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Abstract

Background: BCG vaccination, combined with adenoviral-delivered boosts, represents a reasonable strategy to augment,
broaden and prolong immune protection against tuberculosis (TB). We tested BCG (SSI1331) (in 6 animals, delivered
intradermally) and a recombinant (rBCG) AFRO-1 expressing perfringolysin (in 6 animals) followed by two boosts (delivered
intramuscullary) with non-replicating adenovirus 35 (rAd35) expressing a fusion protein composed of Ag85A, Ag85B and
TB10.4, for the capacity to induce antigen-specific cellular immune responses in rhesus macaques (Macaca mulatta). Control
animals received diluent (3 animals).

Methods and Findings: Cellular immune responses were analyzed longitudinally (12 blood draws for each animal) using
intracellular cytokine staining (TNF-alpha, IL-2 and IFN-gamma), T cell proliferation was measured in CD4+, CD8alpha/beta+,
and CD8alpha/alpha+ T cell subsets and IFN-gamma production was tested in 7 day PBMC cultures (whole blood cell assay,
WBA) using Ag85A, Ag85B, TB10.4 recombinant proteins, PPD or BCG as stimuli. Animals primed with AFRO-1 showed i)
increased Ag85B-specific IFN-gamma production in the WBA assay (median .400 pg/ml for 6 animals) one week after the
first boost with adenoviral-delivered TB-antigens as compared to animals primed with BCG (,200 pg/ml), ii) stronger T cell
proliferation in the CD8alpha/alpha+ T cell subset (proliferative index 17%) as compared to BCG-primed animals
(proliferative index 5% in CD8alpha/alpha+ T cells). Polyfunctional T cells, defined by IFN-gamma, TNF-alpha and IL-2
production were detected in 2/6 animals primed with AFRO-1 directed against Ag85A/b and TB10.4; 4/6 animals primed
with BCG showed a Ag85A/b responses, yet only a single animal exhibited Ag85A/b and TB10.4 reactivity.

Conclusion: AFRO-1 induces qualitatively and quantitatively different cellular immune responses as compared with BCG in
rhesus macaques. Increased IFN-gamma-responses and antigen-specific T cell proliferation in the CD8alpha/alpha+ T cell
subset represents a valuable marker for vaccine-take in BCG-based TB vaccine trials
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Introduction

Bacille Calmette-Guérin (BCG) is a safe live vaccine against M.

tuberculosis (Mtb) introduced in 1921 and it is still widely used in

newborns. BCG confers protection against disseminated tubercu-

losis (TB) during childhood, yet it fails to protect against

pulmonary disease in adults. An ‘improved’ BCG, combined with

boosts targeting biologically relevant Mtb antigens, represents a

reasonable strategy to augment, broaden and prolong immune

protection against TB.

An orchestrated cellular immune response of CD4+ [1] and

CD8+ T cells [2,3,4] is required to effectively contain Mtb infection.

Induction and expansion of antigen-specific, long-lived immune

responses in CD4+ and CD8+ T cells present therefore worthy goals

for vaccine development and for a rational boost strategy design.

We combined a BCG prime followed by an adenovirus (Ad)-

delivered Ag85A, Ag85B [5] and TB10.4 [6] boost. rAd35 was

choosen due to the prevalence of Ad5-specific immune responses in

Africa [7], where the TB burden is high and novel vaccination

strategies are needed. For example, the seroprevalence in sub-

Saharan Africa patients infected with HIV-1 of Ad5 is 90% and

20% for anti-Ad35 reactivity [8]. rAd35 induces low levels of

neutralizing antibodies in non-human primates (NHPs) [9], a

valuable model for preclinical TB vaccine trials: NHPs are
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susceptible to Mtb infection and develop clinical features and

pathology which closely resembles TB in humans [10].

