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Abstract

Identifying  RBP binding sites and mechanistic factors  determining the interactions  remain a big

challenge. Besides the sparse binding motifs across the RNAs, it also requires a suitable sequence

context for binding. The present work describes an approach to detect RBP binding sites while

using an  ultra-fast  BWT/FM-indexing  coupled  inexact  k-mer  spectrum  search  for  statistically

significant seeds. The seed works as an anchor to evaluate the context and binding potential using

flanking region  information while leveraging from  Deep Feed-forward Neural Network (DNN).

Contextual  features  based  on pentamers/dinucloetides  which  also  capture  shape  and  structure

properties appeared critical. Contextual CG distribution pattern appeared important. The developed

models also got  support from MD-simulation studies and the implemented software,  RBPSpot,

scored consistently  high  for  the considered performance metrics  including average accuracy of

~90%  across  a  large  number  of  validated  datasets  while  maintaining  consistency.  It  clearly

outperformed some recently developed tools, including some with much complex deep-learning

models, during a highly comprehensive bench-marking process involving three different data-sets

and more than 50 RBPs. RBPSpot, has been made  freely available, covering most of the human

RBPs for which sufficient CLIP-seq data is available (131 RBPs). Besides identifying RBP binding

spots across RNAs in human system, it can also be used to build new models by user provided data

for any species and any RBP, making it a valuable resource in the area of regulatory system studies.
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Introduction 

It has been reported that at any given time, compared to just 2-3% transcription factors expression

share, ~10 times higher  volume of RNA binding proteins  are expressed (1). Advances with high-

throughput  techniques  like  CLIP-seq  and  Interactome  Capture have drastically  revised  our

understanding about RBPs which suggest that human systems are expected to have at least  1,500-

2,000 genes coding for RBPs (1,2). Unfortunately, we are still far behind in terms of information for

these regulators where hardly ~150 RBPs have been studied so far for their interactions with RNAs.

Despite of their critical functional roles in cell systems, very few RBPs have been explored with

precise identification of their mechanism of action (1). 

There are certain limitations with these high-throughput experiments. These experiments are costly.

They too don't give the entire RBP-RNA interactome spectrum and at a time work for one RBP only

in  condition  specific  manner.  The CLIP-seq reads  provide  narrowed down regions  to  look for

interactions but don’t provide the mechanistic details and explanations for  the interactions. Using

general motif discovery tools to  identify the interaction spots  have got limited success in case of

RBPs as they either report too short motifs which have high chances of  occurrences across the

random data or they don’t cover large spectrum of instances.  Unlike transcription factors,  RBPs

binding  sites  display  sparse  motif  positional  conservation. They are  usually  difficult  to  detect

through such routine motif finding approaches. Besides the binding motifs, contenxtual sequence

environment also guide the RBP-RNA interactions, adding further complexity to the process of

discovery of the actual interaction spots. Therefore,  this is an area which needs prime focus on

deriving  the  principles  of  RBP-RNA interactions  and their  impact  of  regulation  once  we have
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enough CLIP-seq data. One of the most remarkable work,  RNAcompete ,  was done where  the

authors identified  in-vivo motifs for 207 different RBPs using pools of 30-41 bases long  RNA

oligos  to  which  affinity  of  various  RBPs  was  assessed  for  binding  (3).  RNAcompete also

highlighted how conventional motif finding tools fail to discover the binding sites motif for RBPs.

At computational front some decent progress has been made in dealing with these CLIP-seq data to

derive  the  models  for  interactions.  Initially,  to  explore  the  RBPs  and their  RNA binding sites,

databases like RBPDB, CLIPZ, CLIPdb/POSTAR came up (4-7). These databases provided first

structured information on RBP-RNA interactions as well as proposed their interaction motifs using

traditional motif finding tools while building on publicly available experimental data. As already

mentioned above, the motifs being used here are short and occur in abundance even in random data.

Also, they don’t consider contextual information. Identification of  correct RBP:RNA interaction

motifs is a critical step which helps in locating the appropriate contextual information to build an

accurate model of RBP:RNA interactions. 

RNAcontext is among those first such tools which considered contextual information for RBP-RNA

interaction  discovery.  It applied  the  structural  preferences  information  for  these  RNAcompete

motifs using ab-initio RNA structure prediction tool, sfold (8).  However, these ab-initio structural

prediction methods reliability falls down with the length, making the structural information derived

through them not reliable enough (9). The next important stride came with probabilistic tools like

RBPmap which  extended their  previous  approach  to  identify  splice  sites   while  applying user

provided position specific scoring matrices, supported motif clusters, and phylogenetic conservation

to identify RBP RNA interaction spots (10).  In the same probabilistic tools category, mCarts was

another important addition (11).  It works on the similar lines to RBPmap but also applies 6-states

Hidden Markov Model (HMM) along with structural information from ab-initio secondary structure

prediction methods to predicted functional RBP binding sites. 
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With Graphprot a new generation of such tools started which applied machine learning as well as

leveraged  from new  data-sets  developed  from  CLIP-seq  experiments  (12).  It  also  applied  the

concept  of  differential  RNA secondary structure  information  in  contextual  manner  to  build the

interaction models.  A recently  develop  tool,  beRBP,  carries  forward  the  approach  similar  to

RBPmap while implementing a machine-learning method of Random-Forest (13). It clusters the

potential motif sites where it ranks them and uses the highest scoring regions for the matches in the

given region while scanning for the user provided motif/PWM. In the followup, they have also

applied an approach similar to RNAcontext where RNA structural information is provided for the

motif  region  using  ab-initio  structure  prediction  tool,  RNAfold.  Further  to  this,  it  added  the

phylogenetic conservation information similar to RBPmap and mCarts. 

With  recent  developments  in  the  area  of  deep  learning,  many  deep-learning  based  RBP-RNA

interaction  detection  approaches  have  been implemented recently.  DeepBind  deserves  special

mention  among them as  it pioneered this category where a robust general system was created to

model  nucleic  acids  and  protein  interactions  using  convolution  neural  network  (CNN)  (14).

DeepBind has become a sort of prototype for almost all of the recent Deep-learning based tools to

identify  the  RBP-RNA  interactions.  DeepBind  applies  7-mer  motif  weight  matrices  are

transformation into an image pixel matrix and is scanned for entire sequence while evaluating for 4-

stages to derive the binding score: convolution stage, rectification stage which zooms the scanner to

most promising regions for the motif, followed by pooling of all such regions and expansion and

clustering of  motifs,  which  is  finally  subjected  to  a  non-linear  classifier.  However,  the authors

accepted that compared to transcription factors and their data, running DeepBind with RNAcompete

data did not  achieve that level  of accuracy. They pointed out the importance of accurate RNA

secondary structure information and RNA shape readouts in RNA-RBP interactions which most of
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the approaches have missed so far. Taking the work further on Deep-learning based RBP-RNA

interaction detection,  another  prominent  tool  system is  iDEEP which has come  like a  series of

softwares like iDeep, iDeepS, and iDeepE (15-17). These tools differ from each other for the way

they applied various combinations of CNN and RNN layers. iDeepS applied CNN with Long-Short

term memory  (LSTM) while  taking  input  from sequence  and  RNAshape  data.  iDeepE applies

combinations of CNNs which capture local and global sequence properties.  A recently developed

tool, DeepRiPe, has evolved a CNN and GRU based deep-learning approach while also introducing

transcript’s regions specific information like splice junctions etc (18). DeepCLIP is another recently

developed tool which detects RBP-RNA interaction spots while applying CNN in combination with

bidirectional-LSTM  and  claims  to  detect  sequence  position  specific  importance  which  could

determine  the  contribution  of  various  nucleotides  in  RBP binding  (19).  These  very  recently

developed deep-learning approaches have become much more complex than DeepBind and claim to

achieve much higher  accuracy.  Their  complexity comes from adding complex layers above the

regular dense hidden layer. These complex layers actually do the job of automatic feature extraction

unlike the other machine-learning approaches where expert knowledge is applied to identify the

important properties to look into for feature extraction. 

While reviewing these developments and tools, it looked imminent that there is an enormous scope

of improvement in the approaches to find and locate RBP-RNA interaction spots. Some of the major

points to consider would be: 1) Choice of datasets: A notable issue with all these algorithms is the

choice  of  data-sets,  especially  the  negative  data-sets,  which  have mostly  been too  relaxed and

unrealistic,  due  to  which  these  tools  are  prone  to  over-fitting  and  imbalance.  They  are  either

randomly shuffled sequences or regions randomly selected from those RNAs which did not bind the

given RBP. 2) Motif searching approach: most of existing tools, with exception of recent deep-

learning  based  approaches,  begin  with  predefined/user  defined  motif  or  PWM  derived  from
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traditional motif finding tools with user defined length, which is not a natural approach and one of

the prime mistakes. RBP binding sites display sparse conservation which regular motif discovery

tools may fail to capture sufficiently. Third, high dependence on ab-initio RNA structure prediction

tools to derive the structural and accessibility information may be misleading, as already pointed

out above, such tools don’t provide correct information on actual complete RNA length. A better

approach has been consideration of dinucleotide densities for such purpose (20,21). Consideration

of RNA-shape appears very much important as pointed out by DeepBind as well as some other

recent works (14,22,23).  It has been reported that pentamers capture the essence of nucleic acid’s

shape accurately (24), making them a suitable candidate to be evaluated along with dinucleotide

densities to derive RNA structure and shape information. Fourth, though the recent deep-learning

approach claim good success through automation of the process of feature extraction at the cost of

added complexity,  the effectiveness  of  such automated feature detection needs  to  be evaluated.

Simpler models, if trained with  carefully selected  properties,  are capable to outperform complex

models.  This  is  why  some  of  the  shallow  learning  methods  have  outperformed  deep-learning

methods on structured  data  (25,  https://towardsdatascience.com/the-unreasonable-ineffectiveness-

of-deep-learning-on-tabular-data-fd784ea29c33) .

Considering these all factors, here we present a reliable Deep Neural Net (DNN) based approach to

build the mechanistic models of RBP-RNA interactions using high-throughput cross-linking data

while considering data from 99 experiments and for 137 RBPs for human system. An  ultrafast k-

mer spectrum search approach was used to identify the most important seed regions in the sequence

for contextual information derivation. Contextual information for 75 bases flanking regions around

the identified seed derived motif was extracted in the form of variable windowed position specific

dinucleotide,  pentamers,  and  heptamers  density  based  propensities.  The  combined  contextual

information was provided to a two hidden layers based dense feed-forward networks to accurately
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identify  the  RBP binding  spots  in  RNAs.  The  developed  models  were  used  to  identify  the

interaction spots and scored very high accuracy with remarkable balance between sensitivity and

specificity as well  as performance consistency when tested across a large number and different

types  of  experimental  datasets.  Molecular  dynamics  studies  also  supported  these  models.  The

developed approach has been implemented as a freely available webserver and standalone software,

RBPSpot. It was comprehensively bench-marked across three totally unbiased standardized data-

sets  for  performance  along  with  five recently  published  tools,  including more  complex  deep-

learning based tools, where it outperformed all of them consistently across all these datasets for

most of the studied RBPs. Unlike most of the existing software which don’t provide the option to

build new models from data, RBPSpot approach can be applied to detect human system RBP-RNA

interactions with its inbuilt models as well as it can be used to develop new models for other species

and new RBP data also.

