
 

Published at International Conference on Intelligent Agents, Web Technology and Internet Commerce, Vienna, Austria, 2005. 
Adrian Paschke, IBIS, Technische Universität München 

RBSLA 
A declarative Rule-based Service Level Agreement Language based on RuleML 

 
Adrian Paschke 

Internet-based Information Systems, Technische Universität München 
Adrian.Paschke@in.tum.de 

 
Abstract 

 

This paper describes a Rule Based Service Level Agreement language 
called RBSLA which is based on RuleML. With this language SLAs 
can be implemented in a machine readable syntax which can be fed 
into a rule engine in order to monitor the contract performance at run-
time and automatically execute the contractual rules. The declarative 
logic based approach simplifies interchange, maintenance, manage-
ment and execution of SLA rules and enables easy combination and 
revision of contractual rule sets and contract modules. 
 
1. Motivation 
 
Our studies [1] of a vast number of Service Level Agreements 
(SLAs) currently used throughout the industry have revealed 
that today’s prevailing contracts are plain natural language 
documents and almost all contracts focus on a single Quality 
of Service (QoS) parameter – namely availability. We believe 
this reflects the early stage in SLA representation and the lack 
of suitable automated management tools which efficiently 
measure and continuously monitor and enforce SLAs. Recent 
commercial SLA management tools1 hide the contractual 
logic in their application code or database tiers, i.e. the SLA 
rules are expressed implicitly and often non-modifiable. This 
makes it complicated to interchange the distributed agree-
ments, adapt them to new requirements without extensive re-
implementation efforts and automatically maintain, monitor 
and execute large amount of SLAs. However, the upcoming 
service orientation (“semantic” service oriented computing) 
and new e-business models such as On-Demand or Utility 
Computing based on services that are loosely coupled across 
heterogeneous, distributed, dynamic environments - so called 
Service Oriented Architectures (SOA) - need new ways of 
representing SLAs. A suitable SLA language should make the 
contractual rules explicit in a formal, machine-readable and 
interchangeable way in order to transform them into executa-
ble code and exchange them between business partners and 
organizations. Furthermore, it should not constrain the parties 
in the way they formulate the contract rules but instead allow 
for a high degree of expressiveness, flexibility and agility. In 
contrast to conventional imperative programming languages 
such as Java or C++ declarative rule languages based on logic 
programming (LP) techniques provide a clean separation of 
concerns by explicitly expressing contractual logic in a formal 
machine-readable, interchangeable and executable fashion 

                                                           
1 e.g. IBM Tivoli Service Level Advisor, HP OpenView, Remedy SLAs  

with a high degree of flexibility. But, real usage of a formal 
rule-based representation language which is usable by others 
than its inventors immediately makes rigorous demands on the 
syntax: declarative machine-readable syntax, comprehension, 
usability of the language by human users, compact representa-
tion, exchangeability with other formats, means for serializa-
tion and persistence, tool support in writing and parsing rules 
(verification/validation) etc.  

In this paper we introduce a declarative rule-based Service 
Level Agreement language (RBSLA) which addresses these 
requirements. Therefore, it adapts and extends the emerging 
Semantic Web rule standard RuleML2 to the needs of the 
SLA domain in order to facilitate interoperability with other 
rule languages and tool support. The further paper is struc-
tured as follows. In section 2 we discuss related work. In sec-
tion 3 we argue for using RuleML as basis of RBSLA. In sec-
tion 4 we briefly describe the basic concepts of RuleML. In 
section 5 we present the RBSLA language and illustrate its 
usage in section 6. Finally, in section 7 we conclude this paper 
with a short summary. 

 
2. Related Work 
 
Recently, there are many efforts aiming on rule interchange 
and building an effective, practical, and deployable rule stan-
dard. This includes several important standardization or stan-
dards-proposing efforts including RuleML, SWRL, n3, 
Metalog, KIF and ISO Common Logic, ISO Prolog and oth-
ers. Some of those have been aimed at more or less special-
ized purposes, e.g., in the domains of business rules (SRML, 
BRML), Web Service policies (WS-Policy, WSPL, Policy 
RuleML, SWSL, WSML) and other areas as well. There have 
been also several SLA related language approaches such as 
the widely known Web Service Level Agreements (WSLA) 
[2] and comparable approaches such as the SLA language 
(SLAng) or the Web Services Offering Language (WSOL). 
The semantics of these languages are not represented via LP 
model theory and inferences are not based on LP proof theory 
as in our approach but use pure procedural, imperative logic 
for interpretation and execution which has many disadvan-
tages. In particular they do not provide expressive rule repre-
sentations with quantifiers, rule chaining, negation as failure 
etc. to describe the contract logic and have no relations to any 
rule standard. Comparable to our approach the work of Grosof 
                                                           
2 http://www.ruleml.org/ 



 