We evaluated in the current study the quantity and quality of

cellular immune responses induced by BCG, or AFRO-1 (a

recombinant BCG, rBCG) as the prime, followed by two subsequent

adenoviral boosts. This heterologous prime-boost strategy allows the

expansion of memory T cells directed specifically against Ag85A,

Ag85B, and TB10.4. Expression of perfringolysin in AFRO-1 allows

endosomal escape and cytosolic localization as compared to BCG.

This may enhance antigen delivery and possibly a broader

presentation of antigens provided by rBCG loaded onto MHC class

I molecules and subsequent expansion of Mtb-antigen-specific CD8+

T cells as compared to BCG. AERAS-402 represents a recombinant,

non-replicating adenovirus 35 which expresses a fusion protein of

Ag85A, Ag85B and TB10.4. We examined, in longitudinally drawn

blood samples, vaccine take in response to either BCG or AFRO-1

prime, followed by AERAS-402 boosts in rhesus macaques using

intracellular cytokine staining (detection of TNF-a, IL-2 and IFN-c
production), T cell proliferation (in CD4+, CD8ab+, and CD8aa+ T

cell subsets) and IFN-c production in 7 day T cell cultures.

Methods

Recombinant BCG and Adenovirus
AERAS-401, a recombinant BCG, encodes a functionally

attenuated mutated perfringolysin O allele, pfoAG137Q which

leads to perforation of the phagosomal membrane of the host cell.

This enables AERAS-401 (and its passenger antigens) access to the

cytosol without harmful cytotoxicity. Briefly, a mutated non-

cytotoxic form of the gene encoding perfringolysin O (PfoA), was

introduced into the ureC locus of BCG-SSI 1331 by site-directed

allelic exchange mutagenesis. The AFRO-1 strain was generated

by incorporating an expression plasmid encoding for three

mycobacterial antigens, Ag85A (GenBank accession number

P0A4V2), Ag85B (GenBank accession number P12942) and

TB10.4 (GenBank accession number AF2122/97) into the Pfo-

expressing BCG strain AERAS-401. Generation of AERAS-402

(rAd35-TBS), a replication deficient adenovirus serotype 35,

encoding a fusion of Ag85A, Ag85B, and TB10.4, has been

described previously [11].

Animals and Immunizations
Female rhesus macaques (Macaca mulatta) of Chinese origin were

2–3 years old and housed in the Astrid Fagraeus laboratory at the

Swedish Institute for Infectious Disease Control (Solna, Sweden).

Housing and care procedures were in compliance with provisions

and general guidelines of the Swedish Animal Welfare Agency. All

procedures were approved by the Local Ethical Committee

(protocol DNR238/2006-54). The study design and sampling

schedule of collection of heparinized blood is shown in Figure 1.

Animals in group 1 (referred as group 1 animals) were primed at

week 0 with 26105 colony-forming units (CFU) with the BCG-SSI

1331 strain (reconstituted in Sauton’s media), animals in group 2

(referred as group 2 animals) were primed at week 0 with

26105 CFU with AFRO-1 delivered intradermally in 0.1 ml

saline. Animals in both groups were boosted twice, at 15 and 27

weeks after prime, with 261011 viral particles of AERAS-402,

delivered intramuscularly in 1 mL diluent (saline). Animals in

group 3 (referred as group 3 animals) received only saline.

Antigens and Antibodies
Assessment of cellular immune responses was carried out using the

Flow-cytometric Assay of Specific Cell-mediated Immune response in

Activated whole blood (FASCIA) assay [12]: BCG was reconstituted

from the commercially available BCG SSI1331 vaccine vial (Lot n.

