
Open Research Online
The Open University’s repository of research publications
and other research outputs

RBUIS: simplifying enterprise application user
interfaces through engineering role-based adaptive
behavior

Conference or Workshop Item

How to cite:

Akiki, Pierre; Bandara, Arosha and Yu, Yijun (2013). RBUIS: simplifying enterprise application user interfaces
through engineering role-based adaptive behavior. In: Fifth ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS 2013), 24-27 Jun 2013, London, UK, ACM New York, NY, USA, pp. 3–12.

For guidance on citations see FAQs.

c© 2013 ACM

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/2494603.2480297

http://eics-conference.org/2013/pgrm/papers.html

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/2494603.2480297
http://eics-conference.org/2013/pgrm/papers.html
http://oro.open.ac.uk/policies.html

RBUIS: Simplifying Enterprise Application User Interfaces
through Engineering Role-Based Adaptive Behavior

Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu

Computing Department, The Open University

Walton Hall, Milton Keynes, United Kingdom

{pierre.akiki, a.k.bandara, y.yu}@open.ac.uk

ABSTRACT

Enterprise applications such as customer relationship

management (CRM) and enterprise resource planning
(ERP) are very large scale, encompassing millions of lines-
of-code and thousands of user interfaces (UI). These
applications have to be sold as feature-bloated off-the-shelf
products to be used by people with diverse needs in
required feature-set and layout preferences based on aspects

such as skills, culture, etc. Although several approaches
have been proposed for adapting UIs to various contexts-of-
use, little work has focused on simplifying enterprise
application UIs through engineering adaptive behavior. We
define UI simplification as a mechanism for increasing
usability through adaptive behavior by providing users with

a minimal feature-set and an optimal layout based on the
context-of-use. In this paper we present Role-Based UI
Simplification (RBUIS), a tool supported approach based
on our CEDAR architecture for simplifying enterprise
application UIs through engineering role-based adaptive
behavior. RBUIS is integrated in our general-purpose

platform for developing adaptive model-driven enterprise
UIs. Our approach is validated from the technical and end-
user perspectives by applying it to developing a prototype
enterprise application and user-testing the outcome.

Author Keywords

Simplification; Adaptive user interfaces; Role-based;

Enterprise applications; Model-driven engineering

ACM Classification Keywords

[Software Engineering]: D.2.11 Software Architectures -
Domain-specific architectures; D.2.2 Design Tools and
Techniques - User interfaces; [Information Interfaces and

Presentation]: H.5.2 User Interfaces – User-centered design

General Terms

Design; Human Factors

INTRODUCTION

The functionality of software applications tends to increase

with every release increasing the visual complexity. This

phenomenon, referred to as “bloatware” [22], has a negative
impact on usability especially for users who do not require
the complete feature-set. Also, users have different layout

preferences. Both feature-set and layout related choices
could be affected by several aspects such as skills [30],
culture [27], etc. This paper presents Role-Based UI
Simplification (RBUIS), a mechanism for increasing
usability by providing users with a minimal feature-set and
an optimal layout based on the context-of-use (user,

platform, and environment). We define a feature as a
functionality of the software system and a minimal feature-
set as the set with the least features required by a user to
perform a job. An optimal layout is the one that maximizes
satisfaction of the constraints imposed by a set of aspects.
An optimal layout is achieved by adapting the properties of

concrete widgets (e.g., type, grouping, size, location, etc.).

Feature-bloated enterprise applications are sold as off-the-
shelf products to be used by people whose diverse needs in
required feature-set and layout preferences are affected by
multiple aspects. These applications serve various purposes
in an enterprise’s functional business areas (e.g., inventory,

accounting, etc.). The literature clearly indicates that these
systems suffer from usability problems. One example is
given by a study carried out in the Nordic countries [20],
which showed that almost 40% of the users find enterprise
applications difficult to use to a certain extent. UI
simplification could enhance the usability of these

applications by catering to the variable user needs.

One method to achieve UI simplification is for enterprise
applications to become adaptive/adaptable, respectively
referring to the ability of tailoring software applications
automatically/manually. Adapting a UI’s feature-set could
enhance user satisfaction [21] and make complex

applications easier to use on mobile devices and by
cognitively impaired users [16]. Also, adaptive/adaptable
behavior has been used for tailoring the UI layout based on
various aspects such as: “Accessibility” [24], “Platform”
[7], “Natural Context” [6], etc. However, to meet enterprise
application needs we propose the following criteria, for

implementing UI simplification, based on the scale and
complexity of these applications and the existing literature:

 providing a scalable, extensible, and tool supported
mechanism capable of integrating in the development and
post-development phases of enterprise applications and
accommodating multiple adaptation aspects;

Authors’ Version

EICS’13, London, United Kingdom, Forthcoming

 programming role-based adaptive behavior through both
visual and code constructs hence allowing developers as
well as I.T. personnel to define and reuse it;

 preserving designer input [26] on concrete UIs during
adaptation instead of a fully mechanized UI generation;

 reducing user confusion [21] by proposing the adapted
UI as a simplified alternative to the initial design rather
than adapting it while the user is working;

We intend to meet the proposed criteria by using interpreted
runtime models that allow more advanced adaptations and
could be integrated as part of a generic solution offered as a
service. The approach is based on our CEDAR architecture

[1]. This paper makes the following contributions:

 An approach called Role-Based User Interface
Simplification (RBUIS) composed of the following:

 A mechanism for minimizing the feature-set at runtime
by applying roles on task models

 A mechanism for optimizing the layout by executing
adaptive behavior workflows (visual and code-based
constructs) on concrete UI (CUI) models

 Cedar Studio, our Integrated Development Environment

(IDE) for devising adaptive model-driven enterprise UIs,
provides tool support for our approach

 An evaluation of our approach with a set of studies based
on two criteria: (1) technical feasibility and scalability,
and (2) end-user satisfaction and efficiency

The remainder of this paper is structured as follows. We
discuss the related work and briefly explain of our CEDAR

architecture. Then, we elaborate on how RBUIS could be
applied for minimizing a UI’s feature-set and optimizing its
layout based on CEDAR. Next, we provide an overview of
our IDE Cedar Studio, and an example on building adaptive
behavior models for use in our approach. Finally, we
highlight the results of a study for evaluating RBUIS.