Materials & Methods

Data retrieval and processing

The study has considered human RBP models while using high-throughput sequencing data from

cross-linking experiments using various CLIP-seq techniques like CLASH, dCLIP, eCLIP, FLASH-

CLIP-seq, HITS-CLIP, iCLIP, PAR-CLIP, sCLIP-seq, uvCLAP-CLIP-seq.  This data also includes

the two cell lines eCLIP data from ENCODE. Most of them are processed peak data collected for

137 RBPs  with starBase 2.0 as their primary source (26). A total of 872Mb peak data from 99

experiments  were  covered  in  this  study  for  RBP-RNA interaction  information  from  CLIP-seq

experiments (Supplementary Data 1 Sheet 1). The peak data of RBPs were downloaded in the form

of co-ordinates along with their associated RNA information on which they were binding. Peak data

were  converted  into  BED file  format  along  with  their  strand  specificity  information.  Genome

sequences of human hg19 builds were obtained from UCSC browser. Peak data were also refined
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based on the length distribution and peaks laying in extreme range (length >300 bases and <5 bases)

were omitted from the study (Supplementary Data 1 Sheet 2). 

Identification of motif seed candidates: k-mer spectrum search using BWT/FM-Indexing

To search binding sites motifs/seeds for any particular RBP, all the peak regions were transformed

into overlapping lists of k-mers of size six to start with. Iteratively and in parallel these generated k-

mer spectrum for each such sequence was searched across all the reported cross-linked associated

regions in the targets to obtain the enrichment status of the k-mers (seeds) on which motif would be

built. These searches were allowed with maximum 30% mismatches. Since normal search would be

heavily time consuming  step, we  implemented an enhanced Burrow-Wheeler transformation with

FM-Indexing to search with any number of mismatch which made the search ultra-fast for even in-

exact searches. The detailed algorithmic implementation pseudo-code of the implemented algorithm

is given in the supplementary methods.

Identification of motif seeds candidates: Anchoring with the significant seeds

All  the  k-mer  seeds  and  their  relatives  displaying  at  least  70% similarity  were  evaluated  for

existence across at least 70% of peak data. Such motif seed candidates were further evaluated for

their  statistical significance.  Those  RBPs  where  no  k-mer  and  their  relatives  crossed  70%

representation were looked for the highest representation available. The remaining data which did

not show the representative k-mer were checked further and recursively with minimum cut-off of

20% data representation. Motifs coming from such data were considered as mutually exclusive one.

Null  model  distribution  probabilities  of  occurrence  of  each k-mer  along with  its  relatives  was

calculated  from the  random data  set  to  find  their  random probabilities.  Random data  set  was

generated from unassociated RNAs while randomly carving out the lengths similar to the peak data.
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Significantly over-represented k-mers were screened using binomial test  with p-value cut-off  of

0.01.  These significantly enriched k-mers were used as initial  seeds to develop the final motif.

These seeds of significantly enriched k-mers were expanded in both the directions by expanding by

one nucleotide both sides, followed by search across the peak data with at least 70% occurrence in

the peak data while repeating the above mentioned search operation recursively. Expansion of seed

region in both directions was allowed till at least 70% match existed. Final motifs were selected on

the basis of satisfying both the criteria  i.e. the motif displayed least 70% abundance across the

CLIP-seq instances at 1% significance level and the maximum k-mer expansion maintained at least

70% identity with the associated sequences and relatives. Mutually exclusive motifs were other

predominant motifs which existed in the remaining data which were scanned in similar recursive

manner as described above. Figure 1. shows the part of the k-mer based motif seed discovery and

steps taken afterwards. (Supplementary Data 1 Sheet 3,4)

Datasets creation

Once we had prime motifs anchored for each RBP from the given data, their associated peak data

sequences were converted into positive datasets. To generate positive datasets for each RBP, start

and end co-ordinates from the main motif’s both terminals were expanded by +75 and -75 bases

into both the directions. In case of multiple motif locations originating from a single peak for the

main motif, all the locations were expanded. Different length dataset sequences formed for different

RBPs which depended mainly upon the length of the core motif region. However, for any single

RBP all the sequences of the dataset were of same length. 

To generate the negative datasets for each RBP, similar condition corresponding RNA-seq data were

downloaded from GEO. With minimum three replicates of RNA-seq data expression of each RNA
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was calculated. Only those  transcript sequences were considered which had  expression condition

available for the same condition but did not bind the RNA or which was not found present in the

corresponding  condition’s  CLIP-seq  binding  data.  Associated  main  motifs  for  the  RBP were

searched across these RNA sets also just in the similar manner as was done to the positive dataset

instances. Locations of the main motif were reported in the form of start and end co-ordinates from

where further  expansion of +75 and -75 bases was done on both the sides. This way very strong

negative data-sets were built which ensured that learning was in no way influenced by the motif

alone  as  the  motif may  also  occur  randomly  to  some  extent  and  surrounding  context  is  also

considered along in a right manner. This approach was carried out for 74 RBPs for which similar

condition RNA-seq data were available. Datasets derived this way were called Set A data-sets.

For 57 RBP similar RNA-seq data were not available for the corresponding conditions. In such

scenario the main motifs for negative datasets were searched in those regions which did not appear

in the CLIP-seq data but belonged to the same target RNA sequences whose some part appeared in

the CLIP-seq, suggesting that though the RNA expressed and even bound to the RBP, these regions

despite of having the motif  for the RBP did not bind to the RBP and may work as a suitable

negative dataset. +75 and -75 flanking bases from both the terminals of the motifs were considered

along with the motif region to build the negative datasets. These data-sets were called Set B data-

sets. 

Feature generation for positive and negative datasets

Five different types of  properties were considered for input into machine learning: 1) The main

motif itself, 2) Di-nucleotide density in the associated region while considering 75 bases flanking

regions from both the sides of the motif, 3) Dot bracket representation of the RNA structural triplet
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for the data-set sequences, covering twenty seven combinations of structure triplets arising from the

dot-bracket  structural  representation  from  RNAfold  predicted  RNA structures  [.((,  .(),  .(.,  .)

(, .)), .)., ..(, ..), ..., (((, ((), ((., ()(, ()), ()., (.(, (.), (.., )((, )(), )(., ))(, ))), ))., ).(, ).), ).., ] ,  4) Pentamers

density profile for each position which captures the shape information, and, 5) Heptamers densities

for the complete region. Dinucleotide densities were evaluated for their discriminatory power for

multiple sliding windows starting from 17 to 131. Similarly,  the dot  brackets structural triplets

representation  of  the  data-set  sequences  were  generated  using  RNAfold  (27).  They  too  were

evaluated  for  optimum windows  size  while  testing  for  window  sizes  ranging  from 29  to  full

sequence. 1,024 pentamers  and 16,384 heptamers densities were evaluated in the similar manner

across the data-set sequences. 

To calculate heptamers based feature, all positive datasets were split into  k-mers of seven bases.

Probability of each k-mer were calculated with maximum of two mismatches for each position and

accordingly  populated  in  the  tensor.  Thus,  we had 16,384 X ((sequence length)  -  7)  tensor of

probabilities. 16,384 rows represent the heptamers and 150 columns represent individual positions.

In  the  similar  manner pentamer  features  were  calculated.  For  that we  had  1024  X ((sequence

length)-5)  tensor of probabilities. These both  tensors were used to convert  the sequence data into

vectors  of  probabilities.  All  together,  based  on  optimum windows,  the  combined  features  sets

representation of all the data-set sequences was done. The optimum windows and total features

varied for each RBP. Finally, each data-set was broken into training and testing data-sets ensuring

that no instances from training ever appeared in the testing data-sets. The breakup for each RBP for

their training and testing data-sets is given in Supplementary Data 1 Sheet 5 and 6.

Features evaluation on data-sets
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After  generating  all  the  features  from  positive  and  negative  data-sets  these  features  were

individually  checked for  their  performance using tree  based approaches  which  are  expected  to

perform better  on  high  dimension  instances.  Random forest  and  XGBoost  were  applied.  Each

property and their associated feature sets were evaluated for the varying window sizes for their

discrimination power between the positive and negative sets.  Sliding windows of variable sizes

were  used  for  dinculeotide  and  structure based  features.  These  variable  sizes  windows  were

evaluated for the performance. Out of these different sized windows the size producing the best

performance was kept for final model generation. It was found that the best performing window size

varied across the RBPs, resulting into different optimum windows for the RBPs. 

Pentamers and heptamers appeared most informative on the full length window. Equal number of

positive and negative instances were chosen for all RBPs considered in the study. From the total

chosen instances, 60% were used to create the training set, while remaining 40% instances were

used to create the testing set. Python scikit-learn library was used for the same purpose. For feature

importance evaluation F-score was used for every considered feature. F-score locates the features

which display major difference between their values between negative and positive training sets

while  comparing  the  averages  for  the  feature  values  for  positive,  negative,  and  whole  set  of

instances (28). The F-score is represented by the following equation:

F ( i )=
( (x i )

+−xi )
2
+(( xi )

−−x i)
2

1/ (n+−1)∑
k=1

n
+

(x (k,i )
+ −(x i )

+ )2+1/ (n−−1)∑
k=1

n
−

( x ( k,i )
− −( x

i )
− )2

Where:

F(i) = Feature score for the ith feature,
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(x i )
+ = Avergae for i-th feature across the positive instances

x
i = Total average of the i-th feature across the complete data-set

 = Avergae for i-th feature across the negative instances

x (k,i )
+ = Feature value for k-th instance for i-th feature in positive data-set

= Feature value for k-th instance for i-th feature in negative data-set

n+ = Total number of positive instances

n- = Total number of negative instances

Also, for every i-th feature, t-test was conducted between n+ and n- to evaluate the significance of i-

th feature for its discrimination capability between positive and negative instances. 

Machine learning implementation

With the optimized windows in the above mentioned section, feature vectors for all the RBPs were

used to build models to recognize RBP binding sites using two major machine-learning approaches:

XGBoost and Two Hidden Layers based Deep Feed Forward Neural Networks (DNNs). Both were

implemented using python scikit-learn, Keras, and Tensorflow libraries. In both the cases 70% and

30% of data were retained for train and test sets, respectively. 