106030B, Statens Serum Institut, Copenhagen, Denmark) at 26106

organisms/mL in RPMI 1640 (Gibco, Invitrogen, Stockholm,

Sweden) and used at a final concentration of 26105 organisms/

mL. Recombinant Ag85A, Ag85B and TB10.4 (all obtained from the

Aeras Global TB Vaccine Foundation, Rockville, USA) were cloned,

expressed and purified as described for Ag85B [13]. Recombinant

proteins were used at final concentrations of 5 mg/mL, and purified

protein derivative (PPD), obtained from Mycos Research, Loveland,

USA, at 1 mg/mL in RPMI 1640. For Intracellular Cytokine

Staining (ICS): Ag85A/b and TB10.4 peptide pools (15mers peptides

covering the entire protein with 11 amino acids overlaps) obtained

from JPT Peptide Technologies GmbH (Berlin, Germany), were used

at a concentration of 1 mg/mL diluted in RPMI 1640. Staphylococ-

cal enterotoxin A and B (SEA, and SEB; at 10 ng/mL each, Sigma-

Aldrich, Stockholm, Sweden) and PMA (Phorbol Myristate Acetate)

(at 25 ng/mL, Sigma-Aldrich) with ionomycin (at 1 mg/mL, Sigma-

Aldrich) were used as positive controls. For the FASCIA test and ICS,

the following antibodies were used to detect cell surface markers: anti-

CD3 PerCP or anti-CD3 Pacific Blue (SP34-2), anti-CD4 PerCP-

Cy5.5 (L200), and anti-CD8a APC-Cy7 (SK1), all obtained from BD

Biosciences (Stockholm, Sweden) and anti-CD8b FITC (2ST8.5H7)

was custom-conjugated at Beckman Coulter (Marseille, France).

Anti-IL-2 PE (MQ1-17H12), anti-IFN-c PE-Cy7 (B27), and anti-

TNF-a APC (MAb11) were used to detected intracellular cytokines

and were obtained from BD Biosciences. Note that CD8aa+ T cells

are characterized by the cell surface detection of the CD8a chain

(present as a homodimer) and the absence of CD8b chain (whereas

CD8ab+ T cells express the CD8a and the CD8b chain

heterodimer).

Whole Blood Antigen Stimulation Assay
40 mL of whole blood was diluted 1:5 in RPMI 1640 L-

glutamine (2 mM), penicillin (100 IU/mL) and streptomycin

Figure 1. Study Timeline and Sampling Schedule. NHPs were
boosted with AERAS-402 fifteen and twenty-seven weeks after the
prime with BCG or AFRO-1, Animals in group 1 were primed with BCG,
animals in group 2 with the recombinant BCG (AFRO-1) which
combines endosomal escape, TB10.4 expression and over-expression
of Ag85A and Ag85B. Animals in both groups were boosted with the
non-replicating adenovirus 35 AERAS-402 which expresses the Ag85A,
Ag85B and TB10.4 fusion protein. Animals in group 3 received the
diluent (control group).
doi:10.1371/journal.pone.0003790.g001
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(10 mg/mL) (Gibco, Invitrogen) and added in duplicates to 96-

well plates supplemented with Ag85A, Ag85B, TB10.4 antigens,

PPD or BCG as described above. Cultures were incubated at 37uC
and 5% CO2. After 7 days, 75 mL supernatant was removed from

each duplicate well, pooled, and kept at 270uC until IFN-c
concentrations were determined using a NHP IFN-c ELISA kit

(Cell Sciences, Canton, USA).

FASCIA
After 7 day incubation and removal of the supernatant from the

WBA, cells were washed with PBS and incubated for 15 min at

4uC with the cell surface antibodies described above. Red blood

cells were lysed using PharmLyse (BD Biosciences). Cell

proliferation, detected by the presence of proliferative blasts, was

measured by flow cytometry immediately after staining using a BD

FACSAria flow cytometer (BD Biosciences). Cells were first gated

on CD3 positive events, followed by a gate on resting lymphocytes

and proliferative blasts based on forward scatter (FSC) vs. side

scatter (SSC) parameters. The presence of CD4+, CD8aa+ and

CD8ab+ T cells within resting lymphocytes and proliferative blasts

was assessed, and the index of proliferation (% of blasts in response

to antigen stimulation - % of blasts in non-stimulated controls) was

measured for each T cell compartment. Analysis was performed

using FlowJo software (Tree Star Inc., Ashland, USA). Figures

were generated using TIBCO Spotfire software (TIBCO Software

Inc., Göteborg, Sweden).