BACKGROUND AND RELATED WORK

This section briefly discusses existing work in terms of the
four criteria we established in the introduction. We
categorize existing work into feature-set minimization and
layout optimization. These categories make up the
simplification process and address the variable user needs in

enterprise UIs. Additionally, we provide a brief overview of
the CEDAR architecture based on which RBUIS is based.

Feature-Set Minimization

The simplification process should start by providing each
user with a minimal feature-set to reduce unnecessary

“bloat” [22] present in feature-rich enterprise applications.

Providing a multi-layered user interface design is promoted
for achieving universal usability [28]. Other researchers
propose using two UI versions, one fully-featured and
another personalized, in bloated applications [21]. An
earlier research work proposes the use of a “training

wheels” UI that blocks advanced functionality from novice
users [9]. These works present a sound theoretical basis,
useful for providing the users of feature-bloated software
applications with a minimal feature-set. Yet, the given

examples, a basic text editor [28] and the Word 2000 menu
[21], are not as complex as enterprise applications. Also, a
generic, scalable, extensible, and tool supported mechanism
is needed for applying feature-set minimization in practice.

Approaches from product-line (SPL) engineering [26] are
used to tailor software applications and some particularly

address tailoring UIs. MANTRA [7] adapts UIs to multiple
platforms by generating code particular to each platform
from an abstract UI model. Although SPLs can be dynamic
[3], the SPL-based approaches for UI adaptation focus on
design-time (product-based) adaptation whereas runtime
(role-based) adaptive behavior is not addressed.

Role-based tailoring of the feature-set is sought after in
commercial enterprise applications. Dynamics CRM 2011
[31] and SAP GuiXT [32] offer such a mechanism, yet it is
not generic enough to be used with other applications and it
requires maintaining multiple UI copies manually. Our
approach is generic because it works at the model level.

Layout Optimization

Providing an optimal layout based on the context-of-use

complements the simplification process. For example,
SAP’s usability (world’s leading ERP [17]) is mostly
affected by “Navigation” and “Presentation” [29] and its UI

does not adapt to the user’s skills [30]. Many existing works
target the adaptation of the user interface layout, yet each uses
a different approach to handle the adaptive functionality.

Fully mechanized UI construction has been criticized in
favor of applying the intelligence of human designers for
achieving higher usability [26]. It would be better if the

designer could manipulate a concrete object rather than its
abstraction [12]. Supple is a system for automatically
generating UIs adapted to each user’s motor abilities [16].
This automation prevents designer input on the concrete UI
(CUI), which is the representation as concrete widgets (e.g.,
button, text box, etc.), making the system difficult to adopt

for enterprise applications. Also, this approach has been
criticized [24] for exceeding acceptable performance times.

Providing the adapted UI as an alternative version while
maintaining access to the original full-scale UI, was shown
to have higher user acceptance [21]. Yet, many platforms
perform the adaptations while the UI is in use. MASP

targets ubiquitous UIs in smart environments by adapting
the UI whenever a context change is detected [6]. The
MyUI platform also opts for adapting UIs while the user is
working in order to prompt for user confirmation [24]. The
choice of this adaptation mode is due to the ubiquitous
nature of the target systems (e.g., Smart Homes). Since

enterprise applications have a less ubiquitous nature with
more complex WIMP style UIs, proposing the adapted UI
as an alternative helps in avoiding confusion.

Scalability is important when targeting adaptive enterprise
UIs. DynaMo-AID supports the development of adaptable
context-aware UIs by generating what is referred to as a
task tree forest [10]. As another work indicates [5], since

each tree corresponds to a context’s tasks, the combinatorial
explosion makes the approach hard to scale.

The CEDAR Architecture

We created the CEDAR architecture [1] (Figure 1) as an
approach for devising adaptive enterprise application UIs

based on interpreted runtime models instead of code
generation. The dynamic nature of these models gives more
flexibility in performing UI adaptations and allows us to
implement CEDAR as a generic service oriented solution
that can be consumed by APIs using different technologies.
These characteristics make CEDAR appropriate as a basis

for our Role-Based UI Simplification mechanism (RBUIS).

Figure 1. The CEDAR Architecture

We based CEDAR on the: (1) CAMELEON [8] reference

framework (UI Abstraction), (2) Three Layer Architecture
[18] (Adaptive System Layering), and (3) Model-View-
Controller (MVC) paradigm (Implementation).

The coming sections show how RBUIS addresses the four
criteria established in the introduction.

ROLE-BASED UI SIMPLIFICATION (RBUIS)

To simplify UIs, we need to provide a minimal feature-set
and an optimal layout based on the context-of-use. The
feasibility of adapting a single UI designed for the least
constrained profile was demonstrated in previous research
[15]. Our simplification mechanism will follow the same
approach. In the case of the feature-set, the initial UI

contains all the features hence it is without constraints. Yet,
initial designer layout related choices (e.g., widget type,
grouping, etc.) have to be the least constrained (e.g., in
terms of screen size). The designer will devise the UI for

the least constrained profile at design-time. Afterwards, a
role-based approach is used to simplify the UI at runtime
based on the context-of-use. Role-based modeling has been
used for adapting the components of software applications

[25], yet our approach is oriented towards merging access
control with model-driven UIs to achieve UI simplification.