The DNNs were built where the input layers had number of nodes equal to the number of features

for the RBP considered. Thus, the size of input layer varied from 1,200 to 2,500. The performance

of  DNN was also evaluated for various numbers of hidden layers where finally total two hidden

layers were found performing the best. The connections between the nodes were made dense. For

14

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447370doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447370
http://creativecommons.org/licenses/by/4.0/


every RBP model the number of nodes across the two hidden layers varied between 700 to 1,300.

Different types of activation functions combinations were applied  for the layers from a pool of a

number of available activation functions. Activation functions define the layers and transform the

activation values obtained from previous layer to a non-linear form, creating several hyperplanes to

obtain best possible discrimination of instances. In most of the models here, the first hidden layer

had RELU and the second hidden layer had ELU (for some cases they interchanged also), while the

final output layer had sigmoid function. 

Every  learning  step  provides  estimation  of  error  made,  measuring  the  error  and  accordingly

corrections  in  the  learning  rate  and  weights  on  connections  are done.  This  error  estimation  is

achieved by loss/cost functions. Multiple types of loss functions were tried to optimize the accuracy.

The best performance was obtained for Binary Cross Entropy. Since its a feed forward network

where the cost function assess the missed targets and accordingly network connection weights are

updated  though some optimizer.  The optimizer  parameter  which  worked the  best  was ‘Adam’

optimizer, otherwise SGD with momentum. Usually Adam optimizer works better because of its

capability to provide different learning rates per parameter, deals better with sparse gradients, and

adapts based on recent learning rates while keeping them in memory. Momentum was applied in the

learning which helps to ward-off entrapment under local minima during the minimization steps. The

learning rate varied from 0.001 to 0.01 and momentum varied from 0.05 to 0.9. L1 and L2 weight

decay regularizors were applied to avoid over-fitting. DNN models were trained using 1000 epochs

and batch sizes varying from 50 to 200 instances. All the model from DNN and  XGBoost were

saved  in  protobuf  format.  Since  the  entire  system is  implemented  here  using TensorFlow,  the

protbuf file provides the graph definition and weights of the model to the TensorFlow structure. The

optimum parameter  values were fixed using an in-house developed script  which tested various

combinations of values of the paramters to pick the best ones.
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In  XGBoost,  grid  search  was  applied  for  parameter  optimization.  Following  parameters  were

finalized after  the grid search:  params = {"eta/learning rate":  0.2,  "max_depth":  4,  "objective":

"binary:logistic",  "silent":  1,  "base_score":  np.mean(yt),  'n_estimators':  1000,  "eval_metric":

"logloss"}.  Gradient boosted decision trees learn very quickly and may overfit. To overcome this

shrinkage was used which slows down the the learning rate of gradient boosting models. Size of the

decision tree were run on max-depth=9. At the value  of 4 stability was gained as the logloss got

stabilized and did not change thereafter. 

To evaluate the consistency of performance models developed with the given features, 10-fold cross

validation was also performed for each RBP.  Everytime, the training dataset  was split into 70:30

ratio with first used to train and second part used to test, respectively. Each time data was shuffled

and random data was selected for building new model from scratch. This process was repeated 10

times for  each RBP.  Accuracy and other  perfomance measure were calculated  for  each model.

(Supplementary data 1 sheet 7)

The  performance  on test  sets  was  also  evaluated.  Confusion  matrices  containing  correctly  and

incorrectly identified test set instances  were built  for each RBPs. Frequently used measures for

classifier  performance  evaluation  and  accuracy  of  RBPs  models  were  evaluated.  Sensitivity

(Sn)/Recall/True  Positive  Rate  (TPR)  defines  the  portion of  positives  which  were  correctly

identified  as  positives  whereas  specificity  describes  the  portion of  negative  instances  correctly

identified.  Precision  estimates  the  proportion  of  positives  with  respect  to  total  true  and  false

positives. F1-score was also evaluated which measures the balance between precision and recall.

AUC/ROC  were  also  measured  for  each  model.  Besides  these  metrics,  Mathew’s  Correlation
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Coefficient (MCC) was also considered. MCC is considered among the best metrics to fathom the

performance where score equally influenced by all the four confusion matrix classes (true positives,

false negatives, true negatives, and false positives) (29). A good MCC score is an indicator of robust

and balanced model with high degree of performance consistency.

Performance measures were done using the following equations:

Where:

TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives, Acc =

Accuracy, AUC = Area Under Curve

Structural analysis of identified binding spots

To assess the stability and dynamics of the RBP-RNA complexes for the identified binding spots,

structural analysis was done. The 3D coordinates of  RBPs were retrieved from the Protein Data
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Bank (PDB). X-Ray crystallographic structure for 13 different RBPs were downloaded. Prior to

docking, protein structures were prepared by removing water molecules and other hetero-atoms,

while adding polar hydrogen atoms. RNA motifs identified through RBPSpot algorithm for above

mentioned five RBPs were taken as flexible molecules. All docking studies were performed through

NPDock (Nucleic Acid–Protein Docking) and PATCHDOCK incorporating more realistic DARS-

RNP statistical potential based on  reverse Boltzmann statistics  to score protein-RNA complexes

(30). RNA motifs three dimensional structures were built using RNACOMPOSER web server based

on RNA FRABASE database relating the RNA secondary and tertiary structure elements. In order

to search for all  possible RNA-binding sites and optimize the structural effects of RNA on the

construction of complex, short RNA motifs were taken into account. Protein-RNA interface residues

were predicted using DR_Bind1 (31) based on evolutionary conservation. Top three representative

docking potential-ranked protein-RNA complexes were built for each of the above mentioned RBPs

and the best one was considered for further analysis. 

MD simulations

All molecular dynamics simulations of the RBP alone and the RBP–RNA complex were conducted

using GROMACS 5.1  package (32),  modeling  each  system with  the  AMBER03 force-field  of

protein and nucleic acids (33) with periodic boundary conditions. The topology files for the selected

target RNA motifs were built using pdb2gmx in the framework of AMBER03 force-field. Models

were solvated with the TIP3P water model (34). The distance between the biomolecule and the edge

of the simulation box was set as minimum 1.0 Å so that they could not directly interact with their

own periodic boundary condition and fully immerse with water while rotating freely. Boxes were

solvated with TIP3P water. The number of solvated molecules added to each system varied. After

the  establishment  of  initial  configuration,  the  systems were  minimized.  50,000 steps  ( steepest

descent approach) were used for each system until the maximum force of < 10.0 kJ/mol for energy
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minimization. For calculation of long range electrostatic interactions, Particle Mesh Ewald (PME)

method was used. To establish the systems at constant temperature of 300K, V-rescale thermostat

(modified Berendsen thermostat), at a constant pressure of 1 bar, and Parrinello-Rahman berostat

were applied with a 2 ps coupling constant for both parameters. The LINCS algorithm (35) was

used to constrain all bond lengths involving hydrogens. During the production run, a time step of 2

fs was used and conformations were saved every 10 ps for the analysis of molecular dynamics

trajectory  of  total  20  ns  for  each  RBP and  their  complexes  using  leap-frog  algorithm (36)  to

integrate the equation of motion. MD trajectories were further evaluated for considering Root Mean

Square Deviation (RMSD).  RMSD is suitable to decipher the structural changes in proteins and

their  complex  structures  corresponding  to  initial  structure  during  the  course  of  different  time

periods of dynamics simulation. RMSD was calculated using the following equation:

where, 

ui=Cartesian coordinates of atom i in the initial structure;

vi=Cartesian coordinates of atom i in the structure during simulation;

N=number of atoms;

To analyze the structural properties of the individual RBPs and their complexes in the form of root

mean square deviation (RMSD), g_rms functions were utilized. Changes in trajectories of molecular

dynamics during course of simulation were plotted for evaluation using python plotting library.

Co-occurring RNA motifs group clustering
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A two steps  statistical  approach was employed to identify the co-occurring motif  pairs. In this

approach, the positive set of RBP was scanned for other most frequent occurring k-mers. Top co-

occurring  motifs  were  checked  for  their  statistical  significance.  KS-test  was  used  to  find  the

significance of distance for two motifs. All the distance between two motifs were calculated from

positive and negative data-sets. Distribution plot of random data and positive data were further

checked using KS-test. Level of significance were considered p<0.05. They were further checked

for frequency ratio (FR). At 5% level of significance, if the hypergeometric test  p-value was less

than 0.05, motif pair of enriched and co-occurring motifs was considered significant. Additionally,

frequency ratio (FR) as a measure of co-occurrence of motif pairs was also computed to estimate

the tendency of motif pairs to co-occur with each other as proposed previously (37): 

XM2/M1=Number of sequences containing motif1

NM1=Number of sequences containing motif2 co-occurring with motif1

YM2/M1=Number of sequences without motif1

MM1=Number of sequences containing motif2 without motif

Benchmarking and Performance Evaluation

To evaluate the RBPSpot performance and the importance of dataset constructed in this study, we

compared RBPSpot with five different tool: RBPmap, DeepBind, iDeepE, DeepCLIP, and beRBP.

Three different datasets were considered separately for the benchmarking process: Datasets used for

RBPSpot, beRBP, and Graphprot. Datasets of beRBP and Graphprot are common data source for

most  of  the  existing  published  software  built  to  identify  RBP-RNA interactions.  As  already

mentioned  above,  RBPSpot  dataset  is  based  on  the  positive  datasets  from  ENCORI  (the

encyclopedia of RNA Interactomes, previously known as StarBase) and the negative datasets based
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on  the  protocol  mentioned  above in  the  previous  section.  This  dataset  contained  positive  and

negative sequences for  131 RBPs in which length of sequence varied from minimum of 156 to

maximum of 160 bases. The variation in the length of the sequences for different RBPs was due to

the  varying  length  of  their  major  motifs.  For  benchmarking  purpose  those  RBPs  data  were

considered from this dataset for which at least one tool had model ready for comparison. No such

RBP was considered from this dataset for benchmarking for which no other tool had model ready

for  comparison.  This  way  a  total  of  52  RBP data  were  used  from  RBPSpot  dataset  for  the

comparison purpose.

The beRBP dataset is available for 29 RBPs. This dataset is based on the experimentally validated

target  sequences  (3′-UTRs)  for  human  RBPs  (positive  datasets)  from  AURA  (38)  (v2,

8/5/2015;http://aura.science.unitn.it/), which is a manually curated and comprehensive catalog of

human UTRs bound by regulators including RBPs. Negative instances of this dataset has  random

sequences  chosen  from  the  3′-UTR  pool.  The  beRBP  dataset  was  obtained  from  the  URL

http://bioinfo.vanderbilt.edu/beRBP/download/TabS1.7z.

