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ABSTRACT

Representing words into vectors in continuous space can
form up a potentially powerful basis to generate high-quality
textual features for many text mining and natural language
processing tasks. Some recent efforts, such as the skip-gram
model, have attempted to learn word representations that
can capture both syntactic and semantic information among
text corpus. However, they still lack the capability of encod-
ing the properties of words and the complex relationships
among words very well, since text itself often contains in-
complete and ambiguous information. Fortunately, knowl-
edge graphs provide a golden mine for enhancing the quality
of learned word representations. In particular, a knowledge
graph, usually composed by entities (words, phrases, etc.),
relations between entities, and some corresponding meta in-
formation, can supply invaluable relational knowledge that
encodes the relationship between entities as well as categor-
ical knowledge that encodes the attributes or properties of
entities. Hence, in this paper, we introduce a novel frame-
work called RC-NET to leverage both the relational and
categorical knowledge to produce word representations of
higher quality. Specifically, we build the relational knowl-
edge and the categorical knowledge into two separate reg-
ularization functions, and combine both of them with the
original objective function of the skip-gram model. By solv-
ing this combined optimization problem using back propa-
gation neural networks, we can obtain word representations
enhanced by the knowledge graph. Experiments on popular
text mining and natural language processing tasks, including
analogical reasoning, word similarity, and topic prediction,
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have all demonstrated that our model can significantly im-
prove the quality of word representations.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning; I.5.1 [Pattern

Recognition]: Models

General Terms

Algorithms, Experimentation

Keywords

Distributed word representations, deep learning, knowledge
graph

1. INTRODUCTION
Deep learning techniques have been frequently used to

solve natural language processing (NLP) tasks [8, 1, 12, 21,
22]. The main purpose of them is to learn distributed rep-
resentations of words (i.e., word embedding) from text, and
use them as components or the basis to generate textual fea-
tures for solving NLP tasks. Recently, some efficient meth-
ods, such as the continuous bag-of-word model (CBOW) and
the continuous skip-gram model [18], have been proposed to
leverage the context of each word in text streams to learn
word embedding, which can capture both the syntactic and
the semantic information among words. The principle be-
hind these models is that words that are syntactically or
semantically similar should also have similar context words.
Although these works have demonstrated their effective-

ness in a number of NLP tasks, they still suffer from some
limitations. In particular, as these works learn word rep-
resentations mainly based on the word co-occurrence infor-
mation, the obtained word embedding cannot capture the
relationship between two syntactically or semantically sim-
ilar words if either of them yields very little context infor-
mation. On the other hand, even enough amount of context
could be noisy or biased such that they cannot reflect the
inherent relationship between words and further mislead the



training process. To solve these problems, we propose to in-
corporate the information from knowledge graphs into the
learning process in order to produce better word represen-
tations.

Knowledge graph is a kind of knowledge base, which has
been widely used to store complex structured and unstruc-
tured knowledge. It is usually in the form of a directed
or undirected graph that leverages vertices and edges to
represents entities (words, phrases, etc.) and their rela-
tionships, respectively. Knowledge graphs, such as Free-
base [10] and WordNet [24], have started playing important
roles in many text mining and NLP applications, including
expert system, question-answer system, etc. A knowledge
graph commonly contains two forms of knowledge: rela-
tional knowledge and categorical knowledge. Specifically, re-
lational knowledge (like is-a, part-of, child-of, etc.) encodes
the relationship between entities so as to differentiate word
pairs with analogy relationships; categorical knowledge (like
gender, location, etc.) encodes the attributes and properties
of entities, according to which similar words can be grouped
into the meaningful categories. Both relational and cate-
gorical knowledge extracted from the knowledge graph, an
example of which is shown in Figure 1, can serve as valuable
external information to enhance learning word representa-
tions. Specifically, in the learning process, the relational
knowledge can be leveraged to infer certain explicit connec-
tions between the embeddings of related words, and the cat-
egorical knowledge can be used to reflect coherence between
the embeddings of those words with the same attributes,
even if some of them yield very little context information,
or biased/noisy context information.