The standard for role-based access control (RBAC) could
be utilized by enterprises for protecting their digital
resources [13]. In RBAC, “Users” are assigned “Roles”,
which in turn are assigned permissions on “Resources”. In

our case the users are the enterprise employees logging into
the system with their accounts, and the resources that we
want to apply roles to, are the UI and adaptive behavior
models. We merged the role-based approach with UI
simplification to create Role-Based User Interface
Simplification (RBUIS), in the spirit of RBAC. In RBUIS,

roles are divided into groups representing the aspects based
on which the UI will be simplified (e.g., literacy level, job
title, etc.). RBUIS is applied after deploying the software in
the enterprise. Managing this process could be a joint work
between personnel from the software company in charge of
the deployment process and the enterprise’s I.T. personnel.

RBUIS comprises the following elements that support
feature-set minimization and layout optimization:

Role-Based UI Models support feature-set minimization by
assigning roles to task models (e.g., ConcurTaskTrees
(CTT) [23]) to provide a minimal feature-set based on the
context-of-use. This approach allows a practical realization

of the concept of multi-layer interface design [28].
Role-Based Adaptive Behavior Models support layout
optimization through workflows that represent adaptive UI
behavior visually and through code. The adaptation is
applied on the concrete user interface (CUI) models.
Afterwards, adaptive behavior models are tied to roles to

specify how the UI will be optimized for each set of users.
User Feedback for Refinement allows the users to reverse
feature-set minimizations and layout optimizations, and to
choose possible alternative layout optimizations. Keeping
users involved increases their UI control [21] and feature-
awareness [14] affected by adaptive/reduction mechanisms.

The following sections describe our approach in detail.

MINIMIZING THE FEATURE-SET

In order to minimize the feature-set we will rely on the
concept of multi-layer interface design. This concept allows
the users to control different sub-sets of the UI at any

moment. For example, novice users could be given access
to layer 1 and as they develop expertise could gain access to
the upper layers at any time. RBUIS provides a practical
approach for controlling the different UI layers. The meta-
model for applying RBUIS on task models (CTT) is shown
in Figure 2. CTTs were chosen to represent the task models

due to their support of temporal constraints, which help in
determining if simplifying a task could affect other tasks.
Our approach in using temporal operators to check for task
dependencies is similar to that of other researchers [4].

Feature-Set Minimization with RBUIS

Applying RBUIS on task models allows the minimization
of the feature-set by revoking access to tasks based on roles

hence achieving a role-based multi-layer interface design.
Since we are initially designing the UI for the least
constrained profile, the default policy will grant all roles
access to all the tasks. This could be considered as a layer
containing all the features. Afterwards, access could be
revoked by allocating roles to tasks thereby creating

separate layers, which users could gain role-based access to.
Since users could be allocated multiple roles from the
existing role categories, priorities will be used to provide
enough flexibility to specify how roles override each other.
Upon assigning the access rights to block tasks based on
roles, a property (concrete operation) will specify whether

to make a task invisible, disable it (keep data visible /
protect data), or fade it until first use. The task model is
mapped to the Abstract UI (AUI), which is in turn mapped
to the CUI to hide, disable, or fade the relevant UI widgets.

Figure 2. Meta-Model of Applying RBUIS on Task Model

Less Time Consuming Access Rights Allocation

Since enterprise applications encompass a large number of
tasks that are used by hundreds of users, we need to make
the allocation of access rights on the task models as little

time consuming as possible. Traditionally, enterprise
application users are allocated roles. This could be
considered as a positive starting point. We will resort to the
following features to minimize the time taken to allocate
roles to tasks in the task models:

 A default policy grants access to all roles on all the

application’s task models hence making it only necessary
to override this policy where access should be revoked.
Each task will be implicitly allocated a fixed role called

“All-Roles”, which represents all the roles in the system
and is granted access to execute the task. Access to the
task will be revoked to all other explicitly assigned roles.

 Sub-tasks will inherit the access rights of the parent tasks
while maintaining the ability to override these rights.

 In some cases the same functionality is replicated in

many places within the application. Usually developers
create visual components (CUI level) that could be reused
in different places. By making task models reusable
within one another, access rights allocated to a task
model could roam with it whenever it is used again while

maintaining the ability to override the initial rights. This
feature is illustrated in Figure 2 with the recursive
relationship “Is Embedded In” on the “TaskModel” class.
Each embedded task model is connected to a source and a
target task as shown on the “TaskModelRelation” class.

 Rules could be defined and applied to sets of task models
based on each task’s properties (ID, name, type, etc.).

RBUIS rules are defined through our support tool (Cedar
Studio) in the form of conditions using SQL syntax. Also,
check lists are given to associate task models and roles
with each rule. One basic example would be to revoke
access to the role “Cashier” on all “Interaction” tasks
with the words “Enter Discount” in the task name.