The third dataset considered in this study was built during the work presenting Graphprot software.

Since then, this dataset has been used extensively by many published software to this date. This

dataset covers 24 RBPs coming from various CLIP-seq experiments. For each set of CLIP-seq data,

they created a set of unbound sites by shuffling the co-ordinates of bound sites within all genes

occupied  by  at  least  one  binding  site  which  worked  as  the  negative  dataset.  making  the

corresponding  negative  dataset  instances. This  dataset  was  retrieved  from  URL

http://www.bioinf.uni-freiburg.de/Software/GraphProt/GraphProt_CLIP_sequences.tar.bz2.
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The four out of the compared five tools  viz. beRBP, RBPmap, DeepCLIP, and DeepBind provide

pre-built models. Only iDeepE does not provide any pre-built model. To overcome this, models

were  generated  using  iDeepE  methodology  for  the  datasets. To  make  binary  decisions  with

DeepBind,  threshold  of  0.7  was  applied  after  performing  logistic  transformation  of  the  raw

DeepBind scores (39).

In the second part of the benchmarking impact of datasets was assessed on model building quality

where  models  were  built  using  different  datasets  and  various  comabinations  of  test  and  train

datasets were analysed. Besides RBPSpot, only two tool, iDeepE and DeepCLIP, had provision to

build models from user provided datasets.  Remaining tools have fixed models with which they

work and don’t provide the provision to build models from user provided data. Therefore, they

could  not  be  included  in  this  part  of  benchmarking. Thus,  ror  this  part,  the  datasets  used  by

RBPSpot  (RBPSpot  dataset),  iDeepE,  and  DeepCLIP  (Graphprot  dataset)  were  used.  Four

differenet combinations of train and test datasets (RBPSpot train and RBPSpot test, RBPSpot train

and Graphprot test, Graphprot train and RBPSpot test and Graphprot train and Graphprot test) were

used for  the benchmarking  to  evaluate  the  impact  of  datasets  on  the  performance  of  these

algorithms. 

Comparison with experimentally reported motifs

A total of 29 RBPs from RNAcompete study were found overlapping with our set of 131 RBPs.

Their IUPAC motifs were downloaded from RNAcompete web portal. For these 29 RBPs a total of

44 motifs were reported. Out of these 44 motifs, 35 motifs had a length of 7 bases, eight motifs had

a length of 6 bases, and one motif had a length of 5 bases. Four motifs out of 44, were discarded

due to more than 3 variable positions in a length of 7 bases. Therefore, in the final analysis a total of

40 motifs representing 26 RBPs, were present. These motifs were scanned in the similar manner as
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was done with  the  search  for  motifs  identified  by  RBPSpot  approach  in  order  to  maintain  an

unbiased motif search approach. Random data sets to evaluate the random chance observations were

generated from the transcriptome data using the length exactly similar to the ones from the cross-

linking peak data. The similar above mentioned allowed mismatches based motif searching criteria

was used here also to scan the random datasets for motif  occurrence in them. Binomial test was

applied to find the significance of these motifs in the cross-linking data. Other than RNAcompete

motif, experimentally validated motifs were also considered from CISBP-RNA Database. A total of

31 RBPs from this dataset were found overlapping with RBPSpot data. Out of these 31 RBPs, 24

RBPs were reported from RNACompete study only, two RBPs were reported through SELEX and

yeast three-hybrid screening whereas five RBPs were reported from RNAcompete and SELEX/RIP-

Chip. These motifs were also searched in the similar manner.

Application of RBPSpot across SARS-CoV2 genome 

To identify the binding sites of RBPs across SARS-Cov2 genome, we downloaded its genome from

NCBI (accession number NC_045512).

Results and Discussion

Reads data collection, filtering, and pre-processing

CLIP-seq peak data from various sources were collected for 137 RBPs from starBase 2.0,  also

know as ENCORI (Supplementary Data 1 Sheet 1). All the data were collected in the form of co-

ordinates. These data were from multiple types of CLIP-seq experimental techniques i.e. CLASH,

dCLIP, eCLIP, FLASH-CLIP-seq,  HITS-CLIP,  iCLIP,  PAR-CLIP,  sCLIP-seq,  and uvCLAP. The

peak data varied from 234 ( PAPD5) to 9,84,503 (U2AF2) peaks. Initially, six RBPs’ data were
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discarded due to insufficient peak data availability. Here we considered only those RBPs which

were having >500 unique binding peaks available. These six RBPs viz. PAPD5 (234), EIF3B (298),

EIF3A (371),  EIF3G (398),  EIF3D (399),  and PUM1 (473)  had lesser  number of  initial  peaks

available. Remaining data for 131 RBPs were having a total number of 2,11,23,594 unique peaks.

To further filter this data we discarded those sequences which were having a length <5 nucleotides

or extreme length sequences  (>300 basepairs).  With this  all, a  total  of 1,87,14,999 peaks were

available for the study, varying from EIF4A1 (1,175) to AGO1-4 (9,41,224). Initial co-ordinate data

were extracted into sequences from genome. Initial and final data are given in (Supplementary Data

1 Sheet 2).

Most of the RBP binding sites display a prime binding motif covering majority and along with

co-occuring motifs

As  discussed  in  the  introduction  section,  most  of  the  available  tools  for  identifying  the  RBP

bindings sites across the RNAs require either prior information available  traditional motif finding

approaches like MEME, TOMTOM or HOMER. The application of  traditional  motif  discovery

tools may not be much information in case of RBPs which have been reported to be sparse, short,

and poorly conserved. Further to this, such motif discovery approaches expect user defined motif

length instead of naturally capturing the motif.  In general, if such motifs are not considered with

proper  context  they  may  lead  towards  false  discoveries.  Here,  we  have  used  the  initial  deep-

sequencing data to find the most frequently occurring k-mers (seeds) to make it an initial step for

motif finding. To find a naturally occurring most frequent k-mers, search was started with k=6 with

two mismatches. Reason behind this was  that some of the  previously reported motifs for RBPs

were either very sparse or as small as 4 bases long only. Therefore, a k-mer with six bases and with

two mismatches would fetch all possible 6-mer spectrum which would agree with each other with

two mismatches (relatives to the main k-mer) while also meeting the lowest bound of such motifs.
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This defined the 6-mer groups within two mismatches. Since a large number of 6-mers spectrum is

created  whose  search  with  two  mismatches  across  the  sequences  becomes  a  computationally

intensive and time consuming step, a FM-Indexing and Burrows Wheeler Transformation (BWT)

based  inexact  search  step  was  applied.   Since,  parallelism  through  multiprocessing  was  also

implemented, the search becomes more faster with available cores of CPUs.

4,096 possible combinations of 6-mers were individually searched in the peak data for every RBP.

To select the most abundant 6-mers, the first criteria was its occurrence across at least 70% of the

CLIP-seq  peak  region  data.  All  the  6-mers  which  were  occurring  in  at  least  70%  data  were

evaluated  for  their significance  occurrence  at  p-value<=0.01  using  binomial  test.  Many most

frequently occurring 6-mers were found whose numbers varied  for RBPs (from RBM39 (3) to

ELAVL1(17)). The found significant spots for 6-mers for any given type worked as the seed which

were subjected to bi-directional expansion. This expansion step every time evalauted the similarity

between the  expanded region and checked for  minimum similarity   cut-off  of  70% across  the

considered seed regions which were expanding.  The 6-mer seeds were expanded at every found

position until they were satisfying both the criteria. The final step resulted into the most frequently

occurring  elongated  k-mers  with  maximum  possible  elongation  with  both  criteria  met.  After

elongation, the best scoring expanded  k-mer family for each RBP was  considered as the primary

motif in the RNA sequences interacting with the given RBP.  It was found that at least one such

primary motif existed for all the RBPs considered in this study, barring four RBPs. These primary

motifs were occurring in at least in 70% of the data with  high significance. The size of primary

motifs varied from 6 bases to 10 bases for different RBPs. The most abundant motif was based on

UCUGCAG for ALKBH5 (92.27%), where as the least abundant motif was based on CCUGGAGG

for SLBP protein (Supplementary Data 1 Sheet 3).
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There were four different RBPs viz. FXR1, SND1, ILF3, and U2AF1 which did not have any single

seed k-mer occurring in at least 70% of the data. This suggested the possibility for multiple motifs

working in mutually exclusive manner. It was found that two different motif groups for these four

RBPs were working almost in mutually exclusiveness  manner with small fractions of overlaps in

their instances. The overlap levels between these two motif groups’ instances were: FXR1 (7.8%),

SND1  (6.8%),  ILF3(8.25%)  and  U2AF1  (9.5%)  instances  (Supplementary  Data  1  Sheet  4).

However, for these cases the found 6-mers could not be expanded further as at least 10% of the data

was lost due to this.

This  way,  the most  significant  motifs  present  in  the cross-linking data of  all  these RBPs were

discovered which could act as anchor in contextual form. It was interesting to observe that the

identified motifs could be clustered into various groups based on their similarity. For every RBP, the

motifs obtained from their respective sequences were used to develop their position weight matrices

and logos which were compared with each other for similarity based clustering. This resulted into

28 clusters of RBPs where RBPs belonging to same cluster shared good level of similarity for their

prime motifs (Supplementary Figure 1). Such display of grouping among RBPs is reflection of

unity in diversity phenomenon as well as strongly suggest that how much of importance contextual

factors could be for RBP-RNA interactions that despite of sharing similarity in their main motifs the

binding  appeared  highly  contextual.  This  also  transpires  from the  study  done  on  the  flanking

regions  of  these  main  motifs  for  the  RBPs  belonging  to  the  same  cluster.  The  di-nucleotide,

pentamers and heptamers based information content strongly varied among themselves for many

cases. The upcoming sections will present some related information on this.
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When these motifs were mapped back to the genome in order to derive the contextual information,

several of them hinted for coexistence of secondary supporting motifs for any given RBP. Such

cases were studied further for co-occurrence of motifs where the most dominant motif would be

supported by some other predominant secondary motif. All those sequences where the dominant

motif existed were also searched for the supporting secondary motifs. Obtained co-occurring motif

pairs were further evaluated to measure the similarity between them using Jaccard similarity index

based  approach.  The  method  utilizes  the  position  weight  matrices  of  co-occurring  motifs  for

alignment  considering  relative  shifts  to  recognize  similarity  between  two  motifs  (40).  All  co-

occurring  motif  pairs  possessed  similarity  score  <  0.2  ensuring  different  motif  partners  being

evaluated instead of same motif repeating itself. Sequence regions where the motifs co-occurred

displayed  high  statistical  significance  of  co-occurrence  rate  for  the  motif  pairs  for  any  given

distance(p-value<<0.05;  KS-test  ).  For  all  RBP models,  big  difference  was  observed  for  the

distribution of co-occurring motif pairs when compared to the random sequence regions, strongly

supporting the existence of co-occurrence of motifs in RBP binding models of RNAs. Figure 2

illustrates some of these cases. In this way, 178 statistically significant co-occurring motifs pairs out

of  297  motif  pairs  for  127  RBPs  were  obtained,  strongly  suggesting  again  that  context  holds

importance  in  RBP-RNA interactions.  Co-occuring  motif  details  for  the  RBPs  is  given  in  the

Supplementary data 1 Sheet 8. Further these motifs were also checked for frequency ratio >1  as

discussed in method section. All 178 statistically significant co-occurring motif pairs were found to

have frequency ratio (FR) > 1. These co-occuring motifs were analyzed for the region flanking 75

bases from both sides of the prime motif. The reasons for considering this region becomes more

clear in the following next section. 