In this paper, we propose a novel framework to take ad-
vantage of both relational and categorical knowledge to pro-
duce high-quality word representations. This framework is
built upon the skip-gram model [18], in which we extend its
objective function by incorporating the external knowledge
as regularization functions. In particular, to leverage the
relational knowledge, we define a corresponding regulariza-
tion function by inheriting the similar idea from a recent
study on multi-relation model [5], which characterizing the
relationships between entities by interpreting them as trans-
lations in the low-dimensional embeddings of the entities.
To incorporate the categorical knowledge, we define another
regularization function by minimizing the weighted distance
between those words with the same attributes. Then, we
combine these two regularization functions with the original
objective function of the skip-gram model. After solving this
combined optimization problem via back propagation neu-
ral networks, we can obtain the continuous representations
of words. We call the proposed framework as RC-NET, indi-
cating the incorporation of both Relational and Categorical
knowledge into neural NETworks to learn word embeddings.
We have conducted empirical experiments on three popular
text mining and NLP tasks, including analogical reasoning,
word similarity, and topic prediction, with large-scale pub-
lic datasets, and the results all demonstrate that, compared
with the state-of-the-art methods, our proposed approach
can significantly improve the quality of word representations
by encoding both the word co-occurrence information and
the external knowledge.

The rest of the paper is organized as follows. We briefly
review the related work on learning word embedding via
deep neural networks in Section 2. In Section 3, we describe

the proposed framework to incorporate relational and cat-
egorical knowledge in learning word representations. The
experimental setup and results are reported in Section 4.
The paper is concluded in Section 5.

2. RELATED WORK
Building distributed word representations [14] has attracted

increasing attention in the area of machine learning. Re-
cently, to show its effectiveness in a variety of text min-
ing and NLP tasks, a series of works applied deep learning
techniques to learn high-quality word representations. For
example, Collobert et al. [7, 8] proposed a neural network
that can learn a unified word representations suited for sev-
eral NLP tasks simultaneously. Furthermore, Mikolov et al.
proposed efficient neural network models for learning word
representations, i.e., word2vec [18]. This work introduced
two specific models, including the continuous bag-of-words
model (CBOW) and the continuous skip-gram model (skip-
gram), both of which are unsupervised models learned from
large-scale text corpora. Under the assumption that similar
words yield similar context, these models maximize the log
likelihood of each word given its context words within a slid-
ing window. The learned word representations amazingly
show that they can indicate both syntactic and semantic
regularities.

Nevertheless, since most of existing works learned word
representations mainly based on the word co-occurrence in-
formation, it is quite difficult to obtain high quality embed-
dings for those words with very little context information;
on the other hand, large amount of noisy or biased con-
text could give rise to ineffective word embeddings either.
Therefore, it is necessary to introduce extra knowledge into
the learning process to regularize the quality of word embed-
ding. Unfortunately, there are very few previous studies that
attempt to explore knowledge powered word embedding.

Some efforts have paid attention to learn word embedding
in order to address knowledge base completion and enhance-
ment [6, 21, 23]; however, they did not investigate the other
side of the coin, i.e., leveraging knowledge to enhance word
representations. Recently, there have been some early at-
tempts on this direction. For example, Luong et al. [16] pro-
posed a neural model to learn morphologically-aware word
representations by combining recursive neural network and
neural language model. In this model, they explicitly uti-
lize the knowledge in terms of morphological structure inside
a word and regard each morpheme as a basic unit. While
being restricted to the morpheme-level knowledge, this at-
tempt has not taken investigation on more important word-
level knowledge, such as analogical relation between words.
In contrast, we will mainly explore how to take advantage
of word-level knowledge to enhance word embedding in this
paper.

Most recently, Yu et al. [25] attempted to use knowledge
to improve word representations. In particular, they pro-
posed a new learning objective that incorporates both a
neural language model objective and a semantic prior knowl-
edge objective. By leveraging the knowledge in terms of
semantic similarity between words during the learning pro-
cess, they demonstrate that their new method can result in
improvement by evaluations on three tasks: language mod-
eling, measuring semantic similarity, and predicting human
judgments. However, this model is specified on incorporat-
ing semantic knowledge and it does not explicitly distin-
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Figure 1: Knowledge graph contains two forms of knowledge: relational knowledge and categorical knowledge.

guish different kinds of relational knowledge. Bian et al. [2]
recently proposed to leverage morphological, syntactic, and
semantic knowledge to advance the learning of word embed-
dings. Particularly, they explored these types of knowledge
to define new basis for word representation, provide addi-
tional input information, and serve as auxiliary supervision
in the learning process. Although they did intensive empiri-
cal study, they did not make model-level innovation to lever-
age external knowledge to improve word representations.

In contrast to all the aforementioned works, in this pa-
per, we present a general method to leverage various types
of knowledge into learning word representations. With the
target at incorporating more extensive forms of knowledge,
we define a new learning objective as a combination between
that of the raw text and that of external knowledge. As a
result, our new model is able to learn word representations
with encoding both contextual information and extra knowl-
edge, which is much more general and flexible than previous
works.

