)) +
N
∑

j=1

γijV(x(s), s, Es , j)



 ds
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+

t
∫

0

∫

R

[V(x(s), s, Es , i0 + h(r(s), l)) − V(x(s), s, Es , r(s))]µ(ds, dl).

This completes the proof. ✷

Corollary 2.1. Suppose Uβ(t) is a β-stable subordinator and Et is its associated inverse. Let x(t) be an FEt

adapted process defined in (1.1). If V : Rn × R+ × R+ × S → R is a C2,1,1(Rn × R+ × R+ × S;R) function, then for

any stopping time 0 ≤ t1 ≤ t2 < ∞

EV(x(t2), t2, Et2 , r(t2)) = EV(x(t1), t1, Et1 , r(t1)) + E

t2
∫

t1

L1V(xs , s, Es , r(s))ds

+E

t2
∫

t1

L2V(xs , s, Es , r(s))dEs

where L1 and L2 are defined in the lemma above.

In this paper, the following hypothesis is imposed on the coefficients h, f and g.

(H1) Both h, f : R
n ×R+ ×R+ × S → R

n and g : Rn ×R+ ×R+ × S → R
n×m are Borel-measurable functions.

They satisfy the Lipschitz condition. That is, there is L > 0 such that

|h(ϕ1, t1, t2, i) − h(ϕ2, t1, t2, i)| ∨ |f (ϕ1, t1, t2, i) − f (ϕ2, t1, t2, i)|

∨|g(ϕ1, t1, t2, i) − g(ϕ2, t1, t2, i)| ≤ L||ϕ1 − ϕ2||

for all t ≥ 0, i ∈ S and ϕ1, ϕ2 ∈ C([−τ, 0];Rn).

(H2) If x(t) is an RCLL and FEt -adapted process, then h(xt , t, Et , r(t)), f (xt , t, Et , r(t)),

g(xt , t, Et , r(t)) ∈ L(FEt ), where L(FEt ) denotes the class of RCLL and FEt -adapted process.

3 Main results

In this section, we aim to establish the stability results of the system equation (1.1). Firstly, we have to

guarantee the existence of the solution of the equation (1.1).

Lemma 3.1. Under the conditions of (H1) and (H2), for any initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈

Cb
F0

([−τ, 0];Rn), the equation (1.1) has a unique global solution.

Proof Let T > 0 be arbitrary. It is known that ([18]) there is a sequence {τk}k≥0 of stopping times such that

0 < τ0 < τ1 < · · · < τk → ∞ and r(t) is constant on each interval [τk , τk+1), that is, for each k ≥ 0,

r(t) = r(τk), τk ≤ t < τk+1.

We first consider the equation on t ∈ [0, τ1 ∧ T], it becomes

dx(t) = h(xt , t, Et , r(0))dt + f (xt , t, Et , r(0))dEt + g(xt , t, Et , r(0))dBEt

with initial data x0 = ξ ∈ Cb
F0

([−τ, 0])has a unique solution on [−τ, τ1∧T]([4, 8]). Next, for t ∈ [τ1∧T, τ2∧T],

the equation becomes

dx(t) = h(xt , t, Et , r(τ1 ∧ T))dt + f (xt , t, Et , r(τ1 ∧ T))dEt + g(xt , t, Et , r(τ1 ∧ T))dBEt

with initial data xτ1∧T given above. Again we know the equation has a unique continuous solution on [τ1 ∧

T − τ, τ2 ∧ T]. Repeating the progress, we can see the equation has a unique solution x(t) on [−τ, T]. Since T

is arbitrary, the existence and uniqueness have been proved. ✷
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Now, let us consider the exponential stability of equation (1.1). We fix the Markov chain r(t) and let the initial

data ξ vary in Cb
F0

([−τ, 0];Rn). The solution of equation (1.1) is denoted as x(t; ξ ) throughout this paper.

Assume that h(0, t, Et , i) = 0, f (0, t, Et , i) = 0, g(0, t, Et , i) = 0, so the equation (1.1) have a trivial solution

x(t; 0) = 0. Next, we establish a new Razumikhin theorem on p-th moment exponential stability for the time-

changed SFDEs with Markovian switching.

