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Abstract

Unsupervised anomaly detection (AD) plays a cru-
cial role in many critical applications. Driven by
the success of deep learning, recent years have wit-
nessed growing interest in applying deep neural
networks (DNNs) to AD problems. A common ap-
proach is using autoencoders to learn a feature rep-
resentation for the normal observations in the data.
The reconstruction error of the autoencoder is then
used as outlier score to detect the anomalies. How-
ever, due to the high complexity brought upon by
over-parameterization of DNNs, the reconstruction
error of the anomalies could also be small, which
hampers the effectiveness of these methods. To al-
leviate this problem, we propose a robust frame-
work using collaborative autoencoders to jointly
identify normal observations from the data while
learning its feature representation. We investigate
the theoretical properties of the framework and em-
pirically show its outstanding performance as com-
pared to other DNN-based methods. Empirical re-
sults also show resiliency of the framework to miss-
ing values compared to other baseline methods.

1 Introduction

Anomaly detection (AD) is the task of identifying unusual
or abnormal observations in the data. It has a wide range of
applicability, from credit fraud detection to medical diagno-
sis. Current AD approaches can be divided into supervised or
unsupervised learning methods. Supervised AD requires la-
beled examples to train the AD models whereas unsupervised
AD, which is the focus of this paper, does not require label
information but assumes there are more normal than anoma-
lous instances in the data [Chandola et al., 2009]. Deep au-
toencoders are one of the most widely used unsupervised AD
methods [Chandola et al., 2009; Sakurada and Yairi, 2014;
Vincent et al., 2010]. An autoencoder compresses the original
data by learning its hidden representation in a way that min-
imizes the reconstruction loss. It is based on the assumption
that normal observations are easier to compress than anoma-
lies. Unfortunately, such an assumption does not generally
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Figure 1: An illustration of the training phase of RCA framework.

hold for DNNs, which are often over-parameterized and have
the capability to fit well even to the anomalies [Zhang et al.,
2016]. Thus, the DNN-based unsupervised AD methods must
consider the trade-off between model capacity and overfitting
to the anomalies to achieve good performance.

Our work is motivated by recent progress on robustness of
DNNs for noisy labeled data by learning the weights of the
samples during training [Jiang et al., 2017; Han et al., 2018].
For unsupervised AD, our goal is to learn the weights in such
a way that normal observations are assigned higher weights
than anomalies when calculating reconstruction error. The
weights can be used to reduce the influence of anomalies
when updating the model for learning a feature representation
of the data. However, existing approaches for weight learning
are inapplicable to unsupervised AD as they require label in-
formation. To address this challenge, we propose a robust col-
laborative autoencoders (RCA) method that trains a set of au-
toencoders in a collaborative fashion and jointly learns their
model parameters and sample weights. Specifically, given a
mini-batch, each autoencoder would learn a feature represen-
tation and selects a subset of the samples with lowest recon-
struction errors. By discarding samples with high reconstruc-
tion errors, the learning algorithm focuses more on fitting the
clean data, thereby reducing its risk of memorizing anoma-
lies. However, by selecting only easy-to-fit samples, this
may lead to premature convergence of the algorithm with-
out sufficient exploration of the loss surface. To address this
issue, the proposed approach selects samples from each au-
toencoder and exchange them between them, to update their
model weights. The sample selection and exchanging proce-
dures are illustrated in Figure 1. During the testing phase,
we apply a dropout mechanism to produce multiple output
predictions for each test point by repeating the forward pass
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multiple times. The ensemble of outputs are then aggregated
to obtain a robust estimate of the anomaly score.

The main contributions of this paper are as follows. First,
we present a framework for unsupervised deep AD using
robust collaborative autoencoders (RCA) to prevent model
overfitting due to anomalies. Second, we provide theoretical
analysis to understand the mechanism behind RCA. Our anal-
ysis shows that the worst-case scenario for RCA is better than
conventional autoencoders and provides the conditions under
which RCA will detect the anomalies. Third, we show that
RCA outperforms state-of-the-art unsupervised AD methods
for the majority of the datasets used in this study, even if there
are missing values present in the data. In addition, RCA also
enhances the performance of more advanced autoencoders
such as variational autoencoders in unsupervised AD tasks.