The motifs reported in the present study were compared with the experimentally reported motifs.

Most of the motifs found in this study matched with the experimentally reported motifs. However, it
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was also observed that several of these experimentally reported motifs were not the prime motif

reported here but matched to other lower ranked motifs which either co-occured with the prime

motifs or were exclusively present, covering comparatively lesser amount of CLIP-seq data than the

prime motifs reported in the present study. Their  occurrence in the cross-linking data varied from

34.07% to 81.32% while the prime motifs reported in this study mostly covered at least 70% of

CLIP-seq data. Figure 3 provides a snapshot of the comparison between experimentally reported

motifs with motifs identified in the present study.

 

Consideration of expression data for targets helps in building more realistic data-sets

The discovered motifs above work as a point to zero upon to consider the potential significant

interaction spots in the RNA. However, such motifs alone can’t hold much higher stake than that as

they  may appear  in  the  non-binding  regions  also,  though  found statistically  significant  for  the

binding regions. Evaluation of their context for their functional role thus becomes essential. In this

regard, 75 bases from both the flanking regions were considered where the motif region worked as

the anchor. Previously, it has been found that ~75 bases of flanking regions around the potential

interaction sites in RNAs capture the local environment for structural and contributory information

effectively (20). Also, RBPs which interact with the RNA through multiple domains use multiple

interaction  sites  which  are  usually concentrated  around  a  local  region  instead  of  being  long

distanced interaction spots. Thus, uniform length sequences with flanking regions were obtained for

every individual RBPs which varied for different RBPs depending upon the length of their anchor

motifs. This also led to the construction of positive and negative instances datasets, simultaneously.

The  number  of  positive  instances  differed  for  the RBPs  depending upon their  available  cross-

linking  sequencing  data,  ranging  from  1,309  (EIF4A1) to 8,48,680 instances  (AGO1-4).  This

covered a total of 19,547 genes experimentally confirmed as targets of these RBPs. Total number of
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instances  was  greater  than  total  number  of  peak  data  for  most  of  the  RBPs  due  to  multiple

occurrence of motifs on a single sequence. 

Identifying suitable negative dataset candidates becomes a more crucial task. And it is where most

of  the  previously  developed  tools  have  gone  too  soft  and  mostly  ended  up  selecting  random

sequences, which actually does not help to divulge more information. As transpires from above

discussions and results, there are many spots across the transcriptomes which posses sequences

similar to the interaction motifs but they yet not interact. In usual, chances of finding shorter motif

themselves is higher in the random data. In such scenario, considering random sequences really

does not add significantly to the purpose of discrimination and does not answer the question raised

above. In order to build a better negative dataset, it is better to pick those candidates as negative

instances  where the region similar  to the main motif  is  present  and creates  a  strong confusion

matrices to build a more natural and robust model. Therefore, to create the negative set for RBPs

two different kind of strategies were used. In the first strategy we used RNA-seq data for the same

condition for which we had the cross-linking data available for the given RBP. Those RNAs were

selected which were expressing themselves in the same condition but did not bind to the considered

RBP and did not reflect in the CLIP-seq data. They were searched for the prime motifs of the RBP

similar to the positive data cases and in similar manner 75 bases flanks were considered along with

capturing the contextual information with more discrimination power. For the RBPs for which the

negative datasets were created  using this strategy  are called Set A RBP datasets throughout this

study. This way, the negative datasets for 74 RBPs were created (Supplementary Data 1 Sheet 5). 

In the second strategy, the negative datasets were created for those RBPs which did not have similar

condition  RNA-seq  data  available  for  the  considered  CLIP-seq  conditions.  In  such  scenario,
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therefore, here those RNAs were considered which exhibited binding to their respective RBPs but

they also had the motifs on other positions which did reflect in the CLIP-seq data and were also far

away from such cross-linking regions. The logic behind is that such RNA sequences whose some

regions exhibited binding to RBPs in CLIP-seq data make clear positive instances out of these

regions  as well  as hold a simultaneous evidence that  these RNAs were expressed in  the given

condition. Regions which display the interaction motif in these expressed RNAs but don’t bind to

the RBPs become an apt case for negative instance consideration with high potential for contextual

information unlike the usual random sequences. This particular set of negative dataset instances

were called Set B. In this way, the Set B negative dataset were created for the remaining 57 RBPs

(Supplementary Data 1 Sheet 6)). Rest of the analysis were same on both the sets of RBPs. This all

also reinforces the view that any successful RBP-RNA interaction discovery  approach can not be

founded solely  upon the motifs  consideration but  needs  correctly  designed context  information

extraction  approach  also  which  can  be  provided  only  after  a  better  a  negative  instances

consideration.

Contextual  information  surrounding  the  anchored  motif  is  critical  for RBP binding  sites

recognition

Motif discovery and anchoring helped in  selecting the more appropriate  positive and negative

instances  from  which  contextual  information  and  features  might be  derived.  The  contextual

information came in the form of other co-occurring motifs, sequence specific information, position

specific  information,  and structural/shape information which could exhibit  sharp discrimination

between negative and positive instances.  Contextual information were derived from the features

based on four major properties:  (1) 7-mers frequency probability for each position,  (2) 5-mers

frequency probability for each position, (3) di-nucleotide densities in the region, and (3) Structural

triplet frequency  covering  27 combinations  of  structure  triplets  arising  from  the  dot-bracket
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structural representation from RNAfold predicted RNA structures. Consideration of heptamer was

for picking up any further sequence specific signals in the flanking region, where similar approach

of inexact search was applied with at least 70% similarity match as was done for the prime motifs’

6-mer seeds. Pentamers  application was motivated from the recent findings which reported that

pentamers capture the DNA shape very accurately (24). The nucleic acids shape has been found

critical in the interactions with regulatory proteins which scan these shapes for their stationing. So

far,  this  approach  has  been  applied  on  DNA but  hardly  on  RNAs.  The  DeepBind  work  had

observed about the importance of using such kind of information which could be beneficial  in

future developments for the tools reporting RBP-RNA interactions (14). The dinucleotide densities

have been found to be highly useful in indirectly evaluating the RNA structure and accessibility

(20,21). In fact, it has been found more promising than  ab-initio RNA structure prediction.  Ab-

initio methods’ accuracy drastically falls with the length of RNA, and they are suitable for only

short RNA sequences (9,20). Pentamer and di-nucleotide frequencies capture better structural and

shape information through base stacking and neighborhood contribution. Similarly, RNA structure

triplet has been used widely in deriving the structural information of RNA for their propensity

towards interaction factors, especially for miRNA:RNA interactions (41). 

Various  features  generated  based  on  the  above  mentioned  properties  were  evaluated  for  their

discrimination potential between the positive and negative instances. The most important top 100

features are given in supplementary data 1 sheet 9. Among them, the features originating from the

dinculeotide densities appeared the most. Some pentamer and heptamer features were also present

among these top features. Dinucleotide density reflects the structural and accessibility properties of

the nucleic acids, as mentioned above. A very striking observation was also made here. Most of the

positive  instances  flanking regions  displayed enrichment  of  CG. Approximately  69% of  RBPs

target regions exhibited CG among the most dominant feature for each position. Where as for rest
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of the RBPs had UU and UA among the most prominent features. Besides this, it was also observed

that RBPs which shared high similarity for their binding motifs and were clustered among the same

group (Supplementary Figure 1) differed substantially  for this  contextual  information and their

flanking regions displayed different distribution patterns. Figure 4 presents an example of one such

group, RBPs belonging to AGO4 cluster (Cluster 1). As can be noted in this figure also, CG is

remarkably enriched for the binding site regions. Therefore, despite of having binding sites motifs

they differ in their binding which is influenced by context. Also, the universal prominence of CG in

the RBP binding regions reinforces the theory which suggests their regulatory roles in stationing

the binding factors and supporting the binding motifs (42). Also, they may be studied further for

RNA modification which are considered critical for RBP binding dynamics.

For 12 RBPs, pentamers were also found in the top 20 features for different positions whereas

heptamers were found for 10 RBPs in the top 20 features. Among top 100 features, almost in 90%

cases  heptamers  and  pentamers  marked  their  presence.  Significant  difference  was  observed

between the positive and negative instances with respect to the F-score for positions which also

suggest that substantial amount of information is being held by the flanking regions around the

binding motif, which may be one of the determinant for contextual interactions between RBP and

RNA.  A series  of t-tests  between the positive and negative  instances for various  features also

supported this. Biologically, heptamers and pentamers were expected to reflect any supporting co-

occurring  motifs  near  the  prime  anchored  motif.  Pentamers,  specifically,  were  considered  to

capture the shape properties, which too have been called important in protein and nucleic acids

interactions, more so in cases where sequence motifs are not clear or prime (14,24). A closer look

with  these  pentamers  and  heptamers  revealed  that  for  many  RBPs  binding  sites,  they  were

prominent  in  the  flanking  regions  where  the  co-occuring  secondary motifs  existed  (Figure  2).

Though heptamers were found more reflective to this phenomenon.  As could be expected now,
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these information properties from the flanking regions looked highly promising for identification of

a true binding site. The impact of each of these properties on discrimination capacity between true

binding sites and negative sites was also clear when evaluated directly on the machine learning

models for performance, as transpires in the following section.

DNN implementation of the RBP binding site models consistently achieved high accuracy

Before combining the features to build the collective models for RBP-RNA interactions, one more

assessment  of  contributions  by  the  above  mentioned  properties  in  discrimination  was  done.