Theorem 3.1. Let (H1) and (H2) hold. Let λ1, λ2, p, c1, c2, α be all positive numbers and q > 1. Assume that

there exists a function V(x, t, Et , i) ∈ C2,1,1(Rn × [−τ,∞) × [0,∞) × S; R+) such that

c1|x|
p ≤ V(x, t, Et , i) ≤ c2|x|

p , (x, t, Et , i) ∈ Rn × [−τ,∞) × [0,∞) × S (3.1)

and for all t > 0,

E

[

max
1≤i≤N

eαEtLjV(ϕ, t, Et , i)

]

≤ −λjE

[

max
1≤i≤N

eαEtV(ϕ(0), t, Et , i)

]

(j = 1, 2) (3.2)

provided ϕ = {ϕ(θ;−τ ≤ θ ≤ 0)} satisfying

E

[

min
1≤i≤N

eαEt+θV(ϕ(θ), t + θ, Et+θ , i)

]

≤ qE

[

max
1≤i≤N

eαEtV(ϕ(0), t, Et , i)

]

(3.3)

for all −τ ≤ θ ≤ 0. Then for all ξ ∈ Cb
F0

([−τ, 0], Rn)

E|x(t; ξ )|p ≤
c2
c1

E||ξ ||pe−γt , t ≥ 0, (3.4)

where γ = min{λ1, λ2, log(q)/τ}. In other words, the trivial solution of equation (1.1) is pth moment exponen-

tially stable and the pth moment Lyapunov exponent is not greater than −γ.

Proof For the initial data ξ ∈ Cb
F0

([−τ, 0], Rn) arbitrarily and we write x(t; ξ ) = x(t) simply. Extend r(t) to

[−τ, 0) by setting r(t) = r(0), and extend Et to [−τ, 0) by setting Et = E0. Let ε ∈ (0, γ) be arbitrary then set

γ = γ − ε. Define

U(t) = sup
−τ≤θ≤0

E

[

eγ(t+θ+Et+θ)V(x(t + θ), t + θ, Et+θ , r(t + θ))
]

for t ≥ 0.

Since r(t) is right continuous, the fact that both Et and x(t) is continuous and E( sup
−τ≤s≤t

|x(s)|p) < ∞ for t ≥ 0,

we can see EV(x(t), t, Et , r(t)) is right continuous on t ≥ −τ. Hence U(t) is well defined and right continuous.

We claim that

D+U(t) := lim sup
l→0+

U(t + l) − U(t)
t

≤ 0 for all t ≥ 0. (3.5)

To show this, we know that for each t ≥ 0 , either U(t) > E[eγ(t+Et)V(x(t), t, Et , r(t))] or U(t) =

E[eγ(t+Et)V(x(t), t, Et , r(t))].

Case 1: If U(t) > E[eγ(t+Et)V(x(t), t, Et , r(t))], it follows from the right continuity of

E[eγ(t+Et)V(x(t), t, Et , r(t))] that for each l > 0 sufficiently small

U(t) > E[eγ(t+l+Et+l)V(x(t + l), t + l, Et+l , r(t + l))]. (3.6)

Noting that

U(t + l) = sup
−τ≤θ≤0

E

[

eγ(t+l+θ+Et+l+θ)V(x(t + l + θ), t + l + θ, Et+l+θ , r(t + l + θ))
]

for t ≥ 0,

if l + θ > 0, by (3.6),we have

E

[

eγ(t+l+θ+Et+l+θ)V(x(t + l + θ), t + l + θ, Et+l+θ , r(t + l + θ))
]

≤ U(t).

Therefore, U(t + l) ≤ U(t). On the other hand, if l + θ ≤ 0, we set θ′ = l + θ, then

U(t + l) = sup
l−τ≤θ′≤0

E

[

eγ(t+θ
′+Et+θ′ )V(x(t + θ′), t + θ′, Et+θ′ , r(t + θ

′))
]
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≤ sup
−τ≤θ′≤0

E

[

eγ(t+θ
′+Et+θ′ )V(x(t + θ′), t + θ′, Et+θ′ , r(t + θ

′))
]

= U(t).