Applying RBUIS to Task Models at Runtime

Based on the CEDAR architecture, the UI models will be

loaded on the server and the adaptive engine will apply
RBUIS at runtime. To apply the concrete operations on the
CUI, the Task Model is mapped to the AUI, which is in turn
mapped to the CUI. A certain order should be followed to
perform the elimination since each user could be allocated
multiple roles simultaneously. The meta-model allows the

assignment of priorities on different levels. The designer
could specify where the priority is read from (“RoleGroup”,
“Role”, “TaskRole”, “UserRole”). Task-based assignments
have a higher priority than rule-based ones unless specified
otherwise. The following example demonstrates the process
assuming the priorities were set at the “TaskRole” level:
 UserA: Novice, Manager

 TaskX: 1. All-Roles (Allow) 2. Accountant (Deny-Hide)
 3. Novice (Deny-Disable)

An excerpt of our algorithm is shown in Algorithm 1, the

full version is included in a separate report [2]. Following
this algorithm “UserA” is allowed to perform “TaskX” since
“Manager” has the highest priority. In contrast, if “Novice”
had a higher priority than “All-Roles”, then “UserA” would
have been denied access to “TaskX” hence disabling its CUI
as indicated by the concrete operation.

The running time of our algorithm is estimated to be
polynomial: 𝑂 (𝑚 × (𝑛 × 𝑙 × 𝑝 × (2 𝑗 log 𝑗 + 𝑘) + 𝑛)),
where m = Num. of Task Models, n = Num. of Tasks in a

Task Model, j = Num. of User Roles, k = Num. of Blocked
CUI Elements for a Task, p = Num. of Parent Tasks for a
Task, and l = Num. of Task Roles.

Algorithm 1. Feature-Set Minimization (Excerpt)

1. Sim pl i fy-Task (TaskID, UserRoles[], TaskRoles[], UIModel)
2. foreach ur in UserRoles // Determine the Primary Role
3. tr ← TaskRoles.GetRole(ur.RoleRef)
4. i f tr = null then tr ← TaskRoles.GetRole(All-Roles)
5. ur.Priority ← tr.Priority;

6. UserRoles.OrderBy(Priority)
7. PrimaryRole ← UserRoles.First()
8. i f PrimaryRole.RoleRef ≠ All-Roles // Apply Concrete Operation to CUI
9. blkdAUI←GetBlckdAUI(TaskID, UIModel.TMToAUIMap)
10. blkdCUI←GetBlckdCUI(blkdAUI, UIModel.UIToCUIMap, UIModel.CUI)
11. foreach element in blkdCUI
12. switch PrimaryRole.ConcreteOperation
13. case Hide: element.Visible ← fa lse ; break;
14. case Disable: element.ReadOnly ← true ; break;
15. case Protect: element.ReadOnly ← true ;
16. element.MaskChar ← ' * ' ; break;
17. case Fade: element.Opacity ← '30%'; break;

Model Checking using SQL

Since the access rights are being allocated by humans,
model checking is needed to ensure that critical constraints

are not violated. This allows our tool to issue appropriate
warnings and errors. Several techniques exist for defining
and evaluating constraints on models. For example, the
Object Constraint Language (OCL) could be used to define
constraints on UML diagrams. Furthermore, there are
numerous tools that could be used for model checking (e.g.,

Z3, Spec#, Formula, etc.). In our case we need to define
constraints on task models represented by CTTs. Since our
approach is based on the CEDAR architecture, all the
models are being stored in a relational database. This allows
the model checking to be performed using SQL, which is
more familiar to many developers and I.T. personnel than

constraint languages such as OCL. The following example
shows a constraint and its SQL-based solution in Listing 1.

Constraint: A sub-task should not be blocked for all the
assigned roles because it will not be accessible by any user

Listing 1. Task Model Constraint Example using SQL

With SelTasks as (Select TM.TaskModelID, TM.TaskModelName, TK.TaskID,
TK.TaskName From TaskModel as TM Inner Join TaskModelTask as TK On
TM.TaskModelID = TK.TaskModelID Where TaskModelID in (@ModelIDs)),

UserAccessOnTasks as (Select TaskModelID,TaskID, COUNT(case
UR.CanExecuteTask when 1 then 1 e lse null end) as CanExecuteCount
From SelTasks Cross Apply LoadSortedUserRoles(TaskModelID,TaskID)
as UR Where UR.UserRolePriority = 1 Group ByTaskModelID,TaskID)

Select SelTasks.* From SelTasks ST Inner Join UserAccessOnTasks UAT
On ST.TaskID = UAT.TaskID and ST. TaskModelID = UAT.TaskModelID
Where CanExecCount= 0

Constraints are defined in Cedar Studio and associated with

task models through a system variable (“@ModelIDs”).
Predefined functions such as “LoadSortedUserRoles” could
be used in model constraints and extended when necessary.
In this case the function loads the users and their assigned
roles sorted by the priority of execution according to a
certain task. The SQL statement would return the tasks that

are violating the constraint, to be displayed on the screen.

Feature-Set Minimization Example

Although enterprise applications contain many complex
examples, a basic example has been purposefully chosen in
order to accommodate screen shots in the paper. Complex
real-life examples were considered in our evaluation.

Figure 3. Simplified Customer Maintenance Task Model

The example illustrated in Figure 3 shows part of a task
model built in Cedar Studio for a “Customer Maintenance”
UI common in ERP systems. The lock-shaped buttons allow
the application of RBUIS on any task. In this case, the tasks
called “Financial Information” and “Picture” encircled in a

dashed line are marked as simplified indicating that RBUIS
has been applied. In the case of “Financial Info.” the access
rights will get inherited by its sub-tasks. We considered a
role called “Cashier” requiring a version of the UI showing
only the “Name”, “Phone”, and “Address”. This allows
users working as cashiers to enter the initial information for

a new customer on the counter without having to handle
other details that could be added later. The initial version of
the Final UI (FUI) is illustrated in Figure 4 (a), and the one
simplified for the role “Cashier” is illustrated in Figure 4
(b). In this example, the concrete operation in RBUIS was
set to “Hide” hence the widgets became invisible.