Published at International Conference on Intelligent Agents, Web Technology and Internet Commerce, Vienna, Austria, 2005. 
Adrian Paschke, IBIS, Technische Universität München 

and colleagues [3] must be mentioned. Their Semantic Web 
Enabling Technology (SWEET) toolkit comprises the Com-
monRules syntax and enables business rules to be represented 
in RuleML. Whilst their approach deals with contracts in a 
broader range namely e-commerce contracts and supports rule 
priorities via Generalized Courteous Logic Programs (GCLP) 
[4] and simple procedural attachments, our approach is more 
focused on SLA representation and incorporates further, 
important and needed logical concepts such as constructs to 
maintain live representations of contracts for monitoring and 
state tracking purposes (contract states ~ fluents), explicit 
rights and obligation management (deontic norms) supple-
mented with violations and exceptions of norms, complex 
event processing with active event monitoring and triggering 
of internal and external reactions as well as a multitude of 
SLA-related built-ins, full support of user-defined type sys-
tems and sophisticated procedural attachments in order to in-
tegrate existing (business) object implementations e.g., EJBs, 
databases and SLA-specific contract vocabularies (e.g. 
RDFS/OWL ontologies). 
 
3. Why RuleML? 
 
The XML-based Rule Markup language RuleML is a stan-
dardization initiative with the goal of creating an open, pro-
ducer-independent, XML/RDF based web language for rules. It 
develops a modular, hierarchical specification for different 
types of rules comprising reaction rules (Event-Condition-
Action rules), transformation rules (functional-equation rules), 
derivation rules (implicational-inference rules), facts (deriva-
tion rules with empty bodies), queries (derivation rules with 
empty heads) and integrity constraints (consistency-
maintenance rules) as well as transformations via XSLT from 
and to other rule standards/systems. [5] It is expected that 
RuleML will be the declarative method to describe (business) 
rules on the Web and distributed systems. It allows the de-
ployment, execution, and exchange of rules between different 
major commercial and non-commercial rules systems like e.g. 
Jess3, Mandarax4 or Prova5 via XSLT transformations. 
RuleML is not intended to be executed directly, but trans-
formed into the target language of an underlying rule-based 
systems (e.g. a Prolog interpreter) and then executed there. 
Therefore, it perfectly solves some of the requirements stated in 
section 1 – in particular machine-readability, interoperability 
with other rule languages and tool support (e.g. transformation 
into executable code and execution in rule engines). Since the 
object oriented RuleML (OO RuleML) specification 0.85 it 
adds further concepts from the object-oriented knowledge rep-
resentation domain namely user-level roles, URI grounding 
and term typing and offers first ideas to prioritise rules with 

                                                           
3 http://herzberg.ca.sandia.gov/jess/ 
4 http://mandarax.sourceforge.net/  
5 http://www.prova.ws/ 

quantitative or qualitative priorities. Nevertheless, the latest 
version 0.88 is still mostly limited to derivation rules, facts and 
queries. Currently, reaction rules have not been specified in 
RuleML and other key components needed to efficiently repre-
sent SLAs such as procedural attachments on external pro-
grams and data sources, complex event processing and state 
changes as well as normative concepts and viola-
tions/exceptions to norms are missing - in order to pick up a 
few examples. As such improvements must be made. There-
fore, RBSLA adds several new concepts to RuleML, e.g.:  
- Typed Logic with Types and Modes  
- Procedural Attachments 
- External Data Integration 
- ECA Rules with Sensing, Monitoring and Effecting 
- (Situated) Update Primitives 
- Complex Event Processing and State Changes (Fluents) 
- Deontic Norms including Violations and Exceptions 
- Defeasible Rules and Rule Priorities 
- Built-Ins, Aggregate and Compare Operators, Lists 
- Additional compact If-Then-Else-Syntax  
- SLA Domain Specific Elements such as Metrics, Escalation Levels 

and Ontology-based domain specific Contract Vocabularies 
- Test Cases for verification and validation of SLA specifications 
Before we evolve our RBSLA language we briefly sketch the 
basics of RuleML in the following section. For the reason of 
brevity and compactness we use a DTD-like content model no-
tation and skip definitions which are not relevant for under-
standing. 
 
4. Fundamentals of RuleML 
 
The building blocks of RuleML are [5]:  
 

Predicates (atoms) are n-ary relations defined as an <Atom> 
element in RuleML: 

Atom (Rel,(Ind|Var)*) 
<Var> and <Ind> are Variables to be instantiated by ground 
values when the rules are applied and Individual constants. 
RuleML also supports Complex terms <Cterm>. Constants are 
either simple names or URIs referring to the appropriate indi-
viduals. <Rel> is the predicate. Atoms can be negated with 
<Neg> or <Naf> which represents negation as failure. 
 

Derivation Rules consist of one or more conditions (<body>) 
and a conclusion (<head>) which is derived from existing other 
rules (rule chaining) and facts via a logical conjunction of for-
mulas. Typically, they are horn rules of the form: H  B1 ٨ … ٨ 
Bn supplemented with Naf (~) applied in a forward or backward 
reasoning manner. In RuleML they have the following syntax: 

Implies ((head,body)|(body, head)) 
body (And)         head (Atom) 
And (Atom)+ 

Role tags such as <head> or <body> can be omitted. In 
RBSLA we additionally allow conjunctions “And” in the head 
and disjunctions “Or” in the body of a rule (cf. section 6). 
 