Intracellular Cytokine Staining
Frozen peripheral blood mononuclear cells (PBMCs) were

thawed, rested overnight, and stimulated for 6 hours with peptide

pools in RPMI 1640 L-glutamine (2 mM), penicillin (100 IU/

mL) and streptomycin (10 mg/mL), 10% heat-inactivated FBS

(Gibco, Invitrogen), in the presence of BFA (brefeldin A) (at

10 mg/mL, Sigma-Aldrich). Cells were then washed in PBS, and

stained with cell surface marker antibodies as described above in

the presence of the live/dead fixable dead cell marker (Aqua

LIVE/DEAD; Invitrogen), for 30 min at 4uC. After washing

with PBS, cells were fixed and permeabilized using the IntraPrep

Fix/Perm Kit (Beckman Coulter) and incubated with antibodies

specific for intracellular cytokines for 30 min at 4uC. Cells were

analyzed using a BD FACSCanto flow cytometer (BD Biosci-

ences) and analysis was performed using FlowJo software. A

minimum of 104 events in each individual CD4+, CD8ab+ T cell

subset and 56103 events for CD8aa+ were selected for analysis.

Average of duplicates of the total frequency of IL-2, IFN-c, or

TNF-a producing CD4+, CD8aa+ and CD8ab+ T cells

stimulated with the Ag85A/b peptide pool were plotted and

the proportion of the total cells expressing each of the seven

possible combinations of IL-2, IFN-c, and TNF-a from selected

animals in response to: i) antigen, ii) maximal stimulation (PMA

ionomycin) and iii) no stimulation (medium). The 95th percentile

of the percentage of cytokine-producing cells in medium control

(no stimulation) was calculated. Based on these results, cutoff

values for positivity above background were selected (0.15% for

CD4+, 0.4% for CD8aa+, and 0.2% for CD8ab+ T cells). This

resulted that in the medium control determinations, 86.99% of

the measurements of CD4+ T cells were under the cutoff,

84.55% of CD8aa+, and 85.37% of CD8ab+ T cells,

respectively. Percentage of cytokine-producing cells above these

cutoffs in response to antigen stimulation were considered as

positive. Note that Ag85A/b designates the peptide pool and

Ag85A/B the corresponding recombinant protein as described

above.

Results

Priming with AFRO-1 enhances IFN-c Production in
Response to Ag85A and Ag85B

NHPs were vaccinated either with BCG, or with AFRO-1

followed by two adenoviral boosts containing Ag85A/B and

TB10.4 (AERAS-402) (see Figure 1). A third NHP group received

only injections with diluent as a control. IFN-c production in

whole blood cultures in response to Ag85A, Ag85B, TB10.4, PPD,

BCG, SEA/SEB (positive control) or no stimulation (medium,

negative control) was evaluated in longitudinally sampled blood

specimens (see sampling schedule detailed in Figure 1). Stimulation

of whole blood with PPD or BCG induced stronger and earlier

IFN-c production (detectable four weeks after the prime) in group

1 animals as compared to group 2 animals (Figure 2). IFN-c-

induction was measured in response to each antigen-component

(i.e. Ag85A, Ag85B and TB10.4) delivered as a transgene by

AERAS-402: Ag85A and Ag85B stimulation induced high levels of

IFN-c production (.400 pg/mL) in group 2 animals, which

peaked one week after the first boost with AERAS-402. In group 1

animals, the response to Ag85A and Ag85B, was 2 to 3-fold lower

(,200 pg/mL) as compared to group 2 animals. Although an

IFN-c response was detectable as early as four weeks after the

prime, the peak response was detected one week after the first

boost with AERAS-402. TB10.4 stimulation of whole blood

induced high levels of IFN-c production (.400 pg/mL) in both

group 1 and 2 animals one week after the first boost. Lower levels

of IFN-c production (.150 pg/ml) in response to Ag85A (for

group 1 and 2 animals), and to BCG (only for group 1 animals)