 (a) Initial Fully-Featured Version

(b) Minimized Feature-Set Version for Role “Cashier”

Figure 4. Feature-Set Minimization of Customer UI

OPTIMIZING THE LAYOUT

Providing users with an optimal layout could be based on
various aspects (e.g., computer literacy, cognition, screen-

size, etc.). In this section we present our generic mechanism
for devising adaptive behavior for such criteria. Enterprise
applications require an approach that allows developers as
well as I.T. personnel to implement adaptive behavior. Our
feature-set minimization mechanism allows RBUIS to be
applied visually and through code-based rules. Similarly,

our layout optimization mechanism allows the definition of
adaptive behavior using a mix of visual and code constructs
embedded in adaptation workflows. The meta-model for
applying this mechanism on the CUI is shown in Figure 5.

Layout Optimization with RBUIS and Workflows

The representation of adaptive behavior has a great impact

on the extensibility of any adaptive system. Most adaptive
UI state of the art systems tend to employ an arbitrary
design that hardcodes adaptation behavior within the
software application, severely minimizing its reusability
and extensibility. A graphical tool is suggested for hiding
the complexity of defining UI adaptation rules [19]. This

tool might not be able to handle all possible scenarios due
to the limited use of a high level visual representation.

To balance between ease of use and flexibility, our
approach combines high level adaptation operations and
low level programming constructs by using both visual and
code-based representations. Workflows are not strange to

enterprise applications due to their use for devising
customizable and reusable business rules that could be
separated from the software code. With appropriate tool
support, workflows could also provide visual programming
constructs (e.g., control structures, error handling, etc.).
Additionally, it is possible to define code-based adaptation

operations that integrate within the visual workflow.

Our approach uses tool supported workflows, which could
represent adaptive behavior with: (1) visual programming
constructs, (2) compiled code libraries and dynamically
interpreted scripts. The workflows are executed at runtime
on the CUI models to perform the necessary adaptation.

To implement the workflows in practice we are using the
Windows Workflow Foundation (WF), which is part of the
.NET framework. WF provides a visual design tool, which
we integrated into Cedar Studio. This design tool provides
the ability to visually design activity workflows using a rich
set of constructs, which could be saved in an XML-based

format then reloaded and executed when an adaptation is
needed. Furthermore, the supported constructs could be
extended through external compiled class libraries
developed in C# or VB.NET and dynamically integrated
with our tool. We have used this capability to develop a
construct capable of integrating within a workflow and

executing non-compiled script code. We currently support
Iron Python but other scripting or transformation languages
(e.g., XSLT) could be integrated in the future.

Figure 5. Meta-Model for RBUIS and Workflows on CUI

Applying RBUIS with Workflows at Runtime

Layout optimization is also based on our CEDAR

architecture. After the feature-set is minimized, the
workflows will be executed on the CUI by the adaptation
engine. Afterwards, the FUI will be transferred to the client
to be rendered on the screen. The process of selecting the
workflows to be applied based on the user’s role is
illustrated in Algorithm 2 through an excerpt of our

algorithm assuming the priority is read from the “Roles”
class. The running time of our algorithm is established to be
polynomial: 𝑂 (2 𝑚 log 𝑚 + 2 𝑛 log 𝑛), where m = Num.
of User Roles and n = Num. of Workflows to be Executed.

Algorithm 2. Layout Optimization (Excerpt)

1. Optim ize-Layout (UserRoles[], Roles[], UIModel, LayoutID)
2. foreach ur in UserRoles // Determine the Primary Role
3. tr ← Roles.GetRole(ur.RoleRef)
4. i f tr = null then tr ← Roles.GetRole(All-Roles)
5. ur.Priority ← tr.Priority;
6. UserRoles.OrderBy(Priority)
7. PrimaryRole ← UserRoles.First()
8. WorkflowsToExecute[] ← GetWorkflows(PrimaryRole, LayoutID)
9. WorkflowsToExecute.OrderBy(ExecutionOrder)
10. foreach workflow in WorkflowsToExecute // Execute Workflows
11. workflow.Execute(UIModel) // Execution Time Depends on Content

Layout Optimization Example

This example builds on the previous one illustrated in the
feature-set minimization section. We consider two roles

“Sales Officer” and “Novice”. The “Sales Officer” requires
the fully-featured UI illustrated in Figure 4 (a). The
“Novice” requires layout optimizations that make functions
accessible through on-screen buttons rather than a context-
menu, and trading list boxes for radio buttons to fit more
items on the screen. The workflow illustrated in Figure 6,

represents the adaptive behavior by using three different
techniques: (a) list boxes are substituted with radio button

groups using visual programming constructs, (b) function
accessibility is set to high by calling an Iron Python script,
and (c) the UI is refitted by calling a C# layout algorithm.

Figure 6. Layout Optimization Adaptive Workflow

The optimized UI in Figure 7 shows the functions for the
image (add, remove, etc.) and address text-area (bold, italic,

etc.) on the screen. In contrast, the version in Figure 4 (a)
provided these functions through a context-menu. Also, the
payment terms list box was substituted with a radio button
group that displays more items on the screen. Some factors
(e.g., access. of functions) are set by “Adaptive Properties”
on the “LayoutWidget” class in the meta-model (Figure 5).

In this case, the implementation of the adaptation behavior is
part of the widget and it is just triggered from the workflow.