Facts are derivation rules with empty bodies and are deemed to 
be always true. The syntax is Atom (Rel,(Ind|Var)*). 



 

Published at International Conference on Intelligent Agents, Web Technology and Internet Commerce, Vienna, Austria, 2005. 
Adrian Paschke, IBIS, Technische Universität München 

 

Queries are derivation rules with empty heads. Queries can ei-
ther be proved backward as top-down goals or forward via 
‘goal-directed’ bottom-up processing. Queries have the follow-
ing syntax: Query (Atom | And ) 

As mentioned before, improvements must be made to the core 
RuleML syntax in order to use it as an adequate and efficient 
representation language for SLAs. The following section intro-
duces the main extensions of RBSLA to RuleML. 
 
5. Extended RBSLA Language 
Typed Logic: Logical terms in RBSLA are either un-typed or 
typed. Types can be assigned to terms using a type attribute.  
RBSLA supports primitive data types and order-sorted type 
systems, i.e. the type information can be represented as a di-
rected acyclic graph with class – subclass relationships, e.g. 
Java class hierarchies (fully qualified Java class names) or Se-
mantic Web taxonomies based on RDFS or OWL. Example: 

<Var type=”java.lang.Integer">1234</Var> 
<Var type=”rbsla:Provider”>Service Provider</Var> 

Values of primitive data types such as integer, string, decimal, 
float, date, time etc. can be interchanged between the different 
type systems (e.g. SQL, Java, XML Schema data types etc.), 
i.e. they are unified and evaluated against each other.  

Note: In a rule engine the following rules should apply: 
Untyped-Typed Unification: 
1. The un-typed query variable assumes the type of the typed target 

variable or constant (individual) 
Variable-Variable Unification: 
2. If the query and the target variable are not assignable, the unifica-

tion fails otherwise it succeeds 
3. If the query variable belongs to a subclass of the class of the target 

variable, the query variable assumes the type of the target variable. 
4. If the query variable belongs to a super-class of the class of the tar-

get variable or is of the same class, the query variable retains its 
class 

Variable-Constant Unification: 
5. If a variable is unified with a constant (individual) of its super-class, 

the unification fails otherwise if the type of the constant is the same 
or a sub-type of the variable it succeeds and the variable becomes 
instantiated. 

Constant-Constant Unification: 
6. The type of term from the head of the fact or rule is the same as or 

inherits from the type of term from the body of the rule or query 

Modes 

In addition to types, which define the domain of the arguments 
of a predicate, RBSLA supports so call Modes. Modes are 
states of instantiation of the predicate described by mode decla-
rations (mode attributes), i.e. declarations of the intended input-
output constellations of the predicate terms with the following 
semantics: 
“+” The term is intended to be input  
”-“  The term is intended to be output 
”?”  The term is undefined/arbitrary (input or output) 

<Atom>  // add(2,3,Result) 
 <Rel>add</Rel> 
 <Ind mode=”+”>2</Ind> 
 <Ind mode=”+”>3</Ind> 
 <Var mode=”-”>Result</Var> 
</Atom> 

The example defines a predicate “add” with “2” and “3” as in-
put and one output variable “Result”. The default mode is “?”. 
During unification the following rules should apply: 

+: Goal must be either a constant term or a bound variable 
-: Goal must be a free variable 
?: Goal assumes the mode of the target 

Note: Types and modes can be considered as an approximation 
of the intended interpretation, i.e. as an instrumentation of a 
logic program. Types and modes help to safeguard the author-
ing process of SLA rules using RBSLA as an “implementa-
tion” language which enables fault analysis via static and dy-
namic (test-case based) testing of type and mode correctness. In 
addition, they restrict the search space to clauses where the type 
and mode restrictions are fulfilled and therefore make the unifi-
cation process more efficiently. 

Procedural Attachments are predicates (Boolean valued at-
tachments) or methods (object valued attachments) that are im-
plemented by an external procedure (e.g. a Java method), i.e. 
they are procedure calls on an external computational model of 
a standard programming language. They are used to delegate 
computation-intensive tasks to optimized procedural code (e.g. 
Java), effect the outside environment (e.g. sending an eMail via 
a Java method) or they can receive information from the outside 
world (e.g. via JDBC or Web Service interfaces). Therefore, 
procedural attachments are a crucial extension of the pure logic 
inferences used in logic programming. They allow a combina-
tion of the benefits of declarative (rule-based) and procedural 
(imperative) languages such as Java. In RBSLA a procedural 
attachment is defined as: Om[p1..pn]  [r1..rm]. O denotes an 
object or a class, m denotes a method invocation, p1..pn the pa-
rameters and r1..rm the list of one or more result objects which 
might also be a Boolean true or false value. The serialization in 
RuleML extends complex terms:  
Cterm(Ctor | Attachment)    Attachment((Ind|Var|Cterm), Ind) 