3. KNOWLEDGE POWERED WORD REP-

RESENTATIONS
In this section, we first introduce the continuous skip-gram

model, which serves as the basis of the proposed frame-
work. Then, we describe how we model relational knowledge
and categorical knowledge as regularization functions. Af-
ter that, we introduce the proposed RC-NET framework by
incorporating these regularization functions into the skip-
gram model to strengthen the learning of word representa-
tions. At last, we describe how we solve the optimization
problem in the proposed framework.

3.1 Skip-gram
We take the continuous skip-gram model [18] as the ba-

sis of our proposed framework.1 Skip-gram is a recently

1Note that although we use the skip-gram model as an ex-
ample to illustrate our framework, the similar framework
can be developed on the basis of any other word embedding
models.

proposed algorithm for learning word representations using
a neural network model, whose underlying principle lies in
that similar words should have similar contexts. In the skip-
gram model (see Figure 2), a sliding window is employed on
the input text stream to generate the training samples. In
each sliding window, the model tries to use the central word
as input to predict the surrounding words. Specifically, the
input word is represented in the 1-of-V format, where V is
the size of the entire vocabulary of the training data and
each word in the vocabulary is represented as a long vec-
tor with only one non-zero element. In the feed-forward
process, the input word is first mapped into the embedding
space by the weight matrix M . After that, the embedding
vector is mapped back to the 1-of-V space by another weight
matrix M ′, and the resulting vector is used to predict the
surrounding words after conducting softmax function on it.
In the back-propagation process, the prediction errors are
propagated back to the network to update the two weight
matrices. After the training process converges, the weight
matrix M is regarded as the learned word representations.

𝑤1, … , 𝑤𝑘−𝑁−1, 𝑤𝑘−𝑁, … , 𝑤𝑘−1, 𝑤𝑘 , 𝑤𝑘+1, … , 𝑤𝑘+𝑁 , 𝑤𝑘+𝑁+1, … , 𝑤𝐾sliding window (𝑠𝑖𝑧𝑒 = 2𝑁 + 1)

𝑤𝑘−𝑁 𝑤𝑘−1 𝑤𝑘+1 𝑤𝑘+𝑁

Embedding of 𝑤𝑘
. . . . . .

𝑀
𝑀’

𝑤𝑘

𝑠𝑜𝑓𝑡𝑚𝑎𝑥. . . . . .

Figure 2: The continuous skip-gram model.



Specifically, given a sequence of training text stream w1, w2,
w3, ..., wK , the objective of the skip-gram model is to maxi-
mize the following average log probability:

L =
1

K

K
∑

k=1

∑

−N≤j≤N,j 6=0

log p (wk+j | wk) (1)

where wk is the central word, wk+j is a surrounding word,
and N indicates the context window size to be 2N +1. The
conditional probability p(wk+j |wk) is defined in the follow-
ing softmax function:

p (wk+j | wk) =
exp

(

v
′

wk+j

T
vwk

)

∑V
w=1 exp

(

v′

w
T
vwk

) (2)

where vw and v
′

w are the input and the output latent vari-
ables, i.e., the input and output representation vectors of w,
and V is the vocabulary size.

To calculate the prediction errors for back propagation,
we need to compute the derivative of p(wk+j |wk), whose
computation cost is proportional to the vocabulary size V .
As V is often very large, it is difficult and sometimes im-
practical to directly compute the derivative. The typical
method to solve this problem is noise-contrastive estima-
tion (NCE) [13], which aims at fitting unnormalized prob-
abilistic models. NCE can approximate the log probabil-
ity of softmax by performing logistic regression to discrim-
inate between the observed data and some artificially gen-
erated noise. It has been applied to the neural probabilis-
tic language model [20] and the inverse vector log-bilinear
model [19]. A simpler method to deal with the problem
is negative sampling (NEG) [18], which generates l noise
samples for each input word to estimate the target word, in
which l is a very small number compared with V . Therefore,
the training time yields linear scale to the number of noise
samples and it becomes independent of the vocabulary size.
Suppose the frequency of word w is u(w), then the proba-

bility of sampling w is usually set to p(w) ∝ u(w)3/4 [18].