Therefore, for each t > 0, U(t + l) ≤ U(t) and D+U(t) ≤ 0.

Case 2: If U(t) = E[eγ(t+Et)V(x(t), t, Et , r(t))], by the definition of U(t), one obtains that for −τ ≤ θ ≤ 0,

E

[

eγ(t+θ+Et+θ)V(x(t + θ), t + θ, Et+θ , r(t + θ))
]

≤ E
[

eγ(t+Et)V(x(t), t, Et , r(t))
]

,

it follows that

E

[

eγEt+θV(x(t + θ), t + θ, Et+θ , r(t + θ))
]

≤ e−γθE
[

eγEtV(x(t), t, Et , r(t))
]

≤ eγτE
[

eγEtV(x(t), t, Et , r(t))
]

.

If E
[

eγEtV(x(t), t, Et , r(t))
]

= 0, from (3.1) we can see that

E[eγEt+θ c1|x(t + θ)|
p] ≤ 0,

which yields that x(t + θ) = 0, −τ ≤ θ ≤ 0. Since h(0, t, Et , i) = 0, f (0, t, Et , i) = 0 and g(0, t, Et , i) = 0 a.s. for

all −τ ≤ θ ≤ 0, one obtains that x(t + l) = 0 a.s. for all l > 0, hence U(t + l) = 0 and D+U(t) = 0.

On the other hand, if E
[

eγEtV(x(t), t, Et , r(t))
]

> 0, one can see that

E

[

eγEt+θV(x(t + θ), t + θ, Et+θ , r(t + θ))
]

< qE
[

eγEtV(x(t), t, Et , r(t))
]

for all −τ ≤ θ ≤ 0 since eγτ < q. It follows from the condition (3.2) that

E

[

max
1≤i≤N

eγEtLjV(ϕ, t, Et , i)

]

< −λjE

[

max
1≤i≤N

eγEtV(ϕ(0), t, Et , i)

]

, j = 1, 2.

It means that

E

[

eγEtLjV(xt , t, Et , r(t))
]

< −λjE
[

eγEtV(x(t), t, Et , r(t))
]

, j = 1, 2,

then

E

[

eγEt (γV(x(t), t, Et , r(t)) + LjV(xt , t, Et , r(t)))
]

≤ −(λj − γ)E[eγEtV(x(t), t, Et , r(t))] < 0.

By the right continuity of the process involved one can see that for all l > 0 sufficiently small,

E

[

eγEs (γV(x(s), s, Es , r(s)) + LjV(xs , s, Es , r(s)))
]

≤ 0, t ≤ s ≤ t + l.

By the generalized time-changed Itô formula, we get that

E

[

eγ(t+l+Et+l)V(x(t + l), t + l, Et+l , r(t + l))
]

− E

[

eγ(t+Et)(V(x(t), t, Et , r(t)))
]

= E

t+l
∫

t

eγ(s+Es)[γV(x(s), s, Es , r(s)) + L1V(xs , s, Es , r(s))]ds

+E

t+l
∫

t

eγ(s+Es)[γV(x(s), s, Es , r(s)) + L2V(xs , s, Es , r(s))]dEs

=

t+l
∫

t

eγsEeγEs [γV(x(s), s, Es , r(s)) + L1V(xs , s, Es , r(s))]ds

+

t+l
∫

t

eγsEeγEs [γV(x(s), s, Es , r(s)) + L2V(xs , s, Es , r(s))]dEs

≤ 0. (3.7)
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Then U(t + l) ≤ U(t) for l > 0 sufficiently small.

Since

U(t + l) = sup
−τ≤θ≤0

E

[

eγ(t+θ+l+Et+θ+l)V(x(t + l + θ), t + l + θ, Et+l+θ , r(t + l + θ))
]

,

here we set θ′ = θ + l, if l + θ > 0, then E

[

eγ(t+θ
′+Et+θ′ )V(x(t + θ′), t + θ′, Et+θ′ , r(t + θ

′))
]

≤ U(t) from (3.7),

otherwise, since U(t) = E[eγ(t+Et)V(x(t), t, Et , r(t))], then

E

[

eγ(t+θ
′+Et+θ′ )V(x(t + θ′), t + θ′, Et+θ′ , r(t + θ

′))
]

≤ U(t),

so, by the definition of supremum, U(t + l) = U(t) for l > 0 sufficiently small and D+U(t) = 0. Therefore, the

inequality (3.5) has been proved. It follows that

U(t) ≤ U(0), for t ≥ 0.