were observed one and four weeks after the second boost. We

could not detect IFN-c production ten weeks after the second

boost in any NHP group. In summary, the BCG-prime induced

IFN-c production, defined by BCG stimulation in vitro, four weeks

after the prime; yet it induced an overall weaker IFN-c response

directed against molecularly defined, recombinant antigens. In

contrast, the AFRO-1 prime induced a delayed, but stronger IFN-

c production in response to Ag85A and Ag85B one week after the

first boost with AERAS-402.

Priming with AFRO-1 induces increased T Cell
Proliferation in Response to Ag85B in CD8aa+ T Cells

In order to characterize immune cell subpopulations responding

to Mtb targets, we gauged the index of cellular proliferation within

the CD4+, CD8ab+, and CD8aa+ T cell subsets, since recent

studies suggested that CD8aa+ T cells represent a biologically

relevant memory T cell subset [14]. The peak of cellular

proliferation in response to the test antigens occurred one week

after the first boost for group 1 (BCG-primed) and group 2

(AFRO-1-primed) animals. In the CD4+ T cell compartment,

Ag85B stimulation induced stronger stimulation in group 2

animals (proliferative index: 10%) as compared to group 1 animals

(5.5%) (Figure 3A). In contrast, TB10.4 stimulation induced

similar levels of proliferation (4%) in group 1 and 2 animals

(Figure 3A). In the CD8aa+ T cell subset, Ag85B stimulation

induced a stronger T cell stimulation in group 2 animals (17%) as

compared to group 1 animals (5%), and TB10.4 stimulation

induced comparable levels of proliferation in group 1 and group 2

animals with 9% and 12%, respectively (Figure 3B). We could not

observe differences in the CD8ab+ T cell subset; the proliferative

index for Ag85B was 6 and 8%, and TB10.4 stimulation yielded 8

and 10% proliferation for group 1 and group 2 animals

respectively (Figure 3C). No differences were observed between

the different NHP groups in response to Ag85A, PPD and BCG

stimulation. In summary, NHPs primed with AFRO-1 showed

BCG Prime rAd35 Boost in NHP
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stronger CD4+ and CD8aa+ T cell proliferation in response to

Ag85B as compared to animals primed with BCG.

Polyfunctional Ag85A/b- and TB10.4-specific T Cells in
Animals primed with AFRO-1

Intracellular IFN-c, TNF-a, and IL-2 production was assessed

in the CD4+ (Figure 4A) CD8aa+ (Figure 4B) and CD8ab+

(Figure 4C) T cell subsets using Ag85A/b or TB10.4 peptide pools.

For group 2 animals, antigen-specific T cells were detected in two

out of six animals. A single animal showed Ag85A/b-specific

(0.35%) and TB10.4-specific (0.19%) CD4+ T cells, one week after

the first boost (Figure 4A). In a second animal, Ag85A/b-specific

(0.18%) CD4+ T cells could be detected one week after the first

boost (Figure 4A) and TB10.4-specific (0.4%) CD8ab+ T cells

were detectable four weeks after the second boost (Figure 4B). For

group 1 animals, antigen-specific T cells were detected in four out

of six animals. One animal showed Ag85A/b-specific CD4+ T

cells (0.25%), and two animals exhibited TB10.4-specific CD8ab+

T cells (0.3 and 0.42%) one week after the first boost (Figure 4A,

B). Interestingly, a single animal in group 1, displayed high

numbers of TB10.4-specific CD4+ (0.31%), CD8aa+ (2%)

(Figure 4C) and CD8ab+ (1.9%) T cells one week after the first

boost, and TB10.4-specific (0.45%) CD8ab+ T cells four weeks

after the second boost.