2 Related Work

Many methods have been developed over the years for unsu-
pervised AD [Chandola et al., 2009]. Reconstruction-based
methods, such as principal component analysis (PCA) and
autoencoders, project the input data to a lower-dimensional
manifold before transforming them back to the original fea-
ture space. The distances between the input and reconstructed
data are used as anomaly scores of the data points. [Zhou and
Paffenroth, 2017] combined robust PCA with an autoencoder
to decompose the data into a mixture of normal and anomaly
parts. [Zong et al., 2018] jointly learned a low dimensional
embedding and density of the data, using the density of each
point as its anomaly score while [Ruff et al., 2018] extended
the traditional one-class SVM approach to a deep learning
setting. Current deep AD methods cannot prevent the net-
work from incorporating anomalies into their learned repre-
sentation. One way to address the issue is by assigning a
weight to each data point. For example, in self-paced learn-
ing [Kumar et al., 2010], the algorithm assigns higher weights
to easier-to-classify examples and lower weights to harder
ones. This strategy was adopted by other supervised meth-
ods for learning from noisy labeled data, including mentor-
net [Jiang et al., 2017] and co-teaching [Han et al., 2018]. Ex-
tending the weight learning methods to unsupervised AD is a
key novelty of our work. Theoretical studies on the benefits
of choosing samples with smaller loss to drive the optimiza-
tion algorithm can be found in [Shen and Sanghavi, 2018].

3 Methodology

Let X ∈ R
n×d denote the input data, where n is the number

of observations and d is the number of features. Our goal is to
classify each xi ∈ X as an anomaly or a normal observation.
Let O ⊂ X be the set of true anomalies in the data and ǫ =
|O|/n be the anomaly ratio, which is determined based on the
amount of suspected anomalies in the data or the proportion
the user is willing to inspect and verify.

The RCA framework trains a set of k autoencoders with
different initializations. For brevity, we assume k = 2 even
though RCA is applicable to more than 2 autoencoders. In
each iteration during training, the autoencoders will each ap-
ply a forward pass on a mini-batch randomly sampled from
the training data and compute the reconstruction error of each

Algorithm 1: Robust Collaborative Autoencoders

input: training data Xtrn, test data Xtst, anomaly ratio ǫ,
dropout rate r, decay rate α, and max epoch for training;

initialize autoencoders A1 and A2; sample selection β = 1;
Training Phase
while epoch ≤ max epoch do

for minibatch S in Xtrn do

Ŝ1 ← forward(A1,S, dropout = 0), Ŝ2 ←

forward(A2,S, dropout = 0);

c1 ← sample selection(Ŝ1,S, β),

c2 ← sample selection(Ŝ2,S, β) ;

Ŝ1 ← forward(A1,S[c2], dropout = r), Ŝ2 ←

forward(A2,S[c1], dropout = r);

A1 ←backprop(Ŝ1,S[c2], dropout = r), A2 ←

backprop(Ŝ2,S[c1], dropout = r) ;

end

β = max(β −
ǫ

α×max epoch
, 1− ǫ)

end
return A∗

1 = A1 and A∗

2 = A2 ;
Testing Phase
ξ = [];
for i = 1 to v do

ξ1= forward(A∗

1,Xtst, dropout = r) ;
ξ2=forward(A∗

2,Xtst, dropout = r) ;
ξ.append((ξ1 + ξ2)/2);

end
return anomaly score = average(ξ) ;

data point in the mini-batch. Each autoencoder will then sort
the data points according to their reconstruction errors and
selects the points with lowest reconstruction error to be ex-
changed with another autoencoder. This is known as the sam-
ple selection step. A back-propagation step is then performed
by each autoencoder to update its model parameters using the
samples it receives from another autoencoder. Upon conver-
gence, the averaged reconstruction error of each data point
is treated as its anomaly score. A pseudocode for RCA with
k = 2 autoencoders is shown in Algorithm 1.