Figure 7. Optimized Layout of Customer FUI

USER FEEDBACK FOR REFINEMENT

Keeping the users involved in the adaptive process provides
awareness of adaptive decisions and the ability to override
role-based adaptations per user when necessary. In order to
achieve this in practice we chose to transmit the final UI to

the client with a list of the applied simplification operations.
We denote such operations by the UML interface called
“Simplification” shown in both meta-models. Our approach
has two types of operations: Feature-set minimization and

layout optimization identified by “RoleRef” and “TaskID” /
“WorkflowID” respectively. The meta-model in Figure 2
shows “ReasonMessage” and “IsReversibleByUser” as
attributes of the “Simplification” UML interface (same for
Figure 5). These attributes indicate the reason behind the
simplification and whether it its reversible by the users.

The users can click the chameleon icon in the top right
corner of the UI (Figure 4 (b), and Figure 7) to show a list
of the applied adaptation operations as illustrated in Figure 8.
Afterwards, the users can uncheck any reversible operation

(feature-set minimization or layout optimization) and apply
the changes for one time only or for future use as well.
Furthermore, layout optimizations have another feature that
allows the users to choose from possible alternatives. This
is achieved by assigning workflows to groups as shown in
the meta-model (Figure 5). Workflows in the same group

could serve as alternatives. For example, a group could
encompass several workflows for adapting the selection
widget (e.g., combo box, list box, radio buttons, etc.). After
the user applies the changes, a request will be sent to the
server to re-simplify the UI and exclude the operations that
he or she unchecked. In case the user decides to keep the

changes for future use, based on the CEDAR architecture,
the changes would get stored and he or she will gain access
to an alternative version of the UI. The example operations
illustrated in Figure 8 are related to the simplified UI in
Figure 4 (b). The operations inform the user that the UI
parts pertaining to the financial information and image are

unused by the user’s role (Cashier) hence were eliminated.
In this example, if the user unchecks both operations and
applies the changes, the simplified UI in Figure 4 (b) will
revert back to the original version in Figure 4 (a). If an
operation is set as “irreversible by users” (e.g., due to
security reasons) the check box would be disabled and a

message would notify the user of the reason. If a feature
depends on other disabled features, the user is informed that
these features should be enabled as well. The dependency is
determined from the CTT temporal operators and is defined
on the meta-model (Figure 2) through the recursive
relationship “Depends On” on the “Task” class.

Figure 8. User Feedback - Simplification Operations

Even though in the case of feedback the UI is changing
while the user is working, the user’s initiation of the action
reduces confusion due to the awareness and understating of
the adaptation that is going to take place.

DEVELOPING APPLICATIONS WITH CEDAR STUDIO

Cedar Studio is our Integrated Development Environment
(IDE) that supports the development of adaptive model-

driven UIs for enterprise applications based on the CEDAR
architecture. Due to space limits we will briefly describe its
features in this paper. Interested readers could get more
details from a separate report [2] and observe the tool in
operation through online demo videos [33].

We created Cedar Studio in the form of an IDE to provide

developers and I.T. personnel with an ease of access to all
the visual-design and editing tools in one place. Currently, it
supports visual design tools for: (1) Task Model, (2) Domain
Model, (3) AUI Model, (4) CUI Model, and (5) Workflows.
Also, it supports a combination of visual design and code
editing tools for (1) Task Role Assignments and RBUIS

Rules, (2) Model Constraints, and (3) Dynamic Scripts. One
of the supported design tools (task model) is illustrated in
Figure 9. Additionally, Cedar Studio supports automatic
generation and synchronization between the various levels
of abstraction (Task Model, AUI, and CUI) with the
possibility to make manual changes at any of these levels.

Figure 9. Cedar Studio - Our IDE Support Tool

Cedar Studio was designed as a tool for supporting our
CEDAR architecture through UI and adaptive behavior

models that would get stored in a relational database to
provide easier runtime management and interpretation. The
implementation of CEDAR is provided as a service that is
consumed by Cedar Studio and technology specific APIs
that allow enterprise applications to integrate with our
solution. An API would include the client components

illustrated in Figure 1. To test our approach we developed
an API and a Toolkit in C# for the Windows Presentation
Foundation. APIs for other presentation technologies (e.g.,
HTML, Java Swing, etc.) could be devised by anyone and
used in combination with Cedar Studio for developing
adaptive enterprise applications capable of benefitting from

our simplification mechanism and any future extensions.

Adaptive UI behavior (e.g., widget hiding, substitution, etc.)
could leave gaps and deformations in the layout, which are
not esthetically desirable and could increase the navigation
time (Fitts’s Law). We required a mechanism to maintain

plasticity, denoting the UI’s ability to adapt to the context-
of-use while preserving its usability [11]. Hence, we
devised an algorithm to refit the layout based on its initial
manual design by filling the gaps and adjusting the widgets’
positions based on their new sizes and initial locations chosen
by the designer. This technique creates a balance between

fully automated approaches that generate the UI from an
abstract model [16] and manual approaches that require
developing and maintaining multiple CUI versions [32].

Cedar Studio is meant to be used during the development
and post-development phases by developers, deployment
teams, and I.T. personnel. The UI models are devised at the

development phase and the simplification behavior could be
added during the deployment phase according to the needs
of each enterprise. This behavior could be based on user
models such as the one described in the coming section.

BUILDING ADAPTIVE BEHAVIOR MODELS

One way to build adaptive behavior models for our system
is to determine an aspect that influences enterprise
application usability, statistically test its effect on UI
alternatives, and implement the adaptive behavior for the
alternatives using Cedar Studio. The outcome would be a
general role-based adaptive model that could be refined by

our feedback mechanism for particular tasks and users.