As the quality of a cellular immune response may be associated

with the capacity to produce simultaneously different cytokines at

the single cell level [15], the simultaneous production of IFN-c,

TNF-a, and IL-2 was measured. This allows to characterize seven

distinct populations of cytokine-producing T cell subsets (see

legend to Figure 4). Antigen-specific T cells displayed a unique

profile of cytokine production upon in vitro peptide stimulation

within each different T cell subset. This pattern was distinct from

constitutive and maximally induced (PMA/ionomycin) cytokine

production pattern in T cells. Antigen-specific CD4+ T cells

produced TNF-a alone or in combination with IFN-c and to a

lesser extent in combination with IFN-c and IL-2. CD8aa+ T cells

produced predominantly TNF-a alone or in combination with

IFN-c, whereas CD8ab+ T cells responses were characterized by

co-production of TNF-a and IFN-c, with detectable production of

TNF-a or IFN-c alone and simultaneous production of IFN-c,

TNF-a, and IL-2. Based on the median fluorescence intensity

(MFI), CD4+ T cells produced six-fold more TNF-a when co-

expressed with IFN-c and ten-fold more TNF-a when co-

expressed with TNF-a and IL-2 (data not shown). CD8ab+ T

cells produced four to five-fold more TNF-a when TNF-a was co-

produced with IFN-c alone or IFN-c and IL-2 together. In

summary, two animals primed with AFRO-1 showed polyfunc-

tional antigen-specific T cells: one animal displayed Ag85A/b- and

Figure 2. Prime with BCG or AFRO-1 induces a different IFN-c production profile in response to Mtb antigen stimulation. The median
of IFN-c production (measured by ELISA) in whole blood cultures for each group in response to different Mtb antigen stimulation was assessed.
Stronger IFN-c production was seen in animals primed with AFRO-1 in response to Ag85A and Ag85B, as compared to animals primed with BCG one
week after the first boost with AERAS-402.
doi:10.1371/journal.pone.0003790.g002

BCG Prime rAd35 Boost in NHP
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TB10.4-specific CD4+ T cells and one animal Ag85A/b-specific

CD4+ and TB10.4-specific CD8ab+ T cells. Four animals primed

with BCG displayed polyfunctional antigen-specific T cells: two

animals displayed only TB10.4-specific CD8ab+ T cells, one

animal Ag85A/b-specific CD4+ T cells, and one animal out the

four displayed polyfunctional TB10.4-specific CD4+, CD8aa+ and

CD8ab+ T cells.

Discussion

BCG vaccination prevents disseminated TB in young children,

but fails to prevent adult pulmonary TB which represents the bulk

of the global disease burden. New antituberculous vaccination

strategies are urgently needed to improve BCG vaccination. The

current study aimed to define the immunogenicity of either BCG

or AFRO-1 (rBCG) priming, followed by two boosts with rAd35

AERAS-402 in rhesus macaques. Long-term (mediated by central-

memory T cells) and short-term immune memory (mediated by

effector-memory T cells) is most likely needed to provide effective

and long-lasting protection from intracellular infections [16]. We

assessed the presence of antigen-specific T cells in central memory

cells (using the whole blood assay and FASCIA measuring IFN-c

production and proliferation in 7 day immune cell cultures) and in

effector memory cells (measured in a six hours ICS assay).

Antigen-specific responses were detected in different T cell subsets

(CD4+, CD8ab+ and CD8aa+). Blood obtained from animals

vaccinated with BCG, but not with AFRO-1 (except in response to

in vitro BCG stimulation) showed increased levels of IFN-c
production in response to Ag85A, Ag85B, PPD, and BCG

stimulation four weeks after priming. This is consistent with

antigen-specific T cell responses seen in humans after BCG

vaccination [17].

IFN-c can be produced by CD4+ and CD8+ T cells or NK cells.