The first element of an <Attachment> is either a link on a 
qualified (Java) class, a variable bound to an object/class in-
stance or a nested complex term which itself constructs/returns 
an object. The second argument references the called 
method/constructor. The parameters for the method invocation 
are the subsequent elements under the Cterm element, which 
might be empty, e.g.: java.lang.IntegerparseInt[1234] Integer(1234)  is 
serialized to: 
<Cterm type=”java.lang.Integer”>  // (types are optional; here result type) 
    <Attachment> 

<Ind>java.lang.Integer</Ind> 
<Ind>parseInt</Ind> 

    </Attachment> 
    <Ind type=“java.lang.String“>1234</Ind> </Cterm> 



 

Published at International Conference on Intelligent Agents, Web Technology and Internet Commerce, Vienna, Austria, 2005. 
Adrian Paschke, IBIS, Technische Universität München 

The result of a method invocation finally replaces the complex 
term and is used in the derivation process. Results can be 
bound to variables via <Equal>: X = java.lang.IntegerparseInt[1234] 
<Equal> <Var type=”java.lang.Integer”> X  </Var> 

<Cterm> … [Attachment] … </Cterm> 
</Equal> 

External Data Integration: RBSLA supports language con-
structs to integrate facts managed by external databases in par-
ticular SQL databases and XML/RDF files. It therefore pro-
vides different predefined predicates such as <Location> (source 
location), <Select> (SQL select query), <XML> (construct a 
DOM tree from a XML file / select XPath), <RDF> (query RDF 
file) etc. to access and query an external data source such as re-
lational databases, XML files, RDF files in order to reuse the 
query result as facts for the rule execution. The language con-
structs are very general and can be given a specialized imple-
mentation in the underlying rule engine, e.g. built-in predicates 
using JDBC, XML APIs, XPath/Xquery engines or Semantic 
Web engines (e.g. Jena) and description logic engines (e.g. Pel-
let). 

Event Condition Action Rules are rules which autonomously 
react to events occurring in the internal data (e.g. internal 
knowledge updates via update primitives) or in the external 
world (e.g. monitored via procedural attachments), by evaluat-
ing a data dependent condition and executing a reaction when-
ever the event occurred and the condition is true. Accordingly, 
they are a key feature of a SLA monitoring system and many 
rules in SLAs are actually ECA rules. In RBSLA an ECA rule 
<ECA> is defined as: 

 ECA( time?, event?, condition?, action, postcondition?, else? ) 
 

time(Naf  |Neg | Cterm); event(Naf  |Neg | Cterm); condition(Naf  |Neg | 
Cterm); action(Naf  |Neg | Cterm); postcondition (Naf  |Neg | Cterm); else(Naf  
|Neg | Cterm) 
 

Naf(Cterm)  Neg(Cterm) 

The syntax is a striped syntax with two kinds of tags: method-
like role tags which start with a lower-case letter and class-like 
type tags which start with an upper-case letter in order to be 
compatible with RDF. The respective parts of an ECA rule are 
defined as <Cterm> elements (complex terms)6 which might 
be negated7. The Cterms are interpreted as goals on associated 
derivation rules which implement the internal functionalities of 
each ECA part, i.e. the actual logic is decoupled from the ECA 
rule and represented in terms of derivation rules which are 
evaluated via querying the rule base with the ECA Cterms. The 
                                                           
6 We use complex terms (<Cterm>) and not e.g. <Atom> or <Query> because 

the intended interpretation in an ECA rule is that the term constructs a 
true/false value which can be derived by querying the knowledge base but also 
via procedural attachments, i.e. calls on external method/functions (within a 
<Cterm> element) which return Boolean. 

7  RBSLA supports negation as failure and classical negation. Note: free Vari-
ables in negated terms are not allowed. 

semantics follows the ECA paradigm, which executes an ECA 
rule in an active, forward directional manner, i.e., it proceeds 
with the next ECA part if the query on the currently referenced 
derivation rule succeeds. The advantages are: First once de-
fined functionalities (derivation rules) can be easily referenced 
in several ECA rules leading to a compact program description. 
Second the rich expressiveness of derivation rules and the un-
derlying inference capabilities of logic programs with resolu-
tion and unification of variables can be used, i.e. free variables 
in the ECA Cterms which are bound during unification can be 
dynamically handed to succeeding ECA parts (Cterms) (in-
cluding backtracking), e.g. from the event part to the action 
part. Furthermore, complex events, conditions or actions can be 
easily represented via logical connectives (and/or) and via 
chaining derivation rules, e.g. combining several atomic events 
into a complex event via “and” conjunctions. The optional 
<time> term is introduce to define monitoring intervals in or-
der to control the monitoring/evaluation costs of each ECA rule 
and define its validity period, e.g. “every 10 minutes between 
9a.m. and 18p.m”. The optional <postcondition> term defines 
a post-condition which should hold after execution of the ac-
tion. If the post-condition fails, a rollback might be applied, e.g. 
rollback internal knowledge updates. Additionally, the post-
condition can be used to set a cut, so that there is no backtrack-
ing, i.e. the ECA is successfully executed only once for one 
variable binding. The optional <else> term defines an alterna-
tive action which is triggered if the event part fails, e.g. in order 
to combine two rules “if event then do action1” and “if not 
event then do action2” into one rule “if event then do action1 
else action2; here “not event” is a negative event test, e.g. 
not(available(service)). If a complex term is empty, i.e. without 
a value, it is simply omitted which leads to different ECA rule 
variants such as CA (ECA(condition,action)) rules a.k.a. pro-
duction rules. 