One such aspect discussed in the literature is “Computer
Literacy” [29]. We setup a list of factors based on which the
UI could be adapted and ran an online interactive survey to
statistically test the effect of computer literacy on user
preferences [2]. Although the list is not comprehensive it

allows us to test our system against factors discussed in the
literature and relevant to enterprise applications. We
grouped the factors under categories that impact enterprise
application usability (“Presentation” and “Navigation”):

Presentation: Layout Grouping (Tab Page, Sub-Window,
Group Box), Multi-Record Visualization (Grid, Carousel,

Detailed Form), Simple Selection Widget (Combo, Slider,
Radios), Multi-Record Input (Scrolling Grid, Non-Scroll.
Grid, Form), Accessibility of Functions (High, Medium,
Low), Information Density (High, Medium, Low), Text

versus Graphics (Text Only, Image Only, Image & Text)
Navigation: Multi-Doc. UI (New Window, New Page, New

Tab), Search the UI (Go to Widget, Filter, Filter & Re-
layout) Navigation Structure (Menu, Tree, Panel)

One should note that from a technical perspective adaptive
behavior for all the factors is devisable using our platform.
Yet, factors could vary based on different aspects. For
example, our survey showed that computer literacy impacts

“Multi-Document UI”, “Navigation Structure”, and “Layout
Grouping”, whereas “Accessibility of Functions” and “Info.
Density” were shown to be impacted by culture [27].

Figure 10. Evaluation Results for Role-Based UI Simplification

EVALUATING ROLE-BASED UI SIMPLIFICATION

Our simplification mechanism was evaluated [2] using an
online interactive survey with a UI pair composed of an
initial and a simplified UI. We selected the “Customer
Maintenance” form of the SAP ERP. The initial version
contains numerous nested tab pages and dozens of fields.
Yet, users with different roles in the enterprise require a

simpler version for managing basic customer records.

We developed a copy of SAP’s UI alongside a simplified
version containing the fields used to create a basic customer
record. The fields were selected based on the variability in
SAP’s user needs [32]. The concrete operation was set to
“Hide” with some fields being reversible by the user, and

the widgets were regrouped accordingly.

Participants were asked to fill a set of fields required for
creating a basic customer record using both UI versions. In
the case of the simplified UI some of the fields had to be
retrieved through the user feedback screen, allowing us to
test how participants react to this feature.

In some cases, participants prefer the first UI option they see
hence creating certain bias in a study’s outcome. To avoid
this potential bias we presented half of the participants with
the initial UI first and the other half with the simplified one
first. After each task, participants were asked to answer the
System Usability Scale (SUS) questions, which allow us to
detect usability differences between the two UI versions.

Also, the time taken to complete each task was recorded.

We hypothesize that simplifying enterprise application UIs
based on roles improves user satisfaction and efficiency.

The participants (n=25) never used the selected UI before.
A Wilcoxon Signed Ranks Test showed that simplifying the
user interface based on roles elicited a statistically

significant improvement (Figure 10) in both SUS usability
score (Z = -3.530, P = 0.0004) and task completion time
(Z = -2.644, P = 0.008) hence confirming our hypothesis.

The median SUS score was 50 for the initial UI and 67 for
the simplified one. The median time taken to complete the

task (seconds per input field) was 19 for the initial UI and
11 for the simplified one. The results were also reflected in
the comments of some participants about the simplified
version being more efficient whereas the initial UI made it
complicated to locate fields. Also, the ease of use of the
feedback mechanism was reflected by the fact that 80% of

the participants were able to use it by only referring to a
few words of instruction on its purpose.

CONCLUSIONS AND FUTURE WORK

We presented our Role-Based UI Simplification (RBUIS)
approach, comprising feature-set minimization and layout

optimization. RBUIS is based on our CEDAR architecture
that is offered as a generic extensible service allowing the
addition of adaptive behavior as needed. The scalability of
our mechanism was shown by our complexity analysis.

Additionally, we introduced Cedar Studio our IDE that
provides tool support for developing and maintaining

adaptive enterprise UIs. We described how it can be used to
represent role-based adaptive behavior visually (role
assignment, and constructs in workflows) and through code
(RBUIS rules, and compiled code/scripts in workflows).

Finally, we conducted a user study to evaluate RBUIS. The
study showed a statistically significant improvement in user
satisfaction and efficiency for simplified UIs. The outcome

of the study also reflects the importance of a model-based
approach that preserves designer input, made on the CUI,
during adaptation. Also, by offering the UI as a role-based
alternative our approach reduces confusion created by
adaptations conducted while the user is working.

In the future we will extend our mechanism to support UI

simplification in scenarios that require the use of multiple
user interfaces for fulfilling a task. Additionally, more user
studies will be conducted using eye-tracking in addition to
measuring user satisfaction and efficiency.

ACKNOWLEDGMENTS

We would like to thank Prof. Helen Sharp and Dr. Sheep
Dalton for their input on early drafts of this paper, Prof.

Marian Petre for her comments on the video figure, and the
anonymous reviewers for their valuable suggestions. This
work is partially funded by ERC Advanced Grant 291652.

REFERENCES

1. Akiki, P.A., Bandara, A.K., and Yu, Y. Using
Interpreted Runtime Models for Devising Adaptive User

Interfaces of Enterprise Applications. ICEIS'12,
SciTePress (2012), 72-77.