3.2 Relational Knowledge Powered Model
After briefing the skip-gram model, we introduce how we

equip it with the relational knowledge. According to the
left part of Figure 3, relational knowledge encodes the re-
lationship between words. Inspired by a recent study on
multi-relation model [5] that builds relationships between
entities by interpreting them as translations operating on
the low-dimensional representations of the entities, we pro-
pose to use a function Er as described below to capture the
relational knowledge.

Specifically, the existing relational knowledge in knowl-
edge graphs is usually represented in the triplet (head, re-
lation, tail) (denoted by (h, r, t) ∈ S, where S is the set of
relational knowledge), which consists of two words h, t ∈ W
(W is the set of words) and a relationship r ∈ R (R is the
set of relationships). To learn the relation representations,
we make an assumption that relationships between words
can be interpreted as translation operations and they can
be represented by vectors. The principle in our model is
that if the relationship (h, r, t) holds, the representation of
the tail word t should be close to the representation of the
head word h plus the representation vector of the relation-
ship r, i.e., h+ r; otherwise, h+ r should be far away from

t. Note that this model learns word representations and
relation representations in the same continuous embedding
space.

According to the above principle, we define Er as a margin-
based regularization function over the set of relational knowl-
edge S.

Er =
∑

(h,r,t)∈S

∑

(h
′
,r,t

′
)∈S

′

(h,r,t)

[

γ + d(h+ r, t)− d(h
′

+ r, t
′

)
]

+

(3)
In the above formulation, [x]+ denotes the positive part

of x, γ > 0 is a margin hyperparameter, and d(x, y) is the
distance measure for the words in the embedding space. For
simplicity, we define d(x, y) as the Euclidean distance be-

tween x and y. The set of corrupted triplets S
′

(h,r,t) is de-
fined as:

S
′

(h,r,t) =
{

(h
′

, r, t) | h
′

∈ W
}

⋃

{

(h, r, t
′

) | t
′

∈ W
}

(4)

which is constructed from S by replacing either the head
word or the tail word by another random selected word such

that S
⋂

S
′

= ∅.
Note that the optimization process might trivially mini-

mize Er by simply increasing the norms of word represen-
tations and relation representations. To avoid this problem,
we use an additional constraint on the norms, which is a
commonly-used trick in the literature [5, 4, 6, 15]. However,
instead of enforcing the L2-norm of the word representa-
tions to 1, we adopt a soft norm constraint on the relation
representations as below:

ri = 2σ(xi)− 1 (5)

where σ(·) is the sigmoid function σ(xi) = 1/(1 + e−xi),
ri is the i-th dimension of relation vector r, and xi is a
latent variable, which guarantees that every dimension of the
relation representation vector is within the range (−1, 1).

By combining the skip-gram objective function and the
regularization function derived from relational knowledge,
we get the following combined objective Jr that incorporates
relational knowledge into the word representations learning
system,

Jr = αEr − L (6)

where α is the combination coefficient. Our goal is to min-
imize the combined objective Jr, which can be optimized
using back propagation neural networks. We call this model
as Relational Knowledge Powered Model, and denote it by
R-NET for ease of reference.

3.3 Categorical Knowledge Powered Model
After introducing R-NET, we describe how we equip the

skip-gram model with the categorical knowledge. According
to the right part of Figure 3, categorical knowledge encodes
the attributes or properties of words, from which we can
group similar words according to their attributes. Then we
may require the representations of words that belong to the
same category to be close to each other.

For a specific kind of categorical knowledge, it can be
represented by a similarity matrix Q, in which the element
q(wi, wj) is the similarity score between wi and wj . Note
that many kinds of categorical knowledge can be mined from
knowledge graphs, and they might vary a lot in their simi-
larity properties. For example, in Figure 1, we can see that
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Figure 3: RC-NET: leveraging relational knowledge and categorical knowledge to improve the quality of word

representations.

the categorical knowledge “synonyms of United Kingdom”
only consists of several entities including United Kingdom,
Great Britain, U.K., etc., and these words are strongly sim-
ilar to each other since they are all aliases of the United
Kingdom; in the same figure, we can also find that the cat-
egorical knowledge “Male” or “Female” consists of a massive
number of person names, but these persons are similar only
because they are all men or women, which is a very weak
similarity. From the above examples, we can observe that,
in most cases, categorical knowledge with smaller capacity
is more likely to contain more specific information, so that
we are more confident in grouping the words with that cate-
gorical knowledge close to each other. On the contrary, the
categorical knowledge with larger capacity is more likely to
contain more general information, so that we are less con-
fident in grouping the corresponding words. We use this
heuristic to constrain the similarity scores:

V
∑

j=1

s(wi, wj) = 1, (7)

where if a word shares the same category with many other
words, their mutual similarity scores will become small. Then,
we encode the categorical knowledge using another regular-
ization function Ec:

Ec =
V
∑

i=1

V
∑

j=1

s(wi, wj)d(wi, wj) (8)

where d(wi, wj) is the distance measure for the words in
the embedding space and s(wi, wj) serves as a weighting
function. Again, for simplicity, we define d(wi, wj) as the
Euclidean distance between wi and wj .