Classification  assessment  was  made for  each  given  properties  separately  before  joining  them

together while using XGBoosting. This was done to get the preliminary idea about the individual

contribution made by each of the contextual properties towards the accurate classification and how

important they looked in the process of accurate recognition of the binding spots. For the pentamers

based classification the accuracy varied from 60.23% (U2AF2) to 82.01% (FKBP4) for Set A RBPs

with an average of 69.8% accuracy. For heptamers it varied from 65.01%(FXR1) to 88.72% (FXR2)

with an average accuracy of 76.49% for set A RBPs. Similarly, for set B RBPs pentamer accuracy

varied from 55.6% (DHX9) to 86% (EIF4A1) with an average of 66.7% accuracy. For heptamers it

varied from 57.23% (MOV10) to 97.47% (EIF4A1) with an average accuracy of 77% for Set B

RBPs. For structure triplets we used different window size but none of the windows achieved more

than 63.39% accuracy for any RBP, clearly supporting our above made observation that  ab-initio

structure prediction derived features don’t add much value due to their innate limitations. Therefore,

this feature was not further taken for the final model building. Accuracy for di-nucleotide densities

based classification varied from 63.04%  (FMR1) at 43 window size to 88.6% (RBFOX2) at 71

window size with an average of 75% accuracy at different window sizes which varied from 17 to

103  for  Set  A RBPs.  Similarly,  for  set  B  RBPs  the  accuracy of  di-nucleotide  density  based

classification varied from 61.46% (DHX9) at 71 window size to 90.57% (EIF4A1) at 91 window
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size  with  an  average  of  75.25% accuracy  (Supplementary  Data  1  Sheet  5,6).  The  results  here

displayed concordance with  the observation made in  the  previous  section  where importance  of

contextual dinucleotide density information based features emerged as the most important ones for

the  binding sites  detection.  Figure 5(A)  presents  the  violin  plots  for  the  accuracy distributions

observed for the classifications done by each of these properties for all the RBPs.

With  this  all,  it  was  pretty  evident that  the  selected  properties  and  their  features  had  strong

discriminatory strength, barring the RNA structural information derived through ab-initio structure

prediction method.  All  the features originating from these qualifying properties  were combined

together to build the final models of RBP-RNA interaction targets.

After getting optimum window size for di-nucleotide densities, we combined these three features

(pentamers probabilities, heptamers probabilities and di-nucleotide densities) together to build the

final  models.  The  final  models  were  built  using  Xgboosting  as  well  as  DNN.  The  reason  for

considering  these  two  different  approaches  are  that:  1)  they  reflect  two  different  learning

approaches: Shallow and Deep, 2) They complement each other as Xgboost works good for the

cases with comparatively lower training data while DNN performance is good where learning data

is higher, 3) Both the approaches work very good for conditions where the dimensions are high, as

was with this study.

Combining of the features based on above mentioned properties was done in a gradual manner in

order to see the additive effect of them on the classification performance. As it is apparent from

Figure 5(B), which showcases the DNN classifier’s performance for five RBPs, the performance of

the classifiers kept increasing on the addition of more features, where consistency also increased as
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can be seen through the band width of the plots for the five RBPs. Here also, the dinucleotides

based contextual features emerged most critical as the biggest leap in the performance was noted

when it  joined the heptamers  and pentamers based features.  Any pair  of these three properties

features gave almost similar performance, but sharpest rise was observed in the performance when

contextual dinucleotide information based features were added to the pentameric and heptameric

features. 

After  combining  the  features  we  had  1,198  (ZNF184)  to  2,544  (EIF4A3,  EIF4G1,

EWSR1,HNRNPD, HNRNPL, KHDRBS3, NOP58 etc.) features for individual RBPs. The feature

numbers  varied  due  to  different  sized  best  performing  dinucleotide  densities  windows.  These

features were used in Xgboost machine learning where the average accuracy of 85.07% (Avg. AUC:

85.06%, Avg F1-Score: 84.64% Avg MCC:79.26) was obtained and where the values varied from

79.19% (FXR2, AUC: 79.19%, F1-Score: 78.58% MCC:66.38) to 90.81% (RBM47, AUC: 90.80%,

F1-Score:90.49 % MCC:83.17)) for Set A RBPs. It was found that the average accuracy of 84.08%

(Avg. AUC: 84.07%, Avg F1-Score:82.66 % Avg MCC: 69.07) was obtained for Set B RBPs, where

accuracy values varied from 66.34% (MOV10, AUC: 66.34%, F1-Score: 64.74% MCC:42.58 ) to

96.78% (EIF4A1,AUC: 96.48%, F1-Score: 96.40% MCC: 92.37).  The same set of the combined

features was also used in the DNN implementation. DNN works better with higher dimensions and

instances to learn from. In the input layer combined features were used where as two hidden layers

gave best performance and the number of nodes per hidden layer varied from 700 to 1,300. Details

of implementation are already given in the methods section. DNN achieved an average accuracy of

92.25% (Avg. AUC: 92.64%, Avg F1-Score: 91.97%, MCC:84.52% ) for  Set A RBPs which was

much higher than XGBoost. Whereas for Set B RBPs an average of 83.47% (Avg. AUC: 89.61%,

Avg F1-Score: 83.18%, Avg MCC:67.34% ) accuracy was achieved by the DNN models, which was

35

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447370doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447370
http://creativecommons.org/licenses/by/4.0/


slightly  lower  than  XGBoost.  Complete  performance  details  can  be  found  elsewhere

(Supplementary Data 1 Sheet 5,6).

In  general,  it  was  apparent  that  DNN approach  was  sensitive  towards  the  volume of  training

instances as it was found performing better where number of instances were higher. But the biggest

impact on performance was observed was for the granularity of dataset creation. Performance of

DNN was specially more marked here, as can be seen from its performance plot on Set A datasets.

On Set A, the  DNN models performance hardly touched below 90% accuracy. Even XGBoost’s

performance was better with Set A when compared to Set B. It needs to be recalled that Set B was

made for those RBPs for which the RNA-seq data was not available for the considered CLIP-seq

conditions. In such scenario, those RNA were considered to generate the negative instances whose

some regions were present in the CLIP-seq data suggesting their expression. From the same RNA,

those regions were selected which were having the prime motifs but yet not binding to the RBP and

not reflected in the CLIP-seq data and were distant from such binding regions. While Set A negative

instances  were  clearly  those  regions  which  were  expressed  during  the  CLIP-seq  experimental

condition and possessed the prime motif but no region of the RNA itself bound to the RBP. Thus,

though the over all performance with Set B was still good and better than the datasets used by the

compared tools as transpires in the next section, it same time reflects that how important it is to

have a refined data-set like Set A. This is possible that some instances covered as negative instances

in Set B could be contributing to the RBP-RNA interactions or could not be captured in the CLIP-

seq experiments. Yet, as transpires from the various performance metrics plots across various RBPs

given in Figure 6 and AUC/ROC plots given in Figure 7, the developed approach in this study,

named as RBPSpot, showcases a consistently high and reliable performance for a large number of

RBPs. It also provides the largest number of models for RBPs binding developed from CLIP-seq

data to this date.
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Comparative benchmarking: RBPSpot consistently outperforms all the compared tools

A very comprehensive benchmarking study was performed where RBPSpot was compared with five

different  tools,  representing  different  approaches  of  RBP RNA interaction  detection:  RBPmap

(probabilistic approach), beRBP (Random Forest machine learning bases claiming highest accuracy

in  its  category),  DeepBind  (the  first  deep-learning  based  approach),  iDeepE  and  DeepCLIP

(representing some very recent and more complex deep-learning based tools).  Besides this,  the

benchmarking has also considered three different datasets as this work also presents a new dataset

while underlining the importance of better datasets in creating better models as well as to carry out

a totally unbiased assessment of performance of these tools on different datasets. 

Thus, the first dataset considered in the benchmarking study was derived from the RBPSpot dataset.

Only those RBPs were considered for comparison for which at least one tool had model built,

besides RBPSpot itself. This way comparison was done for 52 RBPs. The second dataset considered

was the one evolved during development of Graphprot software which has been used largely by

various  other  datasets  for  model  building  and  performance benchmarking purposes.  The  third

dataset used in this benchmarking study was the one used by beRBP software which too has been

used by many other tools for the same purpose.  Details  about these datasets have already been

discussed above and in the methods sections.

All these six software were tested across all these three datasets and RBPSpot outperformed all of

them across all the datasets, and for all the performance metrics considered (Figure 8). Figure 8

gives a detailed view of the data analysis of this benchmarking across the three datasets studied for

all these software. RBPSpot scored the average accuracy of 88.43% and the average MCC value of

0.77 on RBPSpot dataset, the average accuracy of 91.63% and the average MCC value of 0.83 on
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Graphprot  dataset,  and the average accuracy of 88.9% and the average MCC value of 0.74 on

beRBP dataset. Among all the considered performance metrics, MCC stands as the most important

one as it gives high score only when a software scores high on all the four performance parameters

(true  positive,  false  positive,  true  negative,  false  negative).  A good  MCC  score  signifies  the

robustness of the model and its performance consistency. RBPSpot emerged as the most robust

algorithm among all these compared software with very high consistency of performance. As it is

visible from the score distribution for all the metrics, RBPSpot also exhibited least dispersion of

scores for all the studies RBPs and for all the three datasets, confirming the precise performance

achieved by RBPSpot compared to other tools. 

After RBPSpot, the best performance was observed for the complex deep-learning based software

iDeepE and DeepCLIP. On RBPSpot dataset, iDeepE performed better than DeepCLIP, but for other

two datasets they attained almost similar metrics scores for performance. Undeniably, they emerged

far superior than their deep-learning predecessor, DeepBind, and other compared tools. They even

displayed much smaller dispersion of their scores than other compared tools. However, RBPSpot’s

performance  points  out  that  more  appropriate  features  may  be  learned  through  training  on

biologically  relevant  properties  to  derive  better  discrimination  power  using  machine  learning

approach, which can be amalgamated with Deep Neural Nets with much lesser complexity and

superior performance than applying complex deep-learning layers to automate feature extraction.

The observations made in the introduction part of this work appeared true in this study that such

complex  deep-learning  approaches  score  good  on  unstructured  data  where  clear  features

identification and extraction is difficult to be done by expert and automation is required for feature

extraction. The problems where features are identifiable and can be structured, simpler machine

learning models may outperform the complex deep-learning approaches.
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The above mentioned benchmarking was done for all the tools while keeping their original training

dataset and models for RBPs. Most of the existing tools don’t provide the option to build user

specified models of RBPs using their algorithms but come with their own pre-built models. This

limits the scope to test the algorithms with different combinations of datasets. Fortunately, the two

best performing tools after RBPSpot, iDeepE and DeepCLIP, provided this scope where the users

may build their new models with their own datasets. Also, since these two tools performance were

next to RBPSpot, they stood as a natural choice to study the performance impact with datasets

variations.  Both  iDeepE and DeepCLIP have  implemented  Graphprot  dataset  for  their  original

model building. For this part of benchmarking study the training and testing datasets of RBPSpot,

iDeepE, and DeepCLIP were swapped and studied for four different combinations of training and

testing datasets:  RBPSpot training and testing datasets, RBPSpot training and Graphprot testing

dataset, Graphprot training and testing datasets, Graphprot training and RBPSpot testing dataset. 