2. Akiki, P.A., Bandara, A.K., and Yu, Y. Cedar:
Engineering Role-Based Adaptive User Interfaces for
Enterprise Applications (2012). http://computing-
reports.open.ac.uk/2012/TR2012-08.pdf

3. Bencomo, N., Sawyer, P., Blair, G.S., and Grace, P.
Dynamically Adaptive Systems are Product Lines too: Using
Model-Driven Techniques to Capture Dynamic Variability
of Adaptive Systems. SPLC'08, Lero (2008), 23-32.

4. Bergh, J., Sahni, D., and Coninx, K. Task Models for
Safe Software Evolution and Adaptation.

TAMODIA'09, Springer (2010), 72-77.

5. Blouin, A., Morin, B., Beaudoux, O., Nain, G., Albers,
P., and Jézéquel, J.-M. Combining Aspect-Oriented
Modeling with Property-Based Reasoning to Improve
User Interface Adaptation. EICS'11, ACM (2011),85-94.

6. Blumendorf, M., Lehmann, G., and Albayrak, S.

Bridging Models and Systems at Runtime to Build
Adaptive User Interfaces. EICS'10, ACM (2010), 9-18.

7. Botterweck, G. Multi Front-End Engineering. Model-
Driven Development of Advanced User Interfaces,
Springer (2011), 27-42.

8. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L., and Vanderdonckt, J. A. Unifying Reference
Framework for Multi-Target User Interfaces. Interacting
with Computers 15, 3, Elsevier (2003), 289-308.

9. Carroll, J.M. and Carrithers, C. Training Wheels in a
User Interface. CACM 27, 8, ACM (1984), 800-806.

10.Clerckx, T., Vandervelpen, C., Luyten, K., and Coninx,

K. A. Task-Driven User Interface Architecture for
Ambient Intelligent Environments. IUI'06, ACM (2006),
309-311.

11.Coutaz, J. User Interface Plasticity: Model Driven
Engineering to the Limit! EICS'10, ACM (2010), 1-8.

12.Demeure, A., Meskens, J., Luyten, K., and Coninx, K.

Design by Example of Graphical User Interfaces
Adapting to Available Screen Size. Computer-Aided
Design of User Interfaces VI, Springer (2009), 277-282.

13.Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., and
Chandramouli, R. Proposed NIST Standard for Role-
Based Access Control. TISSEC, ACM (2001), 224-274.

14.Findlater, L. and McGrenere, J. Evaluating Reduced-
Functionality Interfaces According to Feature

Findability and Awareness. INTERACT'07, ACM
(2007), 592-605.

15.Florins, M. and Vanderdonckt, J. Graceful Degradation
of User Interfaces as a Design Method for Multiplatform

Systems. IUI'04, ACM (2004), 140-147.

16.Gajos, K.Z., Weld, D.S., and Wobbrock, J.O.
Automatically Generating Personalized User Interfaces with
Supple. Artificial Intelligence, Elsevier (2010), 910-950.

17.Jacobson, S., Shepherd, J., D’Aquila, M., and Carter, K.
The ERP Market Sizing Report. AMR Research (2007).

18.Kramer, J. and Magee, J. Self-Managed Systems: an
Architectural Challenge. FOSE'07, IEEE (2007), 259-268.

19.López-Jaquero, V., Montero, F., and Real, F. Designing
User Interface Adaptation Rules with T:XML. IUI'09,
ACM (2009), 383-388.

20.Lykkegaard, B. and Elbak, A. IDC - Document at a

Glance - LC52T. International Data Corporation (2011).

21.McGrenere, J., Baecker, R.M., and Booth, K.S. An
Evaluation of a Multiple Interface Design Solution for
Bloated Software. CHI'02, ACM (2002), 164-170.

22.McGrenere, J. “Bloat”: The Objective and Subject
Dimensions. CHI'00, ACM (2000), 337-338.

23.Paterno, F. Model-based Design and Evaluation of
Interactive Applications. Springer-Verlag (1999).

24.Peissner, M., Häbe, D., Janssen, D., and Sellner, T.
MyUI: Generating Accessible User Interfaces from
Multimodal Design Patterns. EICS'12, ACM (2012), 81-90.

25.Piechnick, C., Richly, S., Götz, S., Wilke, C., and

Aßmann, U. Using Role-Based Composition to Support
Unanticipated, Dynamic Adaptation - Smart Application
Grids. ADAPTIVE'12, IARIA (2012), 93-102.

26.Pleuss, A., Botterweck, G., and Dhungana, D.
Integrating Automated Product Derivation and
Individual User Interface Design. VaMoS'10,

Universitat Duisburg-Essen (2010), 69-76.

27.Reinecke, K. and Bernstein, A. Improving Performance,
Perceived Usability, and Aesthetics with Culturally
Adaptive User Interfaces. TOCHI 18, ACM (2011), 1-29.

28.Shneiderman, B. Promoting Universal Usability with
Multi-Layer Interface Design. CUU'03, ACM (2003), 1-8.

29.Singh, A. and Wesson, J. Evaluation Criteria for
Assessing the Usability of ERP systems. SAICSIT '09,
ACM (2009), 87-95.

30. Uflacker, M. and Busse, D. Complexity in Enterprise
Applications vs. Simplicity in User Experience. HCI'07,
Springer-Verlag (2007), 778-787.

31.Dynamics CRM 2011 - Role-Based UI.
http://bit.ly/DynamicsRoleBasedUI.

32.GuiXT - Simplify and Optimize the SAP ERP UI.
http://bit.ly/SAPGuiXTSimplifyUI.

33.Cedar Studio - Demo Videos.
http://adaptiveui.pierreakiki.com.