By combining the skip-gram objective function and the
regularization function derived from the categorical knowl-
edge, we get the following combined objective Jc that incor-
porates categorical knowledge into the word representations
learning system,

Jc = βEc − L (9)

where β is the combination coefficient. Our goal is to min-
imize the combined objective Jc, which can be optimized

using back propagation neural networks. We call this model
as Categorical Knowledge Powered Model, and denote it by
C-NET for ease of reference.

3.4 Joint Knowledge Powered Model
After describing the R-NET and C-NET models, it is nat-

ural to combine them into a global framework which can
leverage both relational knowledge and categorical knowl-
edge to learn word representations. Specifically, in the global
framework, we want to minimize the following combined ob-
jective function:

J = αEr + βEc − L. (10)

We call this framework as Joint Knowledge Powered Model,
and denote it by RC-NET for ease of reference.

Figure 4 shows the architecture of the proposed RC-NET
framework. Compared to either of R-NET and C-NET,
RC-NET shows strong superiorities. Relational knowledge
mainly helps build the global structure of the learned word
representations by utilizing the relationship between differ-
ent words; while categorical knowledge helps improve the
local structure of the learned word representations by clus-
tering similar words together. Hence, RC-NET might yield
to a structured embedding space and reduce the randomness
of word representations caused by the incomplete or biased
training information. Actually with the RC-NET frame-
work, the relational knowledge and categorical knowledge
can compensate each other. On one hand, sometimes the
relational knowledge of some words might be absent, but
we can obtain their similar words from categorical knowl-
edge and then make inference on their relations according
to the relationships of their similar words. On the other
hand, sometimes the categorical knowledge of a word might
be missing. However, if the word share the same relation-
ships with a number of other words, we will be able to infer
its categorical knowledge from the categories of these related
words.

3.5 Optimization Procedure
In the implementation, we optimize the regularization func-

tions derived from both the relational knowledge and the
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Figure 4: The architecture of RC-NET. The objective is to learn word representations and relation repre-

sentations based on text stream, relational knowledge, and categorical knowledge.

categorical knowledge along with the training process of the
skip-gram model. During the procedure of learning word
representations from the context words in the sliding win-
dow, if the central word wk hits the external knowledge, the
corresponding optimization process of the knowledge based
regularization function will be activated.

• For the branch of relational knowledge, according to
the objective function (6), we minimize the Euclidean
distance between the representation vector of the real
tail word t and the predicted vector that is computed
as wk + r, and then we update the central word rep-
resentation as well as the relation representation. For

efficiency, we sample a subset of S
′

with a fixed size
(which is also a parameter) instead of using the whole

set of S
′

. Note that the central word wk may appear as
the head word or the tail word in a triplet of relational
knowledge.

• For the branch of categorical knowledge, we minimize
the weighted Euclidean distance between the represen-
tations of the central word and that of its similar words
according to the objective function (9).

The two knowledge branches and the skip-gram branch
share the same word representations in the learning pro-
cess. In our implementation, the optimization is conducted
by stochastic gradient descent in a mini-batch mode, whose
computational complexity is comparable to that of the op-
timization process of the skip-gram model.

4. EXPERIMENTS
In this section, we conduct experiments to examine whether

incorporating relational knowledge and categorical knowl-
edge into learning continuous word representations can sig-
nificantly improve the quality of word embeddings. In par-
ticular, we compare the performance of our knowledge pow-
ered model and that of the state-of-the-art baselines by eval-
uating the quality of respective learned word embedding on
three text mining and NLP tasks, including analogical rea-
soning, word similarity, and topic prediction. In the rest of

this section, we first introduce the experimental setup, and
then report evaluation results and further analysis on the
analogical reasoning task, the word similarity task, and the
topic prediction task, respectively.

4.1 Experimental Setup

4.1.1 Training Data

In our experiments, we trained word embeddings on a
publicly available text corpus2, a dataset about the first bil-
lion characters from Wikipedia. After being pre-processed
by removing all the HTML meta-data and hyper-links and
replacing the digit numbers into English words, the final
training corpus contains totally 123.4 million words, where
the number of unique words, i.e., the vocabulary size, is
about 220 thousand.