Figure 9 presents the results for this part of benchmarking where RBP models were rebuilt and

tested using the four different combinations of training and testing datasets. RBPSpot outperformed

the remaining two software, iDeepE and DeepCLIP for all the combinations of datasets, for all the

considered performance metrics. Like the previous benchmarking study, here also RBPSpot scored

the  highest  among  all  the  software  for  all  the  combinations  of  datasets  with  a  remarkable

consistency. As transpires from the kernal density plots in Figure 9, RBPSpot maintained its least

variability  and  dispersion  of  performance  scores  and  continued  to  display  it  strong  balance  in

detecting the positive and negative instances with high and similar level of precision. This was

reflected  by high scoring on all  the four  parameters  of  performance resulting into consistently

highest MCC values, which confirmed the robustness of the algorithm. Also, it was observed that

performance of all the compared software was better when RBPSpot dataset was used for training.

The original implementation of iDeepE and DeepCLIP have used Graphprot dataset. Both these
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software performed better when their original dataset for model building was replaced by RBPSpot

training dataset, underscoring better and more realistic composition of RBPSpot dataset. 

The benchmarking done here stands among one of the most comprehensive ones.  It looked into

various aspects of performances and has involved a large number of RBPs for comparison as well

as evaluated the role of datasets in performance. RBPSpot consistently scored high across all the

comparative tests and clearly outperformed the compared tools. The full details and data for the

benchmarking studies are given in supplementary Data 1 Sheet 10-15.

Structural and molecular dynamics analysis supports the RBP binding site models

Depending  upon  the  availability  of complete  experimentally  validated  3D  structures  in  PDB

database,  structures  for  13  RBPs  (  IGF2BP1,  DIS3L2,  CNBP,  SRSF3,  FKBP4,  KHDRBS1,

LIN28A,  CAPRIN2,  DICER1,  GTF2F1,  HNRNPC,  CPSF6  and  AGO2)  were  selected  for  the

structural  interaction  analysis  for  the  identified  binding  sites  (43).  In  order  to  examine

conformational variations of the RBPs within the hydrated controlled environment, the root-mean-

square deviation (RMSD) of the atomic positions of RNAs containing motif with respect to  RBP

backbone were calculated and compared with  the RNA complexes  without  the prime motif.  In

comparative  analysis  of  RMSD  measures  these  RBPs  complexes  were  considered  with  three

different RNA sequences for each RBP. These sequences were randomly selected from positive

datasets having 75 bases flanking regions. To analyze the structural behavior of RBPs and their

complexes, 20 ns simulation job was performed. For this purpose, selected RBPs and complexes

were immersed in the cubic boxes of varying dimensions based on the system size. Prior to the

energy minimization process, different charged molecules like NA+ or Cl- were added to neutralize

the system (44). 
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Once the simulation was finished, the last  step was to analyze the simulation result  in term of

RMSD plot during the course of simulation for 20ns. RMS module in GROMACS was executed

while choosing "Backbone" for least-squares fitting and "RNA_Heavy" for the RMSD calculation.

By doing so, the overall rotation and translation of the protein was removed via fitting and the

RMSD reported about how much the RNA position varied relative to the protein. This is considered

as a good indicator of how well the binding pose was preserved during the simulation. Comparative

analysis of RMSD trajectories of 13 different RBPs-RNA complexes with three replicates each for

the two  conditions clearly suggested that the presence of the identified prime motifs was giving

stability to the RBP-RNA complexes (Figure 10).

 

For example, in case of AGO2, on comparative analysis of RMSD value of the AGO2-RNA first

sequence complex with the prime motif, the value ranged from 0.1 nm to 0.7 nm and got stabilized

at 0.5 nm whereas RMSD values for the complex without the motif ranged from 0.1 nm to 1.7 nm

and got stabilized at 1.5 nm, which was less stable. Similarly the second pair with motif had RMSD

ranging from 0.1 nm to 1.7 nm which got stabilized at 0.6 nm, whereas the same pair without the

prime motif ranged had RMSD ranging from 0.3 nm to 1.4 nm and got stabilized at 1.4 nm. For the

third pair, the AGO2-RNA complex of the third sequence with the prime motif showed deviation

from 0.1 nm to 1.0 nm and got settled at 0.7 nm whereas the same sequence without the prime motif

showed deviation from 0.0 nm to 2.0 nm and settled at 1.4 nm. In all the three cases of AGO-RNA

complexes, the sequence with the prime motif was found to be more stable when compared to the

one without the motif in the dynamic environment. Similar pattern was observed for all the 13 RBP

and their triplicate pairs. Details can be found in Table 1.
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In the nutshell,  the structural molecular dynamics study supported the identified binding spots for

the RBP where it was clearly evident that the identified binding motif provided structural stability to

the considered RBP-RNA complexes.

Application: SARS-Cov2 genome was found to host RBP binding sites

Most of the deadly viruses are RNA viruses which exploit the host proteins to replicate, spread and

survive. The best living example is nSARS-CoV-2. The emergence of the novel human corona-virus

SARS-CoV-2 in Wuhan, China has caused a  pandemic of respiratory disease (Covid19). The big

scientific concern is that to this date very scarce and uncertain molecular information is available

about  the  Covid19 patient’s molecular  system as  not  much  high-throughput  studies  have  been

carried out so far. There is almost absolutely no information on the host RBPs response during

Covid19 infection despite of the fact that all such virus essentially require host RBPs to survive and

replicate And RBP-RNA interaction studies hold prime importance in this regard also. 

Therefore, we scanned the SARS-CoV-2 genome through RBPSpot to find the binding sites  for

RBPs which could have therapeutic value. Interestingly, out of 131 different model we found 22

different binding sites for 7 different RBPs (AIFM1 (2), BUD13 (3), CELF2 (4), RBM6 (3), UPF1

(2),  TARBP2  (4)  and  KHSRP (4))  (Figure  11).  Among  these,  AIFM1  interaction  with  viral

polymerases in influenza virus infected cells is well studied (45). These all binding sites were found

on anti-sense strand of the genome whose importance is for viral replication. During the infection,

majority of immunoprecipitated RNA of Coronavirus were found originating from the anti-sense

strand (46). Therefore, there is a possibility that these RBPs are helping in it’s transcription by

binding to it’s negative strand. To check the stability of these RBPs with their binding site we also

performed MD simulations study on two different sequence forms for each identified binding site
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(One with the binding site and another without it). Prior to this, we obtained complete 3D structures

for  AIFM1  and  UPF1  from  PDB  and  modeled  the  remaining  five  RBPs  through  homology

modeling due to lack of complete defined structures for them. After modeling we evaluated the built

3D structure  models  using  SAVES v6.0  (structure  Activity  validation  server).  Five  RBPs  PDB

structures namely AIFM1, BUD13, CELF2, TARBP2 and UPF1 passed through verification filter

like PROCHECK and WHATCHECK except KHSRP and RBM6.  When we analyzed the model

structure for KHSRP and RBM6 with both program it gives 80.9% and 83.5% residues in allowed

regions in the Ramachandran plot but for good quality model, over 90% residues are expected in the

most  favored  region  and  lack  of  loop  filtering  causing  side-chain  packing  inaccuracies.

Subsequently, on analyzing the RMSD graph (Supplementary Figure 2) for all the seven RBPs it

was found that that five out of seven RBP-RNA complexes were stable with prime motif compared

to the RBP-RNA complexes counterpart without the main motif. This part of the study was done

just to showcase the application of the developed approach. The finding made in this section may be

used for further study for Covid research groups.

Conclusion

A living system is a continuous outcome of the regulatory setup working for that system in the

background. RNA binding proteins define one such critical regulatory component of the system

which  is  present  at  almost  every  post-transcriptional  regulatory  event  but  about  which  our

understanding is still nascent and evolving. How they select their targets and carry out interactions

in functional  manner  is  largely ambiguous.  With the advent  of high-throughput  techniques like

CLIP-seq  and  interactome  capture,  the  information  on  genes  recognized  as  RBPs  and  their

interactions are growing continuously. Such high-throughput data on interactions are very valuable
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resources  to  construct  the interaction models.  The present  study used the same from CLIP-seq

experiments. However, there are several other critical factors involved which are required to be

build  these  interactions  models  with  high  accuracy.  This  involves  proper  negative  data-sets

screening, appropriate motif discovery strategy, and contextual information derivation. All of them

are interconnected with each other and success of any such RBP binding site discovery tool depends

highly on this. Without proper datasets, correct binding specific motif candidates are hard to be

found. The motif finding step itself needs to consider the sparse nature of RBP binding sites and

need to anchor correctly so that correct surrounding could be recognized to provide the contextual

information. Otherwise, such motifs occur frequently even in the non-binding regions, and wrong

context  may  easily  compromise  the  accuracy.  When  all  these  information  are  applied  through

effective  machine  learning  algorithms,  consistently  high  level  accuracy  is  achievable.  It  was

comprehensively and comparatively benchmarked against some recent tools where it outperformed

them consistently across a wide number of datasets and RBPs. It also showcased that when a DNN

is trained properly on suitable properties with appropriate biological insights, the developed system

could easily outperform much complex deep-learning based approaches where such learning is done

through automated feature extraction process using complex layers like CNN and LSTM etc. Such

complex deep learning approach may be suitable for unstructure data where features could not be

identified easily. However, when features are identifiable and structured, simpler machine learning

approaches  can  outperform them easily.  The  developed  approach  in  this  study,  RBPSpot,  can

identify the binding sites of existing RBPs in human system as well as it becomes one of few tools

where users can put their own data and raise their own models for any species and any RBP. The

software is freely available as a webserver as well as as an standalone program.

From  here,  we  visualize  that  incorporation  of  spatio-temporal  and  other  interactome  network

information for RBPs as the another dimension to explore to further improve our understanding on
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RBP-RNA  interactions.  This  is  something  which  still  remains  largely  unaddressed.  Some

encouraging recent developments have happened (47,48) which promise that incorporation of back-

end network and interaction information on RBP RNA interactions could add more value towards

recognition of functional and dynamic nature of RBP RNA interactions which could further boost

interaction spot identification process. Also, the findings made here from the contextual information

like CG enrichment  in  the  flanking regions  must  be explored  further  for  their  functional  roles

associated  with  such  binding  sites.  RNA modifications  on  CG  and  likewise  other  important

contextually important factors found in this study may further provide reasoning for spatio-temporal

nature of these interactions which would mark another level of development in our understanding

towards RBP RNA interactions and regulation. 
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Tables

Table 1: Table for RMSD value for selected 13 RBPs complexes with and without the prime motif.

