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Abstract: Reinforced cement concrete (RCC) is universally acknowledged as a low-cost, rigid, and
high-strength construction material. Major structures like buildings, bridges, dams, etc., are made of
RCC and subjected to repetitive loading during their service life for which structural performance
deteriorates with time. Bridges and high-rise structures, being above ground level, are hard to
equip with the contact mechanical methods to inspect strains and displacements for structural health
monitoring (SHM). A non-contact, optical and computer vision based full field measuring technique
called digital image correlation (DIC) technique was developed in the recent past to specifically
evaluate bridge decks. Generally, optical images of structure in field conditions are not acquired
precisely perpendicular to the object, which instinctively affects the deformation results obtained
during loading conditions. An unmanned aerial vehicle (UAV) equipped with DIC vision-based
technique acts as a rapid and cost-effective tool to quantify the serviceability of bridges by measuring
strains and displacements at inaccessible locations. In this study, a non-contact unmanned aerial
vehicle image correlation (UAVIC) technique is used on a scaled bridge girder and a contact method of
measuring deformations with a dial gauge. Both investigations are correlated for accuracy assessment,
and it is understood that results in laboratory conditions are 90% accurate. Similarly, the UAVIC
technique is also performed on a rail over the bridge in the field conditions to understand the
feasibility of the proposed method and evaluate damage quantification of it.

Keywords: digital image correlation (DIC); speckle pattern; structural health monitoring (SHM);
unmanned aerial vehicle image correlation (UAVIC)

1. Introduction

Reinforced cement concrete (RCC) structures are designed for a specific serviceability
life span. Many of the high-rise structures are made up of RCC. During its functionality,
RCC structure tends to deteriorate on repetitive loading and other environmental con-
ditions. Infrastructure development resembles a country’s overall growth, and as a part
of the transportation infrastructure, bridges act as a major connectivity link in highways
and railways. Bridges are expensive to construct and maintain, and it is also evident that
various factors influence their serviceability [1]. Ninety percent of bridges are built in
unavoidable conditions, either on water bodies or on rail tracks, and they are critical zones
in a transportation network. There is a need for periodic monitoring of RCC structures
for damage analysis and maintaining it for further commencement to service. As per the
guidelines issued by the Federal Highway Administration inspection standards, bridges
need to be inspected every 2–4 years based on the age of the structure [2]. Structures being
at ground level are easy to inspect for their service life with the available wide range of
non-destructive testing (NDT) techniques. Structures above ground level i.e., more than
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5 m are hard to inspect for serviceability, as the height of the structure poses safety risks
to inspectors and engineers [3]. Bridge performance evaluation to quantify service life
based on deterioration at critical regions are challenging and are typically carried out with
the assistance of snooper trucks and contact NDT methods. During situations of natural
calamities, it is hard to check the damage to infrastructure through traditional methods like
visual and in-contact NDT methods.

The first non-contact damage quantification for structure and property is performed
by using high-resolution satellite data sets. The usage of in-contact sensors for vibration
observations has given a great advantage to real-time monitoring of the structure connected
to data acquisition platforms. These in-contact sensors are highly sensitive to handle
and also vulnerable in external loading and harsh environmental conditions [4]. These
sensors are highly capable of identifying defects at their installed locations, but they
have demonstrated ineffectiveness in monitoring the entire structure at the same time [5].
Infrastructure failures are mostly associated with improper identification and maintenance
of the damage zone in a structure [6]. Visual inspection, assessment and documentation
of repairs are the most common methodology followed by inspectors and engineers [7].
Although it is a quite simple and common process, the machinery involved in inspection
makes it more expensive, and the occurrence of accidents and manual errors are high. In
addition, human vision inspection can perceive limited observations at a time compared to
computer vision techniques [3]. Photogrammetry concepts clubbed with computer vision
are developed by researchers to identify the critical zones by analyzing the digital image
for crack properties, spalling and damage in a structure.