4.1.2 Parameter Setting for Compared Methods

In the following experiments, we will compare four meth-
ods: Skip-gram (baseline), R-NET, C-NET, and RC-

NET. To train the word embedding using these four meth-
ods, we apply the same setting for their common parameters.
Specifically, the count of negative samples was set to 3; the
context window size was set to 5; each model was trained
through 1 epoch; the learning rate was initialized as 0.025
and was set to decrease linearly so that it approached zero
at the end of training.

Moreover, the combination weights in R-NET, C-NET,
and RC-NET also play a critical role in producing high-
quality word embedding. Overemphasizing the weight of
the original objective of Skip-gram may result in weakened
influence of knowledge, while putting too large weight on
knowledge powered objectives may hurt the generality of
learned word embedding. According to our empirical expe-
rience, it is a better way to decide the objective combination
weights of the Skip-gram model, relational knowledge, and
categorical knowledge based on the scale of their respective
derivatives during optimization. Specifically, it is better to
set the objective weight of C-NET (β) as a smaller value

2http://mattmahoney.net/dc/enwik9.zip



than the objective weight of Skip-gram and R-NET since the
derivative of C-NET objective usually yields a larger scale
than that of Skip-gram and R-NET. Along our experiments
in the following, we set α = 1 for R-NET, β = 0.001 for C-
NET, and α = 1, β = 0.0001 for RC-NET. Note that, this
parameter setting may not be optimal for different training
corpus or various tasks, but the following experiments may
illustrate its robustness to some extent.

4.2 Analogical Reasoning Task

4.2.1 Task Description

The analogical reasoning task was originally introduced by
Mikolov et al [18, 17], which defines a comprehensive test
set that contains five types of semantic analogies and nine
types of syntactic analogies3. For example, to solve semantic
analogies such as Germany : Berlin = France : ?, we need
to find a vector x such that the embedding of x, denoted
as vec(x) is the closest to vec(Berlin) - vec(Germany) +
vec(France) according to the cosine distance. This specific
example is considered to have been answered correctly if x
is Paris. Another example of syntactic analogies is quick :
quickly = slow : ?, the correct answer of which should be
slowly.

In our experiments, we use an enlarged dataset called
WordRep [11] which extends the original evaluation dataset
of analogical reasoning task. In particular, this larger dataset
is generated by extracting more analogy pairs from Longman
dictionary4. Finally, we collect totally 34,773 relevant word
pairs in the enlarged dataset. In our experiments, we split
the whole dataset into two parts with a ratio of 4:1, in which
the larger part is used for training and the smaller part for
testing. To form up the testing set from the smaller part
of dataset, we connect every two-word pairs from the same
relation together to generate a set of four-word tuple as ana-
logical questions. Note that we avoid using those word pairs
for training if at least one of their two words also appears in
the testing set.

4.2.2 Applied Knowledge

R-NET. For training R-NET, we directly use relation
pairs and relation types as supervised information to learn
representation vectors of different relations.

C-NET. For training C-NET, we extract the categorical
knowledge from those relations. Specifically, given one rela-
tion, the set of head words extracted from all pairs of this
relation forms up a category, and the collection of tail words
forms up another category. For instance, there are 1467
“city-in-state” word pairs in the training part of the Wor-
dRep dataset. We split them into two categories: one is the
collection of cities, while the other corresponds to the set of
states. Each of them will be treated as a type of categorical
knowledge for training C-NET.

RC-NET. Finally, we employ all the relational and cat-
egorical knowledge applied for training R-NET and C-NET
in the learning process of RC-NET.

4.2.3 Experimental Results

In our experiments on the analogical reasoning task, we
compared the baseline word embedding trained by Skip-

3http://code.google.com/p/word2vec/source/browse/trunk/
questions-words.txt
4http://www.longmandictionariesonline.com/

gram against those trained by R-NET, C-NET, and RC-
NET. The dimension of word embedding is set as 100 and
300. Table 1 illustrates the semantic, syntactic, and to-
tal accuracy by using the four methods. From this table,
we can find that all of the knowledge powered models out-
perform the baseline skip-gram model, and RC-NET yields
the largest improvements. These results can imply that the
knowledge powered word embedding is of higher quality than
the baseline model with no knowledge regularizations.