The  identified  prime  motifs  were  found  statistically  enriched  in  the  target  sequences  when

compared to random regions. Molecular dynamics studies with and without these motifs clearly

suggested their important role in binding where they were found responsible for stable complex

formation between RBP and RNA.

RBPs
name

Sequence
name

RMS Deviation
range value with

motif
(nm)

Stablized_RMSD
value with motif

(nm)

RMS Deviation
range value

without motif
(nm)

Stabilized RMSD
value without motif 

(nm)

AGO2 RNA_seq1 0.1-0.7 0.5 0.1-1.7 1.5
RNA_seq2 0.1-1.7 0.6 0.3-1.4 1.4
RNA_seq3 0.1-1.0 0.7 0.1-2.0 1.4

CAPRIN2 RNA_seq1 0.1-0.3 0.2 0.6-2.1 1.9
RNA_seq2 0.3-1.8 1.3 0.7-2.2 1.5
RNA_seq3 0.2-2.1 1.8 0.1-2.9 2.7

CNBP RNA_seq1 0.1-1.3 1.1 0.3-4.8 4.3
RNA_seq2 0.3-1.8 0.5 0.3-2.5 2.0
RNA_seq3 0.1-2.7 2.5 0.1-4.7 3.4

CPSF6 RNA_seq1 0.3-1.2 1.0 0.3-3.2 3.0
RNA_seq2 0.3-2.0 1.8 0.3-2.8 2.4
RNA_seq3 0.1-2.9 2.7 0.1-4.8 4.1
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DICER1 RNA_seq1 0.3-1.3 1.0 0.3-3.5 2.9
RNA_seq2 0.3-1.5 1.5 0.3-2.7 2.0
RNA_seq3 0.1-2.5 2.3 0.1-4.8 4.2

DIS3L2 RNA_seq1 0.1-0.3 0.3 0.3-2.5 2.5
RNA_seq2 0.3-1.8 1.2 0.3-2.4 2.0
RNA_seq3 0.1-2.3 1.8 0.1-4.2 4.0

FKBP4 RNA_seq1 0.3-1.5 1.3 0.3-1.2 1.3
RNA_seq2 0.1-1.7 1.1 0.1-2.5 2.2
RNA_seq3 0.1-1.9 0.5 0.1-2.3 2.2

GTF2F1 RNA_seq1 0.3-1.3 1.3 0.3-3.7 2.5
RNA_seq2 0.3-1.9 1.7 0.5-2.5 2.0
RNA_seq3 0.1-2.6 2.1 0.1-4.7 4.0

HNRNPC RNA_seq1 0.1-0.5 0.3 0.1-2.7 2.3
RNA_seq2 0.1-2.3 1.8 0.1-2.3 2.0
RNA_seq3 0.1-2.5 2.2 0.3-4.3 4.1

IGF2BP1 RNA_seq1 0.3-1.7 0.9 0.3-2.6 2.1
RNA_seq2 0.3-1.5 0.6 0.07-1.7 1.3
RNA_seq3 0.1-1.7 1.5 0.1-2.6 1.6

KHDRBS1 RNA_seq1 0.3-1.9 0.5 1.0-4.8 3.5
RNA_seq2 0.3-1.2 1.2 0.3-2.1 1.2
RNA_seq3 0.3-2.5 2.5 0.1-4.7 4.2

LIN28A RNA_seq1 0.3-1.4 0.7 0.3-3.0 2.2
RNA_seq2 0.5-2.1 1.5 0.5-3.0 1.6
RNA_seq3 0.1-2.2 2.2 0.1-4.9 3.1

SRSF3 RNA_seq1 0.2-0.5 0.8 0.5-3.7 3.0
RNA_seq2 0.3-1.2 1.2 0.5-2.5 2.1
RNA_seq3 0.1-3.0 2.5 1.0-4.8 3.2

Figure legends

Figure  1:  Detailed  pipeline  of  the  workflow.  The  image  provides  the  brief  outline  of  entire

computation protocol implemented to develop accurate RBP RNA interaction model and identify

the correct RBP binding sites across given RNA sequences. The process of model building starts

from identifying prime motifs through k-mer spectrum search from the CLIP-seq regions where

BWT/FM indexing based inexact search algorithm was implemented. The statistically enriched k-

mers were expanded across all reporting sequences region till at least 70% similarity between them

was present. The final prime motifs were established as the anchors. The flanking regions around
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such anchored prime motifs were used to derive the contextual information, together which worked

as freature vector elements for discrimination using XGBoost and Deep-Learning.

Figure 2: The co-occurring motifs positional preference. The plots are showing the position specific

existence of the co-occurring motifs with respect to the prime motif (coordinated at “0”). F-score

values  of  other  contextual  features  like  position  specific  pentamers  and  heptamers  distribution

reflect this to some extent. Most of these RBPs exhibited some secondary motif which co-occured

with the prime motif in a position specific manner.

Figure 3: Comparison between experimentally reported motifs and motif identified in the present

study.   Most  of  the  previously  reported  motifs  for  the  RBPs  were  detected  by  the  approach

presented in the current study. However, it also observed that several of previously reported motifs

are  not  the  prime  motifs  but  comparatively  cover  lesser  CLIP-seq  data  than  the  prime  motifs

identified in the present study. The last  three columns show the matching motifs  similar to the

previously reported motifs, their status in CLIP-seq data coverage,  and the corresponding motif

rank. 

Figure 4: F-score distribution of dinucleotide densities at different positional windows for the target

regions and their flanks for Cluster#1 members. Context specific dinucleotide density distribution

emerged among the most important features for all RBPs taken in this study. Their densities worked

as  important  features  at  variable  windows  and  distances  for  different  RBPs.  Here,  Cluster#  1

members data is shown. They shared high similarity among themselves for their prime binding

motifs,  yet  their  contextual  information and density  profiles differed a lot.  Enriched contextual

“CG” distribution of these regions was found consistently distinguished property  for the regions
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binding the RBPs.

Figure 5:  Assessment for three main properties in discriminating between the negative and positive

instance,(A)  Violin plot distribution of accuracy when dinucleotide, pentamer and heptamer were

used alone for set A and set B RBP.  (B) Impact of combination of the dinculetodie, pentamers, and

heptamers properties based features. These features appeared highly additive, complementary to

each other as the performance in accurately identifying the binding regions increases substantially

as these are combined.

Figure 6: Performance metrics for RBPSpot. (A) First plot showing the accuracy, AUC, sensitivity,

specificity, F1 score for the DNN model for set A RBPs.  The second plot is showing the same

metrics for the gradient boosting method. The third plot is showing the corresponding instances in

the test, train and in total data for set A RBPs, (B) The first plot is showing the accuracy, AUC,

sensitivity,specificity, F1 score for the deep learning models for Set B RBPs, where the second plot

is showing the same metrics values for the gradient boosting method with Set B RBPs. The third

plot is showing the number of instances in the test, train and in total data for Set B RBPs. RBPSpot

scored highly on all  the performance metrics where the most remarkable thing about it was its

consistent performance across a large number of RBPs and dataset.

Figure 7:AUC/ROC plots for Set A RBPs. The AUC/ROC plots for the deep-learning models for

some  of  the  RBPs  clearly  showcase  the  robustness  and  highly  reliable  performance  of  the

implemented DNN models.

Figure 8:  Comparative bench-marking results of RBPSpot  when compared to beRBP, DeepBind,
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RBPmap, iDeepE, and DeepCLIP for three different datasets. (A) Bechmarking result on RBPSpot

dataset,  (B)  Graphprot  dataset,   and  (C)  beRBP dataset.  Each these  datasets  performances  was

evaluated for various performance metrics where the heatmaps are for accuracy, F-1 score, and

MCC values for each dataset for some of the evaluated RBPs. The rightmost plots are radar charts

view of the average Accuracy, F1 score, and MCC attained by each software for the  corresponding

dataset. The last plot is the box plot which provides the average distribution of these metrics scores.

From the plots it is clearly visible that for all these datasets and for almost all of the RBPs, RBPspot

consistently outperformed the compared tools for all the metrics. More all the radar plots it scored

the  highest  and  nearest  to  the  isosceles triangle suggesting  consistent  and  better  average

performance also. The box plot suggests that RBPSpot not only performed best in overall but also

the dispersion of its various metric scores were much lesser than other  compared tools. Some of

these tools exhibited enormous variation in the distribution of their metric score suggesting unstable

performance by them. 

Figure 9: Performance benchmarking with different combinations of train and test datasets. In this

part  of  performance  benchmarking  the  impact  of  datasets  was  also  evaluated.  Since  this  part

required rebuilding of RBP-RNA interaciton models from the scratch and from the provided user

defined  data,  only  two  other  tools  other  than  RBPSpot  qualified  this  criteria  (DeepCLIP and

iDEEPE). These tools provide the capability to build new models from user given datasets. These

tools  were  originally  developed on Graphport  dataset.  Therefore,  in  this  part  of  benchmarking

RBPSpot and Graphprot datasets were considered and 4 different train-test datasets combinations

were  studied.  Distributions  for  various  performance  metrics  for  the  compared  tools  and  the

corresponding datasets have been given as Kernel densitiy plots: (A) RBPSpot train and test, (B)

RBPSpot  train  and  graphprot  test,  (C)  Graphprot  train  and  test,  and  (D)  Graphprot  train  and

RBPSpot test. For every such combinations, the average performance metics scores are given in the
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form of heatmap (E). The  plots clearly underline that RBPSpot consistently outperforms the two

tools for all the metrics on all these different combinations of train and test datasets, where again the

consistent and precise performance of RBPSpot was an important observation, Consistently high

MCC scoring by RBPSpot underlined it as a robust and balanced algorithm where dispersion in

performance metrics was least.  Also, the performance of all the compared tools increased when

RBPSpot dataset was used in training, clearly suggesting the importance of having a right dataset.

RBPSpot dataset presented here emerged as a better dataset for such studies.

Figure 10: Comparative time dependent root mean square deviations (RMSD) plots for 12 different

RBP-RNA complexes of with and without the prime motif. The trajectory was measured at 300 K

for the 20-ns. Trajectory arcs for RBP-complex of three randomly selected RNA sequences with

motifs  are  shown in  blue,  green  and  violet  spike  arcs  whereas  trajectory  spike-arcs  for  RBP-

complex without motif were shown in orange, red and brown color. The complexes with the prime

motifs were found much stable than their counterparts without the prime motif.

Figure 11: Application of RBPSpot reports the binding sites for seven different RBP on nSARS-

CoV2 genome. A total for 22 such binding sites were discovered across the nSARS-CoV2 genome,

all which existed across the negative strand of the virus genome.
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