Example: 

eca(everyMiinute(T),available(”http://www.google.de”),, sendNotification(T)). 
<ECA> 
  <time><Cterm><Ctor>everyMinute</Ctor> <Var>T</Var> </Cterm></time>  
  <event><Cterm><Ctor>available</><Ind>”http://www.google.de”</></></> 
   <action><Cterm><Ctor>sendNotification</ > <Var>T</></></action>  
</ECA> 
 

Note: If the underlying rule engine is based on backward rea-
soning, the active behaviour of ECA rules must be simulated. 
This can be done by frequently querying the rule engine. 
Threads might be used to apply concurrent execution of ECA 
rules. 

Update Primitives: RBSLA supports primitives to add (<As-
sert>) and delete (<Retract>; <RetractAll>) knowledge. 
These primitives might be applied in ECA rules, e.g. internal 
update actions which assert new information or active rules 
where knowledge updates are itself events which trigger further 
update actions. 



 

Published at International Conference on Intelligent Agents, Web Technology and Internet Commerce, Vienna, Austria, 2005. 
Adrian Paschke, IBIS, Technische Universität München 

Note: The execution model of active rules might result in non-
terminating computations (termination) and unclear behaviour 
(confluence) due to loops, procedural interpretation or multi-
threaded, concurrent execution of ECA rules. An underlying 
logic system therefore should implement techniques for check-
ing termination and confluence properties and support transac-
tional updates where a sequence of atomic updates must be 
completely executed or not at all. 

Complex Event Processing and State Changes (Fluents): 
RBSLA supports complex event processing and temporal rea-
soning about events/actions and their effects on the internal 
state of the knowledge system. Compound events can be easily 
represented via conjunctions (“and”) of several events in a ref-
erenced (ECA event derivation) rule. In addition, RBSLA sup-
ports a model of state changes a la event calculus in which 
events happen at time-points and initiate and/or terminate time-
intervals over which some properties (time-varying fluents) of 
the world hold. Therefore, it defines the following constructs (a 
la event calculus): 
Fluent: fluent(Ind|Var|Cterm) 
Parameters: parameter(Ind|Var|Cterm) 

The EC axioms are serialized on the level of <Atoms>, i.e. they 
can be directly used in rules and as facts: 
Persistent Events: Happens( (event | action | Ind | Var | Cterm) , (time | Ind | 
Var | Cterm) ) 
Believed Events: Planned( (event | action | Ind | Var | Cterm) , (time | Ind | Var | 
Cterm) ) 
Effects of events:  
• Initially(fluent | Ind | Var | Cterm) 
• Initiates((event | action | Ind | Var | Cterm), (fluent | Ind | Var | Cterm), (time | 

Ind | Var | Cterm)) 
• Terminates((event | action | Ind | Var | Cterm), (fluent | Ind | Var | Cterm), 

(time | Ind | Var | Cterm)) 
Queries:  
• HoldsAt((fluent | Ind | Var | Cterm), (time | Ind | Var | Cterm)) 
• ValueAt((parameter | Ind | Var | Cterm), (time | Ind | Var | Cterm), 

(Ind|Var|Cterm)) 

This enables to model the effects of events on changeable SLA 
properties (e.g. rights or obligations) and to reason about the 
contract state at certain time points (a.k.a. contract tracking). 

Deontic Norms and Norm Violations: The main aim for con-
cluding a contract is to arrange the normative relationships re-
lating to permissions, obligations and prohibitions between 
contract partners. RBSLA provides constructs to serialize such 
deontic norms as personalized, time-varying fluents of the 
form: norm(S,O,A)  (S=Subject, O=Object, A=Action) 

<Oblige><Ind>S</><Ind>O</><action><Ind>A</></action></Oblige> 
<Permit><Ind>S</><Ind>O</><action><Ind>A</></action> </Permit> 
<Forbid><Ind>S</><Ind>O</><action><Ind>A</></action></Forbid> 
<Waived><Ind>S</><Ind>O</><action><Ind>A</></action></Waived> 

Example: oblige(provider, consumer, pay(Penalty)) 
<Oblige><Ind>provider</Ind><Ind>consumer</Ind> 
   <action><Cterm><Ctor>pay</Ctor><Var>Penalty</Var></Cterm></action> 
</Oblige> 