Therefore, we analyzed T cell proliferation in whole blood cell

cultures at day 7 within the CD4+, CD8ab+, and the CD8aa+ T

cell compartments. The highest increase of proliferation (as

compared to the control group) was observed in group 2 animals

within the CD4+ and CD8aa+ T cell compartments in response to

Ag85B stimulation one week after the first boost, and this was 2 to

3-fold higher than observed for group 1 animals. Stimulation with

Ag85A induced higher IFN-c production in group 2 animals but

no concomitantly detectable immune cell proliferation. The

discrepancy between IFN-c production and T cell proliferation

may stem from the fact that IFN-c and proliferation is measured

Figure 3. Prime with AFRO-1 induces proliferation of Ag85B-specific T cells in CD4+ and CD8alpha/alpha+ T cells. The median of the
proliferation index (% of blasts in response to antigen stimulation - % of blasts in negative control) in response to Mtb antigens was determined by
flow cytometric analysis. Differential expansion of T cell subsets was gauged by gating on T cell subsets, i.e. CD4+, CD8alpha/beta+ and CD8alpha/
alpha+. Animals primed with AFRO-1 showed stronger proliferation in response to Ag85B stimulation within CD4+ T cells (A) and CD8alpha/alpha+ T
cells (B) as compared to animals primed with BCG one week after the first boost with AERAS-402. No difference was detectable between animals
primed with AFRO-1 or BCG in the CD8alpha/beta+ T cell compartment (C).
doi:10.1371/journal.pone.0003790.g003

BCG Prime rAd35 Boost in NHP
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after 7 days of in vitro culture. Based on data obtained from human

whole blood cultures, the level of extracellular IFN-c remained

detectable up to 7 days (whereas IL-2 protein, consumed by T

cells, declines after 3 days) [18]. IFNc-producing cells could have

undergone apoptosis at day 7 and may not be detectable anymore.

Alternatively, IFN-c production may be independent of T cell

proliferation: for example human HIV-1 specific CD4+ T cells

produced IFN-c in culture, but they did not proliferate [19].

Of note, Ag85B-specific production of IFN-c, and antigen-

specific proliferation peaked one week after the first boost with

AERAS-402 within the CD4+ and CD8aa+ T cell compartments

(see Figures 2, 3 and 4) and this pattern of reactivity was increased in

animals primed with AFRO-1 as compared to animals primed with

BCG. This may be due to the unique intracellular fate of AFRO-1

(rBCG) and the subsequently altered mode of antigen presentation

and T cell stimulation. Mtb and BCG are thought to reside in the

phagolysosome in macrophages, which may direct antigen

presentation towards the MHC class II pathway. Interestingly

Mtb, but not BCG, and M. leprae have recently been detected in the

cytosol of human monocyte-derived dendritic cells and macro-

phages [20], a localization which may facilitate access of Mtb

antigens to the MHC class I presentation pathway. Similarly, the

endosomal escape rBCGDureC::Hly+ BCG variant which expresses

listeriolysin from Listeria monocytogenes (developed by S.H.E. Kauf-

man’s group) [21] increases mycobacterial antigens in the cytosol of

infected macrophages. Perfringolysin O expressed by AFRO-1

however, unlike the pH-dependent activity of listeriolysin which is

optimal at pH#5.5 [22], is active at an almost neutral pH of 6.5–7.0

that is typical for Mtb or BCG-containing phagosomal compart-

ments; a situation which may facilitate endosomal escape.

Over-expression of Ag85B by rBCG30 was shown to induce

strong cellular responses and protection against Mtb in guinea pigs

[23,24], but limited immunogenicity in a phase I clinical trial [25].

In contrast, AFRO-1 combines endosomal escape and over-

expression of Mtb antigens. The novel vaccination approach

presented here may therefore enable both improved access of the

vaccine strain to the host cell cytoplasm and superior processing

and presentation of Mtb antigens to CD8+ T cells.

We used an integrated approach in order to visualize Mtb-

specific T cell responses directed against the vaccine-components:

Figure 4. Polyfunctional Ag85A/b and TB10.4-specific T cells are present in animals primed with AFRO-1 or BCG. Production of IL-2,
IFN-gamma, and TNF-alpha within CD4+ (A), CD8alpha/alpha+ (B) or CD8alpha/beta+ T cells (C) in response to Ag85A/b or TB10.4 peptide pool
stimulation was assessed by flow cytometry. The average of duplicates of the total frequency of IL-2, IFN-gamma, or TNF-alpha producing T cells
stimulated with Ag85A/b or TB10.4 peptide pools were plotted. The proportion of total T cells expressing any of the seven possible combinations of
IL-2, IFN-gamma, and TNF-alpha from selected animals, either in response to antigen, maximal stimulation (PMA/ionomycin) and medium (control)
are shown in pie charts. Ag85A/B and TB10.4-specific T cells were observed in 2/6 animals primed with AFRO-1, and in 4/6 animals primed with BCG
one week after the first boost with AERAS-402.
doi:10.1371/journal.pone.0003790.g004
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The whole blood cell culture assay allows measurement of central

memory rather than effector memory T cells [26,27], ICS was

used to assess the presence of effector memory T cells. These cells,

enriched for perforin, granzyme expression and for cytokine

production are most likely key effectors in conferring immune

protection [16]. Antigen-specific simultaneous production of IFN-

c, TNF-a and IL-2 was detected on the single-cell level either in

CD4+, CD8ab+, or CD8aa+ T cells: polyfunctional T cells may be

clinically relevant and more effective as compared to single

cytokine producing cells in response to Mtb infection [28]. For

instance, IFN-c plays a central role in the activation of infected

macrophages, but recent studies suggested that IFN-c may not

correlate with protection against Mtb [29]. Other type-1 cytokines

are instrumental in protective cellular immune responses against

intracellular infections: more Mtb recent data consolidated the

notion that polyfunctional T cells, producing TNF-a and IFN-c
with or without IL-2, play a pivotal role in protection against

Leishmania major challenge in mice [30]. In the current study,

antigen-specific T cells could only be detected in a few animals, as

defined in a six hours ICS assay. It is possible that vaccination-

induced antigen-specific effector memory T cells were not present

in the peripheral circulation at the time of the blood draw, but

rather in secondary lymph nodes [31].

Animals primed with AFRO-1 or BCG were vaccinated with

AERAS-402 at 15 and 27 weeks after priming in order to boost

antigen-specific memory T cells. Vaccination of mice with

AERAS-402 has previously been shown to induce Ag85A,

Ag85B, and TB10.4-specific T cells and to confer protection

against Mtb [32]. We defined in the current report distinct,

antigen-specific T cell subsets at different time points in the prime-

boost regimen. The discrimination between CD8aa+ and the

CD8ab+ T cell subsets allowed us to demonstrate increased

proliferation in response to Ag85B within the CD8aa+ T cell

subset. This is consistent with studies obtained from healthy blood

donors [33] and patients with melanoma [34]: CD8aa+ T cells

represent a stable and distinct memory T cell population and

contribute to antigen-specific memory T cell formation in mice

[14] and in humans [34]. Detection of Mtb antigen-specific T cells

in CD8aa+ T cells suggests that AFRO-1 activates and expands

this biologically relevant memory T cell subset (see Figure 3B).

Although the current study included only a limited number of

outbred animals, which did not allow to test for statistical

differences, we were able to observe differences in vaccine take.

The prime with AFRO-1 induces a stronger immune response as

compared to BCG-prime in rhesus macaques defined by IFN-c
production and proliferation in CD8aa+ T cells. The latter

proliferative response is absent in animals primed with BCG. The

immunological readouts of immune responses in non-human

primates, such as those described in the current report, allowed us

to detect differences between experimental groups that reflected

the response of the entire group, particularly the detection of IFN-

c and T cell proliferation in the WBA. Such assays will aid to

escort future studies with novel TB vaccines in nonhuman

primates and help to define clinically relevant markers of vaccine

take.
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