Eeγtc1|x|
p ≤ Eeγ(t+Et)V(x(t), t, Et , r(t)) ≤ U(t) ≤ U(0) ≤ c2E||ξ ||

p

this means

E|x|p ≤
c2
c1

e−γtE||ξ ||p =
c2
c1

E||ξ ||pe−(γ−ε)t .

Since ε is arbitrary, the required inequality (3.4) must hold. The proof is completed. ✷

4 Stochastic delay differential equations with Markovian switching

In this section, as a special case of equation (1.1), we consider the time-changed stochastic delay

differential equation with Marking switching as follows,

dx(t) = H(x(t), x(t − δ(t)), t, Et , r(t))dt + F(x(t), x(t − δ(t)), t, Et , r(t))dEt (4.1)

+G(x(t), x(t − δ(t)), t, Et , r(t))dBEt

on t ≥ 0 with x0 = ξ ∈ Cb
F0

([−τ, 0];Rn), where δ : R+ → [0, τ] is Borel measure while

H, F : Rn ×Rn ×R+ ×R+ × S → R
n

and

G : Rn ×Rn ×R+ ×R+ × S → R
n×m .

We impose the following hypotheses:

(H3) Both H, F : Rn ×R+ ×R+ × S → R
n and G : Rn ×R+ ×R+ × S → R

n×m are Borel-measurable functions.

They satisfy the Lipschitz condition. That is, there is L > 0 such that

|H(x, y, t1, t2, i) − H(x, y, t1, t2, i)| ∨ |F(x, y, t1, t2, i) − F(x, y, t1, t2, i)|

∨|G(x, y, t1, t2, i) − G(x, y, t1, t2, i)| ≤ L(|x − x| + |y − y|)

for all t ≥ 0, i ∈ S and x, y, x, y ∈ R
n.

(H4) If x(t) is an RCLL and FEt -adapted process, then H(x(t), x(t − δ(t)), t, Et , r(t)), F(x(t), x(t −

δ(t)), t, Et , r(t)), G(x(t), x(t − δ(t)), t, Et , r(t)) ∈ L(FEt ), where L(FEt ) denotes the class of RCLL and FEt -

adapted process.

If we define, for (ϕ, t, Ei , i) ∈ C([−τ, 0];Rn) ×R+ ×R+ × S,

h(ϕ, t, Et , i) = H(ϕ(0), ϕ(−δ(t)), t, Et , i),

g(ϕ, t, Et , i) = G(ϕ(0), ϕ(−δ(t)), t, Et , i),

f (ϕ, t, Et , i) = F(ϕ(0), ϕ(−δ(t)), t, Et , i),
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then the equation (4.1) becomes the equation (1.1) and (H3) (H4) imply (H1) (H2). So, by Lemma 3.1 ,the

equation (4.1) has a unique global solution which is again denoted by x(t; ξ ). Furthermore, assume that

H(0, 0, t, Et , i) = 0, F(0, 0, t, Et , i) = 0, G(0, 0, t, Et , i) = 0.

If V ∈ C2,1,1(Rn × [−τ,∞)× [0,∞)×S;R+), define L1V and L2V fromR
n ×Rn ×R+ ×R+ ×S toR respectively

by

L1V(x, y, t, Et , i) = Vt(x, t, Et , i) + Vx(x, t, Et , i)H(x, y, t, Et , i) +
N
∑

j=1

γijV(x, t, Et , j),

L2V(x, y, t, Et , i) = VEt (x, t, Et , i) + Vx(x, t, Et , i)F(x, y, t, Et , i) +
1

2
trGTVxxG(x, y, t, Et , i).