From Table 1, we can also observe that incorporating re-
lational knowledge to the skip-gram model can increase the
accuracy of all three sub-types of the analogical reasoning
task; meanwhile, incorporating the categorical knowledge
can give rise to a higher accuracy on semantic analogies but
a decreasing performance on the syntactic analogies. We
hypothesize the reason as, there are some syntactic relation-
ships, such as “opposite”, whose head or tail word collection
do not strictly form up a word group representing a coherent
category.

In order for deeper understanding on why our new meth-
ods can learn higher-quality word embedding, we take case
studies on a specific syntactic relationship called “Adjective
to Adverb” and a specific semantic relationship called “Male
to Female”. In particular, we apply the two-dimensional
PCA projection on the 100-dimensional learned word em-
bedding of randomly selected word pairs. Figure 5 reveals
the RC-NET’s capability of learning the representations of
relational knowledge and that of constructing the distribu-
tions of words in the embedding space. In other words, from
this figure, it is easy to see that, by incorporating relational
knowledge, R-NET can produce word embedding such that
the offset vector of any word pair in the same relationship
tends to yield a common direction with similar distance,
while by incorporating categorical knowledge, C-NET at-
tempts to generate word embedding such that those words
corresponding to the same topic or domain tend to be close
to each other.

4.3 Word Similarity Task

4.3.1 Task Description

Another standard dataset for evaluating vector space mod-
els is the WordSim-353 dataset [9], which consists of 353
pairs of nouns. Each pair is presented without context and
associated with 13 to 16 human judgments on similarity and
relatedness on a scale from 0 to 10. For example, (cup, drink)
received an average score of 7.25, while (cup, substance) re-
ceived an average score of 1.92. To evaluate the quality of
learned word embeddings, we compute Spearman’s ρ cor-
relation between the similarity scores computed based on
learned word embeddings and human judgments.

Since this task expects those similar or highly-correlated
words are close to each other, it could only need to incor-
porate the categorical knowledge extracted from similar or
highly-correlated words. Thus, we only evaluate the effec-
tiveness of C-NET for this task.

4.3.2 Applied Knowledge

To train C-NET, it is necessary to collect the categorical
knowledge that can reflect the topic or concept information
of words. In our experiments, we extract such knowledge
for training from Freebase [3]. As a structured knowledge
base, Freebase organizes words according to a couple of basic



Table 1: Performance of using relational knowledge and categorical knowledge on the analogical reasoning

task based on our proposed models.

Model
Vector

Dimensionality
Accuracy[%]

Semantic Syntactic Total

Skip-gram
100 25.06 36.49 31.30
300 28.76 40.31 35.07

R-NET
100 26.91 39.37 33.56
300 32.64 43.46 38.55

C-NET
100 29.67 36.12 33.19
300 37.07 40.06 39.00

RC-NET
100 32.02 43.92 38.52

300 34.36 44.42 39.85
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Figure 5: Two-dimensional PCA projection of 100-dimensional Skip-gram vectors and our proposed RC-NET

word vectors of syntactic relation “Adjective to Adverb” and semantic relation “Male to Female”. All of these

word pairs were chosen randomly.

relations. Among them, we take advantage of the “type
of” relation to generate the categorical knowledge since this
type of relation can naturally reflect the correlation between
entities (words) with topics.

While Freebase contains many domain-specific words, such
as professional terminologies and names (person, location,

business), these words are so rare in the general training
corpus that they yield quite limited contribution to improve
word embedding quality. Therefore, to address this prob-
lem, we only collect the categorical knowledge related to a
pre-defined vocabulary, which only contains common nouns
in the Longman Dictionary and filters our all multi-word



Table 2: Results obtained by the different methods

on the word similarity task.

Methods
Vector

Dimensionality
Spearman’s ρ correlation

Skip-gram
100 0.652
300 0.678

C-NET
100 0.661

300 0.683

phrases and non-alphabetic characters. Finally, we select the
top 10 human rated topic sets, including astronomy, biology,
boats, chemistry, computer, fashion, food, geology, interests,
and language, as the categorical knowledge for training, the
vocabulary size of which is 3,174.

4.3.3 Experimental Results

Table 2 compares the performance of C-NET against
Skip-gram on the word similarity task. From this table, we
can find that C-NET can achieve better performance than
Skip-gram on this task no matter 100 or 300 vector dimen-
sion is applied. These results indicate that C-NET can more
effectively let those words similar in terms of topic or concept
be close to each other in the obtained representation space,
as it incorporates the categorical knowledge extracted from
Freebase explicitly into the learning process so as to encode
the similarity and correlation between words into the word
representations.