To some extend the subject and object and the fluent-based 
normative proposition which determinates a truth value 
(holdAt) can be seen as the “context” under which the action is 
obligatory. This means oblige(S1,O,a) and oblige(S2,O,¬a) can 
both hold at the same time. Using the previously defined event 
processing constructs (initiates, terminates), deontic rules a.k.a. 
conditional norms (this differs from the “context” notion of dy-
adic deontic logic) can be defined, e.g., a2  O(a1) which states 
that if a2 (the condition) is the case then a1 (the conclusion) 
should be the case:  
<Initiates> <action><Ind>a2</Ind></action> 
 <Oblige> …a1 …</Oblige> 
  <Time><Var>T</Var></Time> </Initiates> 

Therewith, Contrary-to-duty (CTD) obligations, obligations 
which are conditional to a violation, and defeasible obligations 
(incl. prima facie obligations8), obligations which are subject to 
exceptions (exceptional circumstances) can be represented. 
RBSLA defines two explicit events for violations (e.g., O(a) ٨ 
¬a) <Violation> and exceptions (e.g., O(a); e  O(¬a)) <Exception>. 

Note: Deontic Logic is plagued by a large number of so called 
“paradoxes”, sets of sentences that derive sentences with a 
counterintuitive reading. A logic system must provide mecha-
nisms to deal with these problems. Because, in RBSLA norms 
are embedded in temporal constructs an elegant way to deal 
with the formalization problem of contradicting norms is to 
terminate the normal, default or primary norm and instantiate 
the secondary CTD or exceptional norm so that there is never a 
situation where contradicting norms are true at the same time. 
This works for time-based norms (luckily most norm regula-
tions in SLAs are time based) but not for time-less paradoxes 
(such as the well-know “gentle murder” paradox), e.g.: 
(1)The service provider must not violate an agreed service level. 
(2) But, if a service level is violated, the violation should be as small as possible. 

In such cases defeasibility might be used in such way that the 
counterintuitive sentences are no longer derived, i.e. the pri-
mary obligation might be defined with higher priority than the 
secondary obligation so that the primary norm is blocked by 
the derivation of the secondary obligation using defeasible 
logic formalisms. 

Defeasible Rules and Rule Priorities: In order to deal with 
conflicts (e.g. positive and negative information) and rules of 
precedence (rule priorities) RBSLA supports defeasible rules 
“body => head” in addition to strict rules (derivation rules of 
the form “head  body” (<Implies>) ). Therefore, in RBSLA 
a new rule element <Defeasible> is introduced. To express in-
compatible and conflicting literals between rules we use an 
<Integrity> constraint: 
<Integrity> 

<Atom> <Rel>discount</Rel> <Var>X</Var></Atom> 
<Atom> <Rel>discount</Rel> <Var>Y</Var></Atom> 

                                                           
8 Promised prima facie duties formalized as defeasible conditionals 



 

Published at International Conference on Intelligent Agents, Web Technology and Internet Commerce, Vienna, Austria, 2005. 
Adrian Paschke, IBIS, Technische Universität München 

<Atom><Cond><Neg><Equal> <Var>X</Var> <Var>Y</Var> 
</Equal></Neg></Cond></Atom> 

</Integrity>  

An <Overrides> element defines the priority of rules or rule 
sets / modules:   
<Overrides> <Ref><Ind>rule1</Ind></Ref><Ref><Ind>rule2</Ind></Ref></> 

Built-Ins, Aggregate and Compare Operators, Lists: 
RBSLA provides different useful built-in functions and predi-
cates to effectively work with variables, numbers, strings, date 
and time values, lists etc. Here we can only list the interesting 
ones: 
Variables: 
• <Bound>, <Free>: Test whether variable is instantiated or not 
Numbers: 
• <Add|Sub|Mult|Div|Mod|Max|Min|Abs>: Compute numeric values. 
Strings: 
• “\” : separator “\” for special characters in string such as \n \r \t etc. 
• <Concat>, <Parse>, <Tokenize> etc. 
Date and Time: 
• <SysTime>  Current system time. 
• <Date> <Ind>Year</><Ind>Month</><Ind>Day</> </Date> 
• <Time><Ind>Hour</>, <Ind>Min</>, <Ind>Sec</> </Time> 
• <DateTime> Combined Date/Time or Epoch value (millisecond) 
• <TimeSpan>, <Intervall> 
• <Compare>, <Less>, <Equal>, <More>, <Add>, <Sub> etc. 
Lists: 
• <Plex><Var1/><Var2/>…<VarN/></Plex>: List [Var1 .. VarN] 
• <Plex><Var>Head</><repo><Var>Rest</></></Plex>: [Head|Rest] 
• <Member>: Test whether an object is member of a list 
• <Element_At>: Return the object at position X in a list 
• <Append>, <Delete>: Add/Delete an element/list.  
• <Head>, <Tail>: Return the head / the tail of a list 
• <First>, <Last>: Return the first / last element of a list 
• <Size>: Return the size of a list 
Aggregations: 
• <Sum>,<Max>,<Min>,<Mean>: Calculate the aggregation of a list  
Comparison: 
• <Equal>, <LessEqual>, <Less>, <More>, <MoreEqual>, <Between>  