3.1 Sample Selection

We present theoretical results to motivate our sample selec-
tion approach. First, we demonstrate the robustness of RCA
against contamination (anomalies) in training data by show-
ing that RCA converges to a similar solution as if it had been
trained on clean (normal) data without anomalies. Next, we
show that RCA is better than vanilla SGD when the anomaly
ratio is large or when the anomalies are very different from
normal data. Finally, we show that RCA will correctly select
all the normal points under certain assumption.

Given a mini-batch, Xm ⊂ X, our sample selection pro-
cedure chooses a subset of points with lowest reconstruction
error as “clean” samples to update the parameters of the au-
toencoder. The selected points may vary from one iteration
to another depending on which subset of points are in the
mini-batch and which points have lower reconstruction error
within the mini-batch. To avoid discarding the data points
prematurely, we use a linear decay function from β = 1 (all
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points within the mini-batch are chosen) until β = 1 − ǫ to
gradually reduce the proportion of selected samples (see last
line of training phase in Algorithm 1). The rationale for this
approach is that we observe the autoencoders to overfit the
anomalies only when the number of training epochs is large.

Let k be the mini-batch size and w be the current parameter
of an autoencoder. Our algorithm selects (β × 100)% of the
data points with lowest reconstruction errors in the mini-batch
to update the autoencoder. Let pi(w) be the probability that a
data point with ith smallest reconstruction error (among all n
points in the entire dataset) is chosen to update the parameters
of the autoencoder. Assuming sampling without replacement,
we consider two cases: i ≤ βk and i > βk. In the first case,
the data point with ith smallest error will be selected as long
as it is in the mini-batch. In the second case, the point is
chosen only if it is part of the mini-batch and has among the
(βk)-th lowest errors in the mini-batch:

pi(w) =











(n−1
k−1)
(nk)

= k
n if i ≤ βk,

∑βk−1
j=0 (i−1

j )( n−i

k−j−1)
(nk)

otherwise.
(1)

The objective function for the autoencoder with sample se-
lection can thus be expressed as follows:

min
w

F̂ (w) =
n
∑

i=1

pi(w)f(xi,w) ≡
n
∑

i=1

pi(w)fi(w)

where f(xi,w) = fi(w) is the reconstruction loss for xi.

Suppose Ω(w∗
sr) is the set of stationary points for F̂ (w) and

Ωi(w
∗) is the corresponding set of stationary points for each

individual loss, fi(w). Let F (w) =
∑

i/∈O
fi(w) be the

“clean” objective function, where anomalies have been ex-
cluded from the training data and Ω(w∗) be its set of sta-

tionary points. Furthermore, let F̃ (w) =
∑n

i=1 fi(w) be the
objective function if no sample selection is performed and
Ω(w∗

ns) is its corresponding set of stationary points.
Our analysis is based on the following assumptions:

Assumption 1 (Gradient Regularity). maxi,w ‖∇fi(w)‖ ≤
G.

Assumption 2 (Individual L-smooth). For every individual
loss fi, ∀p, q : ‖∇fi(wp)−∇fi(wq)‖ ≤ Li ‖wp −wq‖.

Assumption 3 (Equal Minima). Same minimum value for ev-
ery individual loss: ∀i, j : minw fi(w) = minw fj(w).

Assumption 4 (Individual Strong Convexity). For every
individual loss fi, ∀p, q : ‖∇fi(wp)−∇fi(wq)‖ ≥
µi ‖wp −wq‖.

We denote Lmax = maxi(Li), Lmin = mini(Li), µmax =
maxi(µi), and µmin = mini(µi). Since F (w) is the sum
over the loss for clean data, it is easy to see that Assumption 2
implies F (w) is n(1 − ǫ)Lmax smoothness, while Assump-
tion 4 implies that F (w) is n(1 − ǫ)µmin convex. We thus
define M = n(1− ǫ)Lmax, and m = n(1− ǫ)µmin.

Remark 1. Assumptions 1 and 2 are commonly used in non-
convex optimization. Assumption 3 is not a strong assumption
in an over-parameterized DNN setting [Zhang et al., 2016].
While Assumption 4 is perhaps the strongest assumption, it

is only needed to demonstrate correctness of our algorithm
(Theorem 3). A similar convex assumption was used in [Shah
et al., 2020] to prove the correctness of their algorithm.

We define the constants δ > 0 and φ ≥ 1 as follows:

δ ≥ maxx∈Ωi(w∗),y∈Ω(w∗) ‖x− y‖ , ∀i /∈ O (2)

δ ≤ minz∈Ωj(w∗),y∈Ω(w∗) ‖z− y‖ , ∀j ∈ O,

maxz∈Ωj(w∗),y∈Ω(w∗) ‖z− y‖ ≤ φδ, ∀j ∈ O. (3)

Note that under the convex assumption, the above equations
reduce to: ‖w∗

i −w∗‖ ≤ δ ≤
∥

∥w∗
j −w∗

∥

∥ ≤ φδ, ∀i /∈
O, ∀j ∈ O. These inequalities provide bounds on the dis-
tance between w∗

j of anomalies and w∗ for clean data. Using
Assumptions 1 and 2, the following theorem shows that opti-

mizing F̂ (w) yields a C-approximate solution to Ω(w∗).

Theorem 1. Let F (w) =
∑

i/∈O
fi(w) be a twice differen-

tiable function. Consider the sequence w(1),w(2), · · · ,w(t)

generated by w(t+1) = w(t) − η(t)∇
w(t) F̂ (w(t)) and let

max
w(t) ‖∇w(t)F (w(t)) −∇

w(t) F̂ (w(t))‖2 = C. Based on

Assumptions 1 and 2, if
∑∞

t=1 η
(t) = ∞,

∑∞

t=1 η
(t)2 ≤ ∞,

then mint=0,1,··· ,T

∥

∥∇F (w(t))
∥

∥

2
→ C as T → ∞.

Remark 2. The theorem shows how anomalies in training
data affect the gradient norm of the clean objective function.
If the training data has no anomalies and pi =

1
N , then C =

0. When data is noisy, there is no guarantee that C = 0.
Instead, C is controlled by the choice of pi.

Since ‖∇F (w∗)‖ = 0, Theorem 1 shows our sample se-
lection method enables convergence to a C-approximate so-
lution of the objective function for clean data. The theorem
below compares our solution against the solution found when
trained on the entire data (with no sample selection).

Theorem 2. Let F (w) =
∑

i/∈O
fi(w) be a twice differen-

tiable function with a bound C defined in Theorem 1. Con-
sider the sequence {wRCA} generated by w(t+1) = w(t) −

η(t)∇
w(t) F̂ (w(t)) . Based on Assumptions 1 and 2 and

assume C ≤ (min(nǫG,Mδ))2, if
∑∞

t=1 η
(t) = ∞,

∑∞

t=1 η
(t)2 ≤ ∞, then there exists a large enough T and

w̃ns ∈ Ω(w∗
ns) such that mint=0,1,...,T

∥

∥

∥
∇F (w

(t)
RCA)

∥

∥

∥
≤

‖∇F (w̃ns)‖.

Remark 3. The above theorem provides a worst-case bound.
A similar result is given in [Shah et al., 2020] but with a
stronger convex assumption. Although it is for the worst-
case scenario, our experiments show that our sample selec-
tion method generally outperforms DNN methods that use all
the data. The condition C ≤ (min(nǫG,Mδ))2 will more
likely hold when the anomaly ratio ǫ is large or when δ, dis-
tance between normal data and anomalies, is large, consis-
tent with our expectation.

Below we give a sufficient condition for guaranteeing
correctness when Assumption 4 holds. Suppose ∀i /∈ O :
fi(w

∗) = 0 and ∀j ∈ O : fj(w
∗) > 0. Assuming f(w)

is convex and its gradient is upper bounded, let Br (w
∗) =

{w | fi(w) < fj(w), ∀i /∈ O, j ∈ O, ‖w −w
∗‖ ≤ r} .

Br (w
∗) describes a ball of radius r > 0 around the optimal
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point for which normal observations have a smaller loss than
anomalies. The following theorem describes a sufficient
condition for our algorithm to converge within the ball.

Theorem 3. Let F (w) =
∑

i/∈O
fi(w) be a twice dif-

ferentiable function and κ =
√

Lc
max

µo
min

, where Lc
max =

maxi/∈O(Li) is the maximum Lipschitz smoothness for clean
data and µo

min = minj∈O(µj) is the minimum convex-
ity for anomalies. Consider the sequence {wRCA} gener-

ated by w(t+1) = w(t) − η(t)∇
w(t) F̂ (w(t)) and assume

max
w(t) ‖∇w(t)F (w(t))−∇

w(t) F̂ (w(t))‖2 = C. Based on

Assumptions 1-4, if
∑∞

t=1 η
(t) = ∞,

∑∞

t=1 η
(t)2 ≤ ∞, and

C ≤
(

δ
(1+κ)m

)2

= O
(

δ
κ

)2
, then there exists r > 0 such that

w∗
sr ∈ Br (w

∗).

The proof is similar to the strategy used in [Shah et al.,
2020] and is given in the longer version of the paper. This
guarantee depends on having a sufficiently small C, which is
related to δ, the nearest distance between anomalies and the
normal points, as well as the landscape of the loss surface κ.
A small κ suggests that the loss surface will be very sharp for
anomalies (large µo

min) but flat for normal data (small Lc
max).

In this case, most regions in the loss surface will have smaller
loss on the normal data and larger loss on the anomalies (un-
der assumption of equal minima). As a result, the anomalies
have smaller probability to be selected than normal points by
our proposed algorithm since they have larger loss.

The above analysis shows that sample selection helps RCA
to have better convergence to the stationary points for clean
data. Ultimately, our goal is to improve test performance,
not just convergence to stationary points of clean data. When
sample selection is applied to just one autoencoder, the algo-
rithm may converge too quickly as we use only samples with
low reconstruction loss to compute the gradient, making it
susceptible to overfitting [Zhang et al., 2016]. Thus, instead
of using only the self-selected samples for model update, we
train the autoencoders collaboratively and shuffle the selected
samples between them to avoid overfitting. A similar strategy
was used in [Han et al., 2018] for learning with noisy labels.

3.2 Ensemble Evaluation

Unsupervised AD using an ensemble of model outputs has
been shown to be highly effective in previous studies [Liu et
al., 2008; Zhao et al., 2019; Emmott et al., 2015; Aggarwal
and Sathe, 2017]. In this paper, we use dropout [Srivastava et
al., 2014] to emulate the ensemble process. Dropouts are typ-
ically used during training to avoid model overfitting. RCA
employs dropout during testing by using many networks of
perturbed structures to perform multiple forward passes over
the data in order to obtain a set of reconstruction errors for
each test point. The final anomaly score is computed by av-
eraging the reconstruction errors. We expect a more robust
estimation of the anomaly score using this procedure.

4 Experiments

We performed extensive experiments to compare the perfor-
mance of RCA against various baseline methods. The code is
available at https://github.com/illidanlab/RCA.

Figure 2: The first two columns are results for 10% and 40%
anomaly ratio, respectively. The last column shows the fraction of
points with highest reconstruction loss that are true anomalies. The
top diagram is for 10% anomalies while the bottom is for 40%.

4.1 Results on Synthetic Data

To understand how RCA overcomes the limitations of con-
ventional autoencoders (AE), we created a synthetic dataset
containing a pair of crescent-shaped moons with Gaussian
noise [Pedregosa et al., 2011] representing the normal ob-
servations and anomalies generated from a uniform distribu-
tion. In this experiment, we vary the proportion of anomalies
from 10% to 40% while fixing the sample size to be 10,000.
Samples with the top-[(1 − ǫ)n] highest anomaly scores are
classified as anomalies, where ǫ is the anomaly ratio.

Figure 2 compares the performance of standard autoen-
coders (AE) against RCA for 10% (left column) and 40%
(right column) anomaly ratio. Although the performance for
both methods degrades with increasing anomaly ratio, RCA is
more robust compared to AE. In particular, when the anomaly
ratio is 40%, AE fails to capture the true manifold of the nor-
mal data, unlike RCA. This result is consistent with the asser-
tion in Theorem 2, which states that training the autoencoder
with a subset of points selected by RCA is better than using
all the data when anomaly ratio is large.

4.2 Results on Real-World Data

For evaluation, we used 18 benchmark datasets obtained from
the Stony Brook ODDS library [Rayana, 2016]1. We reserve
60% of the data for training and the remaining 40% for test-
ing. The performance of the competing methods are evalu-
ated based on their Area under ROC curve (AUC) scores.

Baseline Methods We compared RCA against the fol-
lowing baseline methods: Deep-SVDD (deep one-class
SVM) [Ruff et al., 2018], VAE (Variational autoen-
coder) [Kingma and Welling, 2013; An and Cho, 2015],
DAGMM (deep gaussian mixture model) [Zong et al.,
2018], SO-GAAL (Single-Objective Generative Adversar-
ial Active Learning) [Liu et al., 2019], OCSVM (one-class
SVM) [Chen et al., 2001], and IF (isolation forest) [Liu et al.,

1Additional experimental results on the CIFAR10 dataset are
given in the longer version of the paper.
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RCA VAE AE SO GAAL DAGMM Deep-SVDD OCSVM IF

vowels 0.917±0.016 0.503±0.045 0.879±0.020 0.637±0.197 0.340±0.103 0.206±0.035 0.765±0.036 0.768±0.013

pima 0.711±0.016 0.648±0.015 0.669±0.013 0.613±0.049 0.531±0.025 0.395±0.034 0.594±0.026 0.662±0.018

optdigits 0.890±0.041 0.909±0.016 0.907±0.010 0.487±0.138 0.290±0.042 0.506±0.024 0.558±0.009 0.710±0.041

sensor 0.950±0.030 0.913±0.003 0.866±0.050 0.557±0.224 0.924±0.085 0.614±0.073 0.939±0.002 0.948±0.002

letter 0.802±0.036 0.521±0.042 0.829±0.031 0.601±0.060 0.433±0.034 0.465±0.039 0.557±0.038 0.643±0.040

cardio 0.905±0.012 0.944±0.006 0.867±0.020 0.473±0.075 0.862±0.031 0.505±0.056 0.936±0.002 0.927±0.006

arrhythmia 0.806±0.044 0.811±0.034 0.802±0.044 0.538±0.042 0.603±0.095 0.635±0.063 0.782±0.028 0.802±0.024

breastw 0.978±0.003 0.950±0.006 0.973±0.004 0.980±0.011 0.976±0.000 0.406±0.037 0.955±0.006 0.983±0.008

musk 1.000±0.000 0.994±0.002 0.998±0.003 0.234±0.193 0.903±0.130 0.829±0.048 1.000±0.000 0.995±0.006

mnist 0.858±0.012 0.778±0.009 0.802±0.009 0.795±0.025 0.652±0.077 0.538±0.048 0.835±0.012 0.800±0.013

satimage-2 0.977±0.008 0.966±0.008 0.818±0.069 0.789±0.177 0.853±0.113 0.739±0.088 0.998±0.003 0.996±0.004

satellite 0.712±0.011 0.538±0.016 0.575±0.068 0.640±0.070 0.667±0.189 0.631±0.016 0.650±0.014 0.700±0.031

mammogr. 0.844±0.014 0.864±0.014 0.853±0.015 0.204±0.026 0.834±0.000 0.272±0.009 0.881±0.015 0.873±0.021

thyroid 0.956±0.008 0.839±0.011 0.928±0.020 0.984±0.005 0.582±0.095 0.704±0.027 0.960±0.006 0.980±0.006

annthyroid 0.688±0.016 0.589±0.021 0.675±0.022 0.679±0.022 0.506±0.020 0.591±0.014 0.599±0.013 0.824±0.009

ionosphere 0.846±0.015 0.763±0.015 0.821±0.010 0.783±0.080 0.467±0.082 0.735±0.053 0.812±0.039 0.843±0.020

pendigits 0.856±0.011 0.931±0.006 0.685±0.073 0.257±0.053 0.872±0.068 0.613±0.071 0.935±0.003 0.941±0.009

shuttle 0.935±0.013 0.987±0.001 0.921±0.013 0.571±0.316 0.890±0.109 0.531±0.290 0.985±0.001 0.997±0.001

Table 1: Performance comparison of RCA against baseline methods in terms of their average and standard deviation of AUC scores across
10 random initializations.

2008]. Note that Deep-SVDD and DAGMM are two recent
deep AD methods while OCSVM and IF are state-of-the-art
unsupervised AD methods. In addition, we also perform an
ablation study to compare RCA against its four variants: AE
(standard autoencoders without collaborative networks) and
RCA-E (RCA without ensemble evaluation), and RCA-SS
(RCA without sample selection). To ensure fair comparison,
we maintain similar hyperparameter settings for all the com-
peting DNN-based approaches. Experimental results are re-
ported based on their average AUC scores across 10 random
initializations. More discussion about our experimental set-
ting will be given in the long version of the paper.

Performance Comparison The results summarized in Ta-
ble 1 show that RCA outperforms all the deep unsupervised
AD methods (SO-GAAL, DAGMM, Deep-SVDD) in 16 out
of 18 datasets. RCA also performs better than both AE and
VAE in 11 out of the 18 datasets, IF in 10 of the datasets,
and OCSVM in 11 of the datasets. These results suggest that
RCA clearly outperforms the baseline methods on majority of
the datasets. Surprisingly, some of the complex DNN base-
lines such as SO-GAAL, DAGMM, and Deep-SVDD per-
form poorly on the datasets. This is because most of these
DNN methods assume the availability of clean training data,
whereas in our experiments, the training data are contami-
nated with anomalies to reflect a more realistic setting. Fur-
thermore, we use the same network architecture for all the
DNN methods (including RCA), since there is no guidance
on how to best tune the network structure given that it is an
unsupervised AD task.

RCA for Missing Values As real-world data are imper-
fect, we compare the performance of RCA and other baseline
methods in terms of their robustness to missing values. Mean
imputation is a common approach to deal with missing val-
ues. In this experiment, we add missing values randomly in
the features of each benchmark dataset and apply mean im-
putation to replace the missing values. Such imputation will

likely introduce noise into the data. We vary the percentage
of missing values from 10% to 50% and compare the average
AUC scores of the competing methods. The number of wins,
draws, and losses of RCA compared to each baseline method
on the 18 benchmark datasets is given in Table 2. RCA was
found to consistently outperform both DAGMM and Deep-
SVDD by more than 80%, demonstrating its robustness com-
pared to other deep unsupervised AD methods when training
data is contaminated. Additionally, as the missing ratio in-
creases to more than 30%, it outperforms IF and OCSVM on
more than 70% on the datasets. The results suggest that our
framework is better than the baselines on the majority of the
datasets in almost all settings.

Ablation Study We have also performed an ablation study
to investigate the effectiveness of using sample selection and
ensemble evaluation. The results comparing RCA against
its variants, RCA-E, RCA-SS, and AE are given in Table 2.
Without missing value imputation, RCA outperformed all the
variants in at least 11 of the datasets. The advantage of RCA
over its variants, AE, RCA-SS, and RCA-E, reduces with in-
creasing amount of noise due to missing value imputation but
is still significant until the missing ratio is 50%.

Sensitivity Analysis RCA requires users to specify the
anomaly ratio of the data. Since the true anomaly ratio ǫ is
often unknown, we conducted experiments to evaluate the ro-
bustness of RCA when ǫ is overestimated or underestimated
by 5% and 10%. from their true values on all datasets. The
results in Table 3 suggest that the AUC scores for RCA do not
change significantly even when the anomaly ratio was over-
estimated or underestimated by 10% on most of the datasets.

RCA with VAE The results reported for RCA in Tables 1
- 3 use autoencoders as the underlying DNN. To investigate
whether our framework can benefit other DNN architectures,
we compared our Robust Collaborative Variational Autoen-
coder (RCVA) against traditional VAE. The results in Fig-
ure 3 showed that RCVA outperformed VAE on most of the
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Missing RCA-E RCA-SS VAE SO- AE DAGMM Deep- OCSVM IF
Ratio GAAL SVDD

0.0 11-2-5 16-0-2 12-0-6 16-0-2 15-0-3 17-0-1 18-0-0 11-1-6 10-0-8

0.1 12-1-5 14-1-3 16-1-1 16-0-2 14-0-4 17-0-1 18-0-0 13-1-4 12-0-6

0.2 11-1-6 13-3-2 14-2-2 17-0-1 13-0-5 18-0-0 18-0-0 15-0-3 9-0-9

0.3 9-3-6 13-1-4 15-0-3 17-1-0 13-0-5 18-0-0 18-0-0 16-0-2 14-1-3

0.4 10-0-8 12-2-4 14-0-4 15-0-3 12-0-6 17-0-1 18-0-0 16-0-2 15-0-3

0.5 8-3-7 10-1-7 11-1-6 14-0-4 9-0-9 15-0-3 17-0-1 14-1-3 13-0-5

Table 2: Comparison of RCA against baseline methods in terms of (#win-#draw-#loss) on 18 benchmark datasets with different proportion
of imputed missing values in the data. Results for RCA-E (no ensemble), RCA-SS (no sample selection), AE (no ensemble and no sample
selection) are for ablation study.

Perturbed anomaly ratio, ∆ǫ
Dataset −0.1 −0.05 0.05 0.1
vowels 0.908 0.908 0.918 0.920

pima 0.697 0.704 0.719 0.721

optdigits 0.861 0.861 0.973 0.980

sensor 0.913 0.913 0.876 0.876

letter 0.802 0.802 0.793 0.796

cardio 0.851 0.860 0.923 0.947

arrhythmia 0.806 0.806 0.807 0.807

breastw 0.970 0.973 0.981 0.983

musk 0.809 0.809 1.000 1.000

mnist 0.847 0.851 0.852 0.840

satimage-2 0.965 0.965 0.998 0.998

satellite 0.713 0.718 0.701 0.688

mammography 0.838 0.838 0.854 0.840

thyroid 0.949 0.949 0.959 0.957

annthyroid 0.669 0.683 0.693 0.689

ionosphere 0.862 0.855 0.844 0.841

pendigits 0.858 0.858 0.858 0.847

shuttle 0.958 0.956 0.949 0.994

Table 3: Average and standard deviation of AUC scores (for 10 ran-
dom initialization) as anomaly ratio parameter is varied from ǫ (i.e.,
true anomaly ratio of the data) to ǫ + ∆ǫ. If ǫ is less than 0.05 or
0.1, then ∆ǫ = −0.05 and ∆ǫ = −0.1 will be truncated to 0.

datasets, which suggests that our framework can improve the
performance of VAE for unsupervised AD.

RCA with Multiple Networks To extend RCA from 2 to
multiple DNNs, we modified the shuffling step to allow each
DNN to shuffle its selected data to any of the other DNNs. We
varied the number of DNNs from 2 to 7 and plotted the results
in Figure 4. The results suggest that adding more DNNs does
not help significantly. This is not surprising since the shuf-
fling step is designed to prevent the DNNs from converging
too quickly rather than as an ensemble framework to boost
performance. Increasing the number of DNNs also makes it
more expensive to train, which reduces its benefits.

5 Conclusion

This paper introduces RCA framework for unsupervised AD
to overcome limitations of existing DNN methods. Theoret-
ical analysis shows the effectiveness of RCA in eliminating
corruption in training data. Our results showed that RCA
outperforms various algorithms under different experimental
settings and is robust to missing value.

Figure 3: Comparison of RCVA against VAE in terms of AUC score.
Results suggest that the proposed framework can improve perfor-
mance of VAE for the majority of the data.

Figure 4: Effect of varying number of DNNs in RCA on AUC. RCA
corresponds to a twin network while K-RCA has K DNNs.
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