4.4 Topic Prediction Task

4.4.1 Task Description

In many text mining and NLP applications, it is important
to identify the topic of any given word since it can provide
useful semantic information. For instance, both the word
“star” and “earth” correspond to the topic of “astronomy”,
and both“cell”and“neuron”belong to the topic of“biology”.
In the rest of this section, we evaluate word embedding via
the topic prediction task, whose goal is to find the most
related topic word for a given word.

Our proposed methods, especially R-NET and RC-NET
can be naturally applied to solve this task. In particular,
since R-NET and RC-NET can learn the relation embed-
ding beyond word embedding, given a word h and the topic
relation embeddings r, we can predict the topic word t as the
one that has the shortest Euclidean distance to h + r over
the whole vocabulary. Although Skip-gram and C-NET do
not explicitly produce the relation embedding in the train-
ing process, for a specific relation r, we are able to compute
the average offset vector t − h for any word pair 〈h, t〉 be-
longing to this relation as the embedding of r. Then, we
can follow the same way of R-NET and RC-NET to solve
the topic prediction task.

4.4.2 Applied Knowledge

For training C-NET for this task, we leverage the same
categorical knowledge used for the word similarity task, as
described in Section 4.3.2. To obtain relational knowledge
for training R-NET and RC-NET, we simply transform the
dataset about categorical knowledge into a new format to
represent relational knowledge. Specifically, the relational
knowledge is in the triple format (h, r, t), where h is a spe-

Table 3: Results obtained by the comparing meth-

ods on the topic prediction task.

Relation
Error Rate[%]

Skip-gram C-NET R-NET RC-NET
astronomy 2.00 2.00 8.00 2.00
biology 6.29 4.91 4.91 4.32
boats 11.76 5.88 5.88 7.84

chemistry 6.67 5.71 9.52 15.24
computer 19.54 8.62 6.32 4.02
fashion 22.08 24.68 22.08 22.08
food 17.98 13.60 11.40 7.89

geology 0.00 0.00 11.54 7.69
interests 6.80 8.16 6.12 6.12
language 33.33 33.33 18.52 7.41
Total 12.21 9.37 8.57 7.15

cific word under a certain topic, r is the corresponding topic
relation, and t is the name of topic or concept.

4.4.3 Experimental Results

In the following experiments, we split the generated knowl-
edge data into training set and testing set by the ratio of 1:1
for each relation. Note that there is no overlap between the
training set and the testing set in the vocabulary except for
the topic word t. The dimension of word representations is
set as 100.

Table 3 reports the error rates of different word embed-
ding models on the topic prediction task. From this table,
we can see that knowledge powered models can achieve lower
error rates than Skip-gram on most of the relations. Further-
more, RC-NET can reach better performance than R-NET
and C-NET, which indicates that both relational and cate-
gorical knowledge are important for predicting the topic for
the word.

From the table, we also observe that there are some rela-
tions, where knowledge powered models do not yield better
performance. Our further analysis reveals that these rela-
tions can be classified into two types. One type includes
relations that have inadequate training pairs such that the
relation embedding cannot be trained sufficiently. For ex-
ample, it is quite difficult to train high quality embedding
for the relation “astronomy”and“geology” since they merely
have 25 and 13 pairs for training, respectively. The other
type contains relations which have so many rare words that
they yield less chance to be trained either. For example, as
there are a lot of uncommon words in the relation “chem-
istry”, it is not easy to collect enough training samples for
this relation.

5. CONCLUSIONS AND FUTURE WORK
Learning high-quality word embedding is quite valuable

for many text mining and NLP tasks. To address the limi-
tation of the state-of-the-art methods in terms of their inca-
pability of encoding the properties of words and the complex
relationships among words very well, this paper proposes to
incorporate knowledge graphs into the learning process since
it contains invaluable relational knowledge that encodes the
relationship between entities as well as categorical knowl-
edge that encodes the attributes or properties of entities. In
this paper, we introduce a new knowledge powered method,
called RC-NET, to leverage both the relational and categor-



ical knowledge to obtain word representations. Experiments
on three popular text mining and NLP tasks have illustrated
that the knowledge powered method can significantly im-
prove the quality of word representations.

For the future work, we will explore how to incorporate
more types of knowledge, such as the morphological knowl-
edge of words, into the learning process to obtain more pow-
erful word representations. Meanwhile, we will study how
to define more general regularization functions to represent
the effect of various types of knowledge.
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