Furthermore, we denote Lp
Ft
(Ω,Rn) as the family of all Ft-measurable R

n-valued random variables X

such that E|X|p < ∞. Meanwhile, we set

LjV(ϕ, t, Et , i) = LjV(ϕ(0), ϕ(−δ(t)), t, Et , i), j = 1, 2

Theorem 4.1. Let (H3) and (H4) hold. Let λ1, λ2, p, c1, c2, α be all positive numbers and q > 1. Assume that

there exists a function V(x, t, Et , i) ∈ C2,1,1(Rn × [−τ,∞) × [0,∞) × S; R+) such that

c1|x|
p ≤ V(x, t, Et , i) ≤ c2|x|

p , (x, t, Et , i) ∈ Rn × [−τ,∞) × [0,∞) × S (4.2)

and for all t > 0,

E

[

max
1≤i≤N

eαEtLjV(X, Y , t, Et , i)

]

≤ −λjE

[

max
1≤i≤N

eαEtV(X, t, Et , i)

]

(j = 1, 2) (4.3)

provided X, Y ∈ Lp
Ft
(Ω,Rn) satisfying

E

[

min
1≤i≤N

eαEt+θV(Y , t − δ(t), Et−δ(t), i)

]

≤ qE

[

max
1≤i≤N

eαEtV(X, t, Et , i)

]

(4.4)

Then for all ξ ∈ Cb
F0

([−τ, 0], Rn)

E|x(t; ξ )|p ≤
c2
c1

E||ξ ||pe−γt , t ≥ 0, (4.5)

where γ = min{λ1, λ2, log(q)/τ}. In other words, the trivial solution of equation (4.1) is pth moment exponen-

tially stable and the pth moment Lyapunov exponent is not greater than −γ.

Proof Let ϕ = {ϕ(θ) : −τ ≤ θ ≤ 0} ∈ Lp
Ft
([−τ, 0],Rn) satisfy (3.3). For X = ϕ(0), Y = ϕ(−δ(t)) ∈ Lp

Ft
(Ω,Rn)

satisfying

E

[

min
1≤i≤N

eαEt+θV(ϕ(−δ(t)), t − δ(t), Et−δ(t), i)

]

≤ qE

[

max
1≤i≤N

eαEtV(ϕ(0), t, Et , i)

]

.

Then, from (4.3) we have

E

[

max
1≤i≤N

eαEtLjV(ϕ, t, Et , i)

]

≤ −λjE

[

max
1≤i≤N

eαEtV(ϕ(0), t, Et , i)

]

(j = 1, 2)

which is (3.2). Hence the conditions in Theorem 3.1 are satisfied and the conclusions follow. Applying the

Theorem 3.1, the proof is completed. ✷

Theorem 4.2. Let (H3) and (H4) hold. Let p, c1, c2, α be all positive numbers and λ1j > λ2j ≥ 0, j = 1, 2.

Assume that there exists a function V(x, t, Et , i) ∈ C2,1,1(Rn × [−τ,∞) × [0,∞) × S; R+) such that

c1|x|
p ≤ V(x, t, Et , i) ≤ c2|x|

p
, (x, t, Et , i) ∈ Rn × [−τ,∞) × [0,∞) × S (4.6)

and for all t > 0,

E

[

max
1≤i≤N

eαEtLjV(X, Y , t, Et , i)

]

≤ −λ1jE

[

max
1≤i≤N

eαEtV(X, t, Et , i)

]
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+λ2jE

[

min
1≤i≤N

eαEt+θV(Y , t − δ(t), Et−δ(t), i)

]

(j = 1, 2)

Then the trivial solution of equation (4.1) is pth moment exponentially stable and the pth moment Lyapunov

exponent is not greater than −γ, where γ = min{λ11 − qλ21, λ12 − qλ22, log(q)/τ} with q > 1.