With the advent of digital image correlation (DIC) in the recent past, many civil
engineering applications like structural health monitoring (SHM) are simplified [8]. The
DIC vision technique is a remote sensing and photogrammetric method that can perceive
the deformation of an object by analyzing the prior and post-loading digital image [9].
The availability of numerous and diversified image processing algorithms has facilitated
the researcher to choose according to the requirement of an application [10]. Algorithms,
such as pattern recognition, have made locating the cracks in a structure and monitoring
easy [11,12]. The DIC technique is a rapid, reliable, cost-effective and non-contact NDT
method. DIC methods have paved the way for new cost-effective procedures for SHM in
major areas, such as bridge monitoring and vibrations in wind turbines [13,14]. It has the
capability to visually document a vast area in a stipulated time without missing any fine
details of the structure.

DIC is versatile in processing 2D and 3D datasets for obtaining displacements and
deformation measurements in a structure [15]. The data acquisition platforms, such as
digital cameras and terrestrial laser scanners are fixed on tripods that remain immovable
facing perpendicular (90 ± 7) to the object in a particular location [10]. The data obtained
from different angles of the target object produces oblique images that abruptly end up
yielding inaccurate displacement results [16,17]. In spite of its impressive accuracy and
unique capabilities for investigating the structural strains under dynamic phenomena, DIC
is limited to only a few applications in SHM due to a fixed platform [18]. The immovable
platform and acquisition of near perpendicular images are not permitting the DIC to be
performed on inaccessible locations of a bridge [19]. In the process of obtaining near
perpendicular images, inspectors use snooper trucks or other elevated platforms that are
aligned to the structural members which also require extra effort, time and money. There
have been a few ongoing research on DIC deformation evaluation and comparison studies
on structures using UAV, but they are limited to laboratory conditions. The practical
applicability of drone DIC in structural health monitoring applications is still a critical topic
of research [20,21].

2. Literature Review

There are various remote sensing (RS) structural inspection techniques that can be
used in monitoring and damage assessment of a bridge based on the level of importance



Appl. Sci. 2022, 12, 6574 3 of 15

and accuracy. The majority of remote sensing inspections are done through imaging sensors;
different kinds of imaging sensors can perceive different kinds of information. Red Green
Blue (RGB) or visible spectrum imaging sensor is employed for damage quantification [22].
Similarly, multispectral imaging sensors for damage assessment [23], hyperspectral imaging
sensors for concrete properties [24], light detection and ranging (LiDAR) sensors or laser
scanning for determining the crack depth [25] and near infrared (NIR) or thermal imaging
sensors for identifying the moisture ingress and delamination of bridge deck [26]. These
techniques are classified depending upon the type of data acquisition platform at varying
altitudes and imaging sensors employed.

The level of accuracy relies on the operational altitude of sensors and the resolution of
imaging data. The data acquisition platforms as shown in Figure 1 are categorized based
on high accuracy and low accuracy. Inspectors and engineers chose the data acquisition
platform based on the type of monitoring, budget allocated and time span.
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Figure 1. Different remote sensing platforms based on the operational altitudes and data sets produced.

(i) High accuracy:

(a) Terrestrial Cameras: terrestrial cameras are mounted on a tripod and they have the
capability to continuously acquire the data for longer periods. Different sensors,
such as visible range (RGB), laser, thermal and multispectral can be mounted on the
same data acquisition platform. Terrestrial cameras and laser scanners to produce 3D
models through point clouds can be operated even in varied climatic conditions.

(b) Robot: Robotics can be operated directly on top of the bridge deck to produce high-
resolution data sets using sensors, such as RGB, laser, ground penetrating radar
(GPR) and multispectral. GPR has a unique capability in exploring the internal core
condition of the RCC bridge deck to inspect the further serviceability of the structure.

(c) Unmanned Aerial Vehicle (UAV): UAV/drone operational altitude is low and re-
stricted to height of 400 ft (120 m) as per the guidelines issued by the Director General
of Civil Aviation (DGCA), so it can be operated very near to the target object. UAV
can acquire high resolution digital, multispectral and thermal imaging datasets along
with laser point cloud data to inspect the bridge.

(ii) Low accuracy:

(a) Unmanned/Manned aircraft: Aircraft flying range is above 1 km to 10 km and flies at
supersonic speeds. The data acquired at specified speed and altitude generates coarse
resolution images of the structure that can actually be used for preparing a rough
estimate of a damaