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Abstract—This paper presents a novel minimum entropy filter
design for a class of stochastic nonlinear systems which are
subjected to non-Gaussian noises. Motivated by stochastic distri-
bution control, an output entropy model is developed using radial
basis function neural network (RBFNN) while the parameters of
the model can be identified by the collected data. Based upon the
presented model, the filtering problem has been investigated while
the system dynamics have been represented. As the model output
is the entropy of the estimation error, the optimal nonlinear filter
is obtained based on the Lyapunov design which makes the model
output minimum. Moreover, the entropy assignment problem
has been discussed as an extension of the presented approach.
To verify the presented design procedure, a numerical example
is given which illustrates the effectiveness of the presented
algorithm. The contributions of this paper can be summarized as
1) an output entropy model is presented using neural network;
2) a nonlinear filter design algorithm is developed as the main
result and 3) a solution of entropy assignment problem is obtained
which is an extension of the presented framework.

Index Terms—Minimum entropy filtering, stochastic nonlinear
systems, non-Gaussian distribution, radial basis function neural
network

I. INTRODUCTION

S INCE Kalman filter was proposed as a linear optimal
observer design [1], [2], a lot of extensions of Kalman

filter have been developed, such as the extended Kalman filter
(EKF) [3] and the unscented Kalman filter (UKF) [4]. How-
ever, most of these results focus on the Gaussian stochastic
systems. Due to the fact that non-Gaussian noises widely exist
in practice, the stochastic non-Gaussian distribution systems
became a significant research topic for filtering. For example,
the stochastic distribution of estimation error is investigated in
[5].

Based on the B-spline approximation, the decoupled model
has been presented to avoid of using the partial differential
equation analysis [6]. This model provides a solution to the
tracking problem of the output probability density function
(PDF) [7]. Moreover, trying to make the distribution as sharp
as possible in practice which leads to the minimum entropy
control for the non-Gaussian distribution [8]. On the other
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hand, the minimum entropy filtering algorithms have also 
been investigated [9], [10]. These results assume that the 
distributions of the random noises are known and the recursive 
formulation of probability density function leads to large 
workloads of computing. Meanwhile, the data driven minimum 
entropy filter via kernel density estimation (KDE) [11] was 
proposed in [12]–[14]. Basically, it is very difficult to imple-
ment the filter in real-time for the stochastic nonlinear system 
with unknown distribution of noises since the probability 
density function is difficult to obtain in real-time using kernel 
density estimation [11]. Another approach for nonlinear non-
Gaussian filtering [15] is particle filtering for which is difficult 
to analyze the convergence of the estimation error. Therefore, 
it is very significant to develop a new filtering algorithm with 
theoretical analysis which can be implemented in real-time for 
practical applications.

To achieve the objective, a nonlinear filter is designed for 
a class of stochastic nonlinear systems while the nonlinear 
dynamics of the estimation errors have been transformed to 
the states of the stochastic distribution model [16]. In addition, 
the entropy of the estimation error can be described by the 
extended stochastic distribution model using RBF neural net-
work. In other words, the non-linearity can be represented by a 
neural network model, and then the real-time implementation 
can be guaranteed once the model has been trained sufficiently. 
Notice that any type of neural network is available to describe 
the output entropy which leads to a potential framework for 
entropy control problem.

Following this approach, the structure of the filter is given 
firstly which leads to the dynamics of the estimation error. 
Then, the dynamics can be represented by the RBFNN-based 
entropy model and the filtering can be given using Lyapunov 
design method. In other words, the designed filtering signal 
can be used to minimize the entropy of estimation error while 
the convergence is also analyzed in mean-square sense. The 
simulation results are compared with the standard EKF design 
and the better performances indicate the effectiveness of the 
proposed filtering algorithm.

II. FORMULATION

Consider the following discrete-time stochastic nonlinear 
system,

xk+1 = f (xk, uk) + wk
yk = Cxk + v̄k (1)

where y and u denote the system output and input, respec-
tively. Suppose that the output is bounded y ∈ [a, b], f (·) is
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a known general continuous nonlinear function, C is known
constant matrix, and w and v̄ stand for the random noise with
zero mean value.

Assumption 1: The nonlinear function f (·) satisfies Lip-
schitz condition which implies that the following inequality
holds.

|f (xi, u)− f (xj , u)| ≤M |xi − xj | ,∀i, j ∈ Z+ (2)

where M is a real positive constant.
Based on the system model, the structure of the filter can

be obtained as follows:

x̂k+1 = f (x̂k, uk) + gk (3)

where x̂ and ŷ denote the estimated state x and the estimated
output y while the dynamic of estimation error x̃ is given as
follows:

x̃k+1 = f (xk, uk)− f (x̂k, uk)− gk + wk (4)

Similarly the output estimation error can be formulated as
ỹk = Cx̃k + v̄k. In this paper, gk will be designed by ỹ which
forms the design objective of this paper. In particular, the filter
design would be completed if the entropy of the estimation
error x̃ is minimized which implies that the randomness of
the estimation is minimized. Due to the fact that x̃ is un-
measurable, the entropy of output estimation error ỹ can be
optimized equivalently to attenuate the randomness of the
estimation. Therefore, Rényi entropy is considered in this
paper,

Hα,k (ỹ) =
1

1− α
log

∫ b

a

γαk (ỹk, uk) dỹ (5)

where α ≥ 0 is the order of the entropy, γk (·) denotes
the probability density function of the estimation error for
sampling time instance k.

In summary, the design objective is to find nonlinear
function gk to minimize the entropy Hα,k (ỹ) for stochastic
nonlinear system (1).

III. RBFNN-BASED ENTROPY MODEL

Motived by B-spline stochastic distribution model [7], the
nonlinear function gk can be obtained similar to the controller
design for the stochastic distribution control. Therefore, a
novel RBFNN-based entropy model is presented in this section
while the dynamic relationship between Hα,k (ỹ) and gk
is established. Normally, the filter design is based on the
optimization of state estimation error x̃. However the output
estimation error ỹ is also available to use if the prediction of
the output entropy can be obtained. In addition, the random
noise v̄k is also taken into account if the relationship between
Hα,k (ỹ) and gk is described.

A. The Structure of the Model

Suppose that the probability density function of the estima-
tion error ỹ can be represented by the RBF neural network with
weighing vector Vk. Thus we recall the following model[6]

Vk+1 = AVk +Bgk√
γk (ỹk gk) =

G√
V Tk EVk

Vk + eγ (6)

where V = [v1, v2, . . . , vm]
T is the weight vector and

G = [G1 (ỹ) , G2 (ỹ) , . . . , Gm (ỹ)] while Gi (ỹ) and eγ
stand for the pre-specified Gaussian basis functions for the
approximation of γ (ỹ, g) and the approximation residual.
E =

∫ b
a
GT (ỹ)G (ỹ) dỹ. Matrices A and B are the coefficient

of the weight update equation.
Notice that the entropy (5) can be further expressed by the

following formula if the order of the entropy is selected as
α = 1/2, then we have

Hk = 2 log

∫ b

a

√
γk (ỹk, gk)dỹ (7)

Combining the model (6) and the definition of the entropy
(7), the following equation can be obtained.

Hk = 2 log

∫ b

a

G√
V Tk EVk

Vkdỹ +

∫ b

a

eγdỹ


= 2 log

 m∑
i=1

vi√
V Tk EVk

∫ b

a

Gi (ỹ) dỹ +

∫ b

a

eγdỹ


(8)

According to the neural network approximation theory [17], 
there exists a positive integer m such that the error eγ < εfor 
any pre-specified ε > 0. Moreover, integral value of the pre-
specified basis function Gi (ỹ) is equal to 1. As a result, Eq.(8) 
can be rewritten by

Hk = 2 log

 Ḡ√
V Tk EVk

Vk

 (9)

where Ḡ = [1, 1, . . . , 1] ∈ Rm.
To simplify the expression, we can further denote the weight

vector as follows:

V̄k =
Vk√
V Tk EVk

(10)

Based on this transformation, the output entropy model of
the estimation error is given by

V̄k+1 = ĀV̄k + B̄gk

Hk = 2 log
(
ḠV̄k

)
(11)

where matrices Ā and B̄ are the coefficient of the transformed
weight update equation for V̄ .
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B. Parametric Identification

In order to facilitate the system analysis, the elements of
the coefficient matrices Ā and B̄ should be identified. Thus
we define the following function.

rk = e
1
2Hk (12)

Transforming the presented model, the input-output format
of the system can be obtained.

rk = ḠV̄k = Ḡ
(
I − z−1Ā

)−1
B̄gk−1 (13)

with further expansion

rk =
m∑
i=1

airk−i +
m−1∑
i=1

m∑
j=1

dijgk−i (14)

Notice that the expression above can be further rewritten by
the following format,

rk = θTΦk (15)

where

θ =
[
a1, . . . , am, d11, . . . , d1m, . . . , d(m−1),1, . . . , d(m−1),m

]T
(16)

Φk = [rk−i, . . . , rk−m, gk−1, . . . , gk−1, . . . , gk−m, . . . , gk−m]T

(17)

Based on Eq.(15), the unknown parametric vector θ can be
estimated using recursive least square (RLS) algorithm [18]:

θ (i+ 1) = θ (i) +
P (i− 1) Φk (ỹk, gk) ε (i)

1 + ΦTk (ỹk, gk)P (i− 1) Φk (ỹk, gk)
(18)

ε (i) = rk − θT (i) Φk (ỹk, gk) (19)

P (i) =

(
I − P (i− 1) Φk (ỹk, gk)

1 + ΦTk (ỹk, gk)P (i− 1) Φk (ỹk, gk)

)
× P (i− 1) (20)

Since the RBFNN-based approximation with weights can be
given for probability density function as follows, the weights
V̄k for any sampling instance k can be estimated.√

γk (ỹk, gk) = GV̄k + eγ (21)

which leads to

V̄k =
(
GTG

)−1
GT
√
γk (ỹk, gk) (22)

while the Gaussian basis functions are orthogonal then(
GTG

)−1
exists.

Moreover, the probability density function γk and entropy
Hk can be approximated using the kernel density estimation
based on the online/offline training with collected data set.
Then the initial value of the weights can be obtained and the
weights can also be adjusted for any sampling instance k if
it is necessary. Finally, once the parametric vector and initial
weights are estimated, the matrices Ā and B̄ can be obtained
which completes the setup of the presented model.

Fig. 1. The structure of the presented nonlinear filter.

In particular, the probability density function γk and entropy 
Hk can be estimated as follows once the bandwidth nk is pre-
specified.

γk =
1

nk

k∑
i=k−nk

G (η − ỹi) (23)

where η denotes the random variable of ỹ . Based on the 
estimated probability density function, the square-root of PDF 
and the entropy can be further estimated using numerical 
approach.

IV. NONLINEAR FILTER DESIGN

Based upon the presented model (11), it is shown that the 
filtering problem has been transformed to an optimal control 
form. Particularly, the structure of the filter design can be 
described by Fig.IV.

To achieve the design objective, the performance criteria can 
be considered which consists of the entropy and the filtering 
adjustment signal with weights. Without loss of generality, the 
following format can be adopted to simplify the calculation,

J =
1

8
H2
k +

λ

2
g2k (24)

where λ denotes a pre-specified positive real number.
To minimise this performance criterion, the first order 

derivative is calculated which should be equal to 0.

∂J

∂g
= 0 (25)

which leads to

∂J

∂g
= log

(
ḠVk

) ∂ log
(
ḠVk

)
∂g

+ λgk

=
log
(
ḠVk

)
Ḡ

ḠVk

∂Vk
∂g

+ λgk

=
log
(
ḠVk

)
Ḡ

ḠVk

∂Vk/∂t

∂g/∂t
+ λgk = 0 (26)

Furthermore, we have

Q (ỹ)
∂Vk
∂t

+ λgk
∂g

∂t
= 0 (27)

where

Q (ỹ) =
log
(
ḠVk

)
Ḡ

ḠVk
∈ Rm (28)



4

Thus the nonlinear filter can be designed and the discrete-
time formula can be expressed using the backward difference
with the sampling time ∆t to replace the derivative.

∂Vk
∂t
≈ Vk − Vk−1

∆t
,
∂g

∂t
≈ gk − gk−1

∆t
(29)

which leads to

λg2k − gkgk−1 +Q (ỹ) (Vk − Vk−1) = 0 (30)

Solving this equation, the filter design can be completed by
the following formula.

gk =
gk−1 ±

√
g2k−1 − 4λQ (ỹ) (Vk − Vk−1)

2λ
(31)

where the sign in the formula can be determined by substitut-
ing gk with the proper λ into following condition

∂2J

∂g2
> 0 (32)

Moreover, the sign in Eq.(29) can be further determined by
the following convergence analysis in next section.

Note that the performance criterion can also be considered
as a Lyapunov function candidate. From Eq.(24), it shows that

∂J

∂t
=
∂J

∂g

∂g

∂t
= 0 (33)

As we analysed that ∂J
∂g = 0 using the design function g, we

claim that the filtering algorithm can be used to minimize the
entropy of the estimation error.

As a summary, the pseudo-code of the presented filtering
algorithm is given in this section.

Algorithm 1 Nonlinear Filtering
Input: x̂0, g0, Ā (0), B̄ (0),λ
Output: ŷ, x̂

Measure system output y and initialization
while k > 0 do

Update ŷ, x̂← Eq.(1) and Eq.(3)
if k < Polynomial order in Eq.(14) then

Off-line training based on pre-collected data
else
ai, dij ← RLS, Eq. (18-20)

end if
Ā (k) , B̄ (k)← Re-arrange ai, dij
g±k ← Eq.(31)
J±k ← Eq.(24)
if J+

k < J−k then
gk ← g+k

else
gk ← g−k

end if
k ← k + 1

end while

V. CONVERGENCE ANALYSIS

Since the output estimation error is minimised with the
presented filtering algorithm, the convergence of the estimation
error x̃ can be further analysed in mean square sense.

The dynamics of the estimation error Eq.(4) results in

E
(
x̃2k+1

)
= E

(
f̃2k − 2f̃kgk + g2k

)
(34)

where E (·) denotes the mean-value operation with f̃k =
f (xk, uk)− f (x̂k, uk).

Similarly, we have

E
(
x̃2k
)

= E
(
f̃2k−1 − 2f̃k−1gk−1 + g2k−1

)
(35)

which leads to

E
(
x̃2k+1

)
− E

(
x̃2k
)
≤ E

((
f̃k − gk

)2
+ 2f̃k−1gk−1

)
(36)

Notice that 2f̃k−1gk−1 = −
(
f̃k−1 − gk−1

)2
+f̃2k−1+g2k−1,

and then Eq.(36) can be further expressed by

E
(
x̃2k+1

)
− E

(
x̃2k
)
≤ E

((
f̃k − gk

)2
−
(
f̃k−1 − gk−1

)2
+ f̃2k−1 + g2k−1

)
(37)

As there always exist real positive numbers ε1, ε2 and ε3,
the following inequalities can be satisfied.(

f̃k − gk
)2
≤ 1

ε1
f̃2k + ε2g

2
k (38)(

f̃k−1 − gk−1
)2
≥ 1

ε1
f̃2k−1 − ε3g2k−1 (39)

Based upon Assumption 1, there exists a positive constant
Mk for each sampling instance k to satisfy inequality (2).
Furthermore, it leads to that there always exists a positive
constant N < max

(
M2
k

)
such that(

f̃k − gk
)2
≤ N

ε1
x̃2k + ε2g

2
k (40)(

f̃k−1 − gk−1
)2
≥ N

ε1
x̃2k−1 − ε3g2k−1 (41)

Thus, Eq.(36) is transformed to

E
(
x̃2k+1

)
− E

(
x̃2k
)
≤ N

ε1

(
E
(
x̃2k
)
− E

(
x̃2k−1

))
+ E

(
(1 + ε3) g2k−1 + f̃2k−1 + ε2g

2
k

)
(42)

Note that Eq.(31) can be represented as follows:

gk = gk−1 −∆k−1 (43)

where

∆k−1 =
(2λ− 1) gk−1 ±

√
g2k−1 − 4λQ (ỹ) (Vk − Vk−1)

2λ
(44)
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In addition, we have

ε2g
2
k + (1 + ε3) g2k−1

= ε2
(
g2k−1 − 2gk−1∆k−1 + ∆2

k−1
)

+ (1 + ε3) g2k−1

= (1 + ε2 + ε3) g2k−1 − ε2
(
2gk−1∆k−1 −∆2

k−1
)

(45)

which results in the following inequality.

E
(
x̃2k+1

)
− E

(
x̃2k
)
≤ N

ε1

(
E
(
x̃2k
)
− E

(
x̃2k−1

))
+ E

(
f̃2k−1

+ (1 + ε2 + ε3) g2k−1 − ε2
(
2gk−1∆k−1 −∆2

k−1
))

(46)

Since we can always find suitable positive constants ε1 and
N make the following inequality holds,

0 <
N

ε1
< 1 (47)

thus the estimation error is convergent if the following condi-
tion is satisfied.

f̃2k−1 + (1 + ε2 + ε3) g2k−1 + ε2∆2
k−1 − 2ε2gk−1∆k−1 ≤ 0

(48)

To meet Eq.(32), λ can be chosen as λ ≥ 1
2 , and then

Eq.(44) shows that the plus sign can be used if gk−1 > 0.
Similarly, the minus sign can be used if gk−1 < 0 such that

ε2gk−1∆k−1 > 0 (49)

Since ε2 can be pre-specified as a large positive constant to
satisfy the inequality (40), the condition (48) is implementable.

Finally, it can be represented as∣∣E (x̃2k+1

)
− E

(
x̃2k
)∣∣ ≤ N

ε1

∣∣E (x̃2k)− E (x̃2k−1)∣∣ (50)

It has been shown that the estimation error for each state
of the presented stochastic system (1) is convergent with the
filter (31), if there exist ε1, ε2, ε3 and λ meet the inequalities
(47) and (48) for each time instance k. In addition, the sign in 
Eq.(31) can be chosen following the analysis (48) and (49).

VI. A NUMERICAL EXAMPLE

To verify the presented filtering algorithm, the twin-level 
tank system is considered as a pratical experiment while the 
structure is shown in Fig.2.

Following the system instruction in [19], the system model 
can be obtained as follows.

x1,k+1 = −
h

A1

(
c1 + k1

√
x1,k − k0

√
x2,k − x1,k

)
+ x1,k + w1,k

x2,k+1 =
h

A2

(
k4u2,k − c2 − k0

√
x2,k − x1,k

)
+ x2,k + w2,k

yk = x1,k + vk (51)

where x1 and x2 stand for the levels of tank 1 and tank 
2, A1 and A2 are the cross-sectional area, c1 and c2 are 
constant parameters of the valve and pump, k0, k1 and k4 
denote the ratio of the valves, and h is the sampling time.

Fig. 2. Structure of the twin-tank level system.

In addition, w and v are the process noise and measurement 
noise, respectively.

In particular, A1 = A2 = 167.4cm2 while c1 = 0 and c2 = 
2.88. k0, k1 and k4 are equal to 0.7, 0.25 and 0.1, respectively. 
The control input u2 is set as 30 while the equilibrium points 
are 0.23 and 0.26 for both tanks. Moreover, wk is subjected 
to Gaussian distribution with zero means and 0.1 variance, 
meanwhile the non-Gaussian noise vk is given obeying the 
following PDF:

γ (ω) =


512
(∫ 1

0 ω
8(1 − ω)

3
dω
)−1

ω8(5 − ω)
3
,

ω ∈ [0, 5] 
0, 
otherwise 

(52)

Based on the formula, we notice that the mean-value of ωk is 
nonzero. Without loss of generality, the noise vk in the 
simulation is processed as vk = ωk − E (ω) in order to shift the 
noise mean-value.

Following the presented filtering algorithm (3) and (31), the 
simulation results are given by Figs 3-6. Since the system 
output yk is measurable, the entropy of ỹk can be estimated by 
KDE which implies the reference signal rk. Then the 
identification can be progressed to obtain the RBFNN model 
which leads to the filter design signal gk. As the investigated 
stochastic nonlinear system has two states, the filtering results 
have been shown by Fig.3 and Fig.4 separately. It shows that 
both estimates x̂1 and x̂2 are very close to true values and the 
performances are better than standard EKF design. In addition, 
a further comparison for x2 is given to indicate the estimation 
errors in Fig.5 while the performance presented algorithm is 
close to particle filter design with 50 particles. Meanwhile, the 
performance criterion J is also given by Fig.6 while λ is pre-
specified as 0.2. Based on the theoretical analysis and 
simulation results, both of the estimation errors are convergent 
to zero and the randomness of the filtering has been attenuated. 
As a summary, the presented filtering algorithm is effective 
with desired performances.
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Fig. 3. System state x1.
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Fig. 4. System state x2.
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Fig. 5. Estimation error of system state x2.

Remark 1: Notice that the RBFNN model training is based 
on output data approximation which explains the entropy
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0

0.5

1

1.5

2

Fig. 6. Value of the performance criterion J .

increase at initial stage in Fig.6.

VII. FURTHER DISCUSSION

This paper provides a novel design of the nonlinear filter 
using the RBFNN-based entropy model, and this presented 
model can also to be applied to other research problems such 
as the entropy assignment and probability density function 
observation.

For the non-Gaussian stochastic systems, the method based 
on the output entropy is a significant extension comparing 
to the variance with the Gaussian distribution. Therefore, 
randomness of the systems can be described as entropy assign-
ment problem which is similar to the co-variance assignment 
problem [20]. Once the nonlinear system is remodeled by 
the RBFNN-based entropy approximation, the entropy of the 
system output can be assigned as the tracking problem of the 
linear system. Then the performance criteria can be replaced 
by

J =
1

8
(Hy −Hr)

2
+
λ

2
u2 (53)

where Hr denotes the reference of the output entropy. Based
on this criteria, the presented approach can be used to design
the nonlinear control input.

Next, the output probability density function is different to
estimated in real-time due to the complexity of solving the
partial differential equation. In this situation, is it possible to
observe the measurable output probability density function?
Using the presented entropy model, the observer for output
probability density function can be designed, which is similar
to the observer design of the linear system.

The observer can be given as

V̂k+1 = AV̂k +Bu− L
(
e

1
2Hy,k − e 1

2 Ĥy,k

)
(54)

where L is the observation gain while

Ĥy,k = 2 log
(
ḠV̂k

)
(55)
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To design the gain L to stabilize the observation error Ṽ =
V̄ − V̂ , the closed-loop system is rewritten as

Ṽk+1 =
(
A− LḠ

)
Ṽk (56)

then the gain L can be obtained to make the matrix A− LḠ
Hurwitz, which means

lim
k→∞

√
γ̂ (y, u, L) = lim

k→∞
CV̂k =

√
γ (y, u) (57)

Therefore, the weight update equation can be considered
as the online update law for the probability density function
estimation which can reduce the computational complexity and
guarantee the rapidity of the observation.

VIII. CONCLUSION

In this paper, a novel nonlinear filter design has been pre-
sented via RBFNN-based entropy model. Based on this model,
the dynamic relationship between the estimation error and the
nonlinear filter has been established. The filtering design is
transformed to the optimal input design for the transformed
entropy model where the Lyapunov design method has been
used and the minimum entropy of the estimation error has
been achieved. Moreover, the convergence of the filtering
has been analyzed while the practical system model based
simulation results show the effectiveness of the presented
filtering algorithm.
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