Proof For t ≥ 0, q < λ1j/λ2j , j = 1, 2 and X, Y ∈ Lp
Ft
(Ω,Rn) satisfying

E

[

min
1≤i≤N

eαEt+θV(Y , t − δ(t), Et−δ(t), i)

]

≤ qE

[

max
1≤i≤N

eαEtV(X, t, Et , i)

]

,

we can arrive that

E

[

max
1≤i≤N

eαEtLjV(X, Y , t, Et , i)

]

≤ −λ1jE

[

max
1≤i≤N

eαEtV(X, t, Et , i)

]

+ λ2jE

[

min
1≤i≤N

eαEt+θV(Y , t − δ(t), Et−δ(t), i)

]

≤ −(λ1j − qλ2j)E

[

max
1≤i≤N

eαEtV(X, t, Et , i)

]

,

that is, (4.3) is satisfied with λj = λ1j − qλ2j , j = 1, 2. Then the conclusion follows form Theorem 4.1. ✷

5 Example

Let Et be generalized inverse of an β-stable subordinator Uβ(t). Let B(t) be a scalar Brownianmotion and

{r(t)} be a right-continuous Markov chain taking values in S = {1, 2} with generator Γ = {rij}2×2, here

−γ11 = γ12 > 0, γ21 = −γ22 > 0.

Assume that B(t) and r(t) are independent. Then let us consider the following one-dimensional linear

stochastic differential equation with Markovian switching

dx(t) = ρ(r(t))x(t)dt + µ(r(t))x(t − δ(t))dEt + σ(r(t))x(t − δ(t))dBEt , t ≥ 0 (5.1)

where

ρ(1) = −1, ρ(2) = 1; µ(1) = −
1

2
, µ(2) = −

1

3
; σ(1) = 1, σ(2) = 1.

The equation (5.1) can be regarded as the result of

dx(t) = −x(t)dt −
1

2
x(t − δ(t))dEt + x(t − δ(t))dBEt , t ≥ 0 (5.2)

and

dx(t) = x(t)dt −
1

3
x(t − δ(t))dEt + x(t − δ(t))dBEt , t ≥ 0 (5.3)

switching to each other according to the movement of the Markovian chain r(t).

We define the function V : R ×R+ ×R+ × S → R+ by

V(x, t, Et , i) = ci|x|
p

with ci = 1, c2 = c ∈ (0, 34 ). The operators have the following forms

L1V(x, t, Et , i) =

{

(c − 1 − p)|x|p , i = 1,

(pc + 4 − 4c)|x|p , i = 2.
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L2V(x, t, Et , i) =

{

p(p−1)
2 |x|p−2|y|2 − 1

2p|x|
p−1|y|, i = 1,

cp(p−1)
2 |x|p−2|y|2 − 1

3 cp|x|
p−1|y|, i = 2.

Using the following inequality

aθb1−θ ≤ θa + (1 − θ)b, a, b > 0, θ ∈ (0, 1),

we can see that

L2V(x, t, Et , i) ≤

{

(p−1)(p−3)
2 |x|p + (p − 3

2 )|y|
p , i = 1,

c(p−1)(p−8)
2 |x|p + c(p − 4)|y|p , i = 2.

Choose p = 2, 2 < c < 3, then

L1V(x, t, Et , i) =

{

(c − 3)|x|p i = 1,

(4 − 2c)|x|p , i = 2

≤ −min{3 − c,
2c − 4
c

}max{V(x, t, Et , 1), V(x, t, Et , 2)}.

L2V(x, t, Et , i) ≤

{

−1
2 |x|

p + 1
2 |y|

p , i = 1,

− c
3 |x|

p + 2c
3 |y|p , i = 2

≤ −
1

2c
maxV(x, t, Et , 1), V(x, t, Et , 2) +

2

3
min{V(x, t, Et , 1), V(x, t, Et , 2)}.

By the Theorem4.2we conclude that the trivial solution of the equation (5.1) is pthmoment exponentially

stable.

6 Conclusions

The stochastic differential equations(SDEs) driven by time-changed Brownian motions is a new research

area for recent years. In this paper, we have studied the exponential stability of the time-changed SDEs

with Markovian switching, by expanding the time-changed Itô formula and the time-changed Razumikhin

theorem. Our result generalizes that of SDEs in the literature. Due to the more construction of SDEs with

time-change than the usual SDEs, our result is not a trivial generalization.
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