Test Cases: Engineering of SLA rule sets is complicated and 
error-prone. Test Cases can be used to validate and verify the 
correctness of the SLA specifications. They can be used to 
safeguard the authoring, interchange and execution process of 
rule sets. A test case consists of a set of test goals {“?p1(a) ⇒ 
true”, “?p1(b) ⇒ false”} and a set of test input facts {p1(a), p2(a)}; 
the test goals should be interpreted as follows “querying the 
rule engine with p1(a) should yield true and with p1(b) false”. 
In RBSLA a test case <TestCase> is serialized as set of tests 
<Test> consisting of a RuleML <Query> (with one or more 
goals connected via implicitly assumed “and”) and an intended 
result <Result> and a set of test input facts stated as <Atom>s: 

TestCase(Test*, Atoms*) 
Test(Query,Result) 

A test case can be annotated with meta data about its semantics 
with an optional @semantic attribute in order to support dis-
tributed scenarios where rules are exchanged and executed in 
different inference engines with different semantics.  

If-Then-Else-Syntax:  In order to make programming in 
RBSLA and specification of SLAs more efficient and easier, 
RBSLA provides an additional human-oriented If-Then-Else 
syntax for rules: 
<If> Body </If> 
<Then> Head </Then> 
<Else> Else Head </Else> 

Whilst the if-then part of such a rule maps to a normal RuleML 
derivation rule (<Implies>) the else part maps to a corresponding 
negated (with Negation as Failure NaF) rule. ECA rules can be 
written as If (time) and (event) and (condition) then (action). 
For defeasible rules a special attribute @defeasible must be set 
in the <If> element.  

SLA Domain Specific Vocabularies and Elements: For typi-
cal components which frequently occur in SLAs such as (SLA) 
metrics, escalation levels, rights and obligations, pricing poli-
cies RBSLA provides direct serializations in order to support 
the design and building process of SLAs in RBSLA. As men-
tioned before RBSLA supports the integration of external (con-
tract) vocabularies (e.g. RDFS/OWL ontologies, Java class 
hierachies) including representation of business objects into 
domain-independent rules via typed rule terms. In particular 
this enables reusing rules in different contexts and facilitates 
rule interchange between domain boundaries, e.g., between or-
ganizations. We have implemented a first ontology of useful 
and typical concepts in the SLA domain, such as service pro-
vider/consumer (role models which can be used in personalized 
deontic norm), metrics (direct resource metrics, compound 
SLA metrics, process metrics, and business metrics), SLA pa-
rameter etc. The defined concept classes can be used to type 
terms in SLAs: <Ind type=”rbsla:provider”>provider name</Ind> 
Mappings between different vocabularies, e.g. from different 
organizations, can be defined (in OWL – note: this slows down 
performance because of the complex equivalence inference 
processes). 

Remarks about RBSLA: RBSLA follows the design princi-
ple of RuleML which means the new concepts come in a lay-
ered structure where each layer adds different modelling ex-
pressiveness to the RuleML core, which is the horn logic layer 
extended with negation as failure and disjunctions. The layers 
are not organized around complexity, but are based on the dif-
ferent underlying logical formalism such as deontic logic (de-
ontic layer), event calculus (event/action layer), logic of 
events/actions (ECA active rules layer) etc. and on the level of 
abstraction: core RuleML syntax, abbreviated RBSLA syntax, 
compact if-then-else syntax. It is very important to note, that se-
rialization of RBSLA does not require any new constructs, i.e., 
it can be done by using the existing RuleML features via nor-
malizing (XSLT transformation) the special RBSLA constructs 
into the usual RuleML syntax. For example:  
<Oblige> 
 <Ind>service provider</Ind> 
 <Ind>service consumer</Ind> 



 

Published at International Conference on Intelligent Agents, Web Technology and Internet Commerce, Vienna, Austria, 2005. 
Adrian Paschke, IBIS, Technische Universität München 

 <action><Ind>payPenalty</Ind></action> 
</Oblige> 
Maps to RuleML:  oblige(“service provider”,”service consumer”,”payPenalty”) 
<Cterm> 

<Ctor>oblige</Ctor> 
<Ind >service provider</Ind> 
<Ind >service consumer</Ind> 
<Ind >payPenalty</Ind> 

</Cterm> 

Another important point is the transformation of RBSLA into 
an underlying logic system. During the transformation auto-
mated “refactorings” can be applied in order to improve the 
execution efficiency in the underlying logic system and reduc-
ing extended logic programs to general logic programs, e.g.:  
• Narrowing: A1,..,AN.→B and A1,..,AN.→C becomes A1,.., AN.→A ; 

A..→B; A →C (eliminates redundancies) 
• Removing Disjunctions: A1 ٨ An ٨ (B1∨B2) → C becomes A1 ٨ An ٨ B  ́

→ C and B1 → B  ́and B2 → B´ (clausal normal form) 
• Removing conjunctions from rule heads: B → (H ٨ H´) via Lloyd-

Topor transformation into B → H and B → H`) 
 

6   Writing SLAs using RBSLA 

In this section we illustrate the logical representation of SLAs 
using RBSLA. The SLA defines three monitoring schedules 
prime (8a.m.-18p.m. where service availability is tested every 
minute), standard (18p.m. - 8a.m. where service availability is 
tested every 10 minutes): 
<Implies>   // defines the monitoring schedule 
        <body>[ time schedule definition]</body> 
        <head><Atom><Rel>schedule</Rel><Ind>[name]</Ind></Atom> </head> 
</Implies> 
Further it defines three escalation levels with different roles: 
process officer, chief quality manager and control committee. 
The process officer is informed in escalation level 1: 
<Eca> // trigger escl. level 1 if service unavailable and not maintenance 
   <time><Cterm><Ctor>schedule</Ctor><Var>Name</Var></Cterm><time> 
   <event><Attachment><Ind>pingService</Ind></Attachment></event> 
    <action><Cterm><Ctor>escl_lv1</Ctor></Cterm><Action> 
</Eca> 
<Implies>              //defines escl. lv.1 (inform + add unavail. event) 
   <And>  <SysTime>T</SysTime> 
  <Atom><Cterm> <Attachment> … inform process officer …</ 
></Cterm></Atom> 
  <Assert><Happens><event><Ind>unavail</></></><time>T</time></Assert> 
   </And> 
  <Atom><Rel>escl_lv1</Rel></Atom> //head 
</Implies> 
If the service is unavailable, then the process manager is 
obliged to restart the service within time ttime-to-repair.  
<Initiates>  // Initiate obligation if service is unavailable. 
    <event><Ind>unavail</Ind></event> // service unavail. 
    <fluent><Oblige> // oblige process manager to restart the service 
          <Ind>process manager</Ind><Ind>service</Ind> 
          <action>.. restartSerivce … </action> 
      </Oblige></fluent> <time><Var>T</Var></time> 
</Initiates> 
If the process manager fails to restart the service within ttime-to-

repair (violates obligation) than escalation level 2 is triggered, 
which informs the chief quality manager. 
<Eca> // trigger escl. level 2 if primary obligation is violated 
   <event><Cterm><Ctor>violated</Ctor></Cterm></event> 

    <action><Cterm><Ctor>escl_lv2</Ctor></Cterm><action> 
</Eca> 
<Implies>  // define violation condition with parameter “ttr” 
   <And> <SysTime>T</SysTime> 
            <ValueAt><parameter><Ind>ttr</Ind></arameter> 
        <time><Var>T</Var></time> 
         <Ind> ttime-to-repair</Ind> 
            </ValueAt>    </And> 
   <Atom><Rel>violated</Rel></Atom></Implies> // head 
The chief quality manager typically has a higher scope with 
more rights, e.g. the right (permission) to adapt the quality man-
agement systems respectively the service levels. For example 
the chief quality manager might discuss the needed time to re-
pair with the process manager and extend it up to an agreed 
maximum time to repair level. If the service is still unavailable 
after this maximum threshold value then escalation level 3 is 
reached which permits the service consumer to cancel the con-
tract:<Initiates>          // initiates “reparational” permission norm 
                    <Violation></Ind>[violated obligation]</Ind></Violation> 
                   <Permit> … [cancel contract]  </Permit> 
                 <Var>T</Var>            </Initiates> 
The informed control committee which typically consists of 
high-ranked persons (with authorities to decide) from both par-
ties might discuss the situation and contract additional penalty 
payments in order to prevent the contract termination. 

The code of an imperative programming language (Java, 
C++ etc.) implementing the same SLA logic would be much 
more cumbersome and difficult to write, maintain and update. 
The declarative rule approach based on RBSLA allows a more 
compact and intuitive representation. RBSLA can be translated 
via a compiler (e.g. XSLT RuleML transformation) into an un-
derlying logical system and executed by a rule engine.  
 
7   Conclusion 

In this paper we have presented a declarative rule based SLA 
language called RBSLA which extends RuleML with useful 
and needed constructs for SLA representation. The language 
can be easily interchanged and fed in a suitable rule engine to 
execute and monitor the contract performance at run time. Wit 
RBSLA SLAs can be implemented in a machine readable, in-
terchangeable and executable syntax based on RuleML. 
 
References 
1. Paschke, A., Schnappinger-Gerull, E.. A Categorization Scheme for SLA Metrics.  Multi-

Conference Information Systems (MKWI). 2006. Passau, Germany. 
2. Dan, A., et al., Web Services on demand: WSLA-driven Automated Management. IBM 

Systems Journal, Special Issue on Utility Computing, 2004. 43(1). 
3. Grosof, B.N., Y. Labrou, and H.Y. Chan. A Declarative Approach to Business Rules in 

Contracts: Courteous Logic Programms in XML. in Conf. on Electronic Commerce (EC-
99). 1999. Denver UK: ACM Press. 

4. Grosof, B.N., A Courteous Compiler From Generalized Courteous Logic Programs To 
Ordinary Logic Progams. 1999, IBM T.J. Watson Research Center. 

5. Wagner, G., S. Tabet, and H. Boley, MOF-RuleML: The Abstract Syntax of RuleML as a 
MOF Model. 2003, OMG Meeting: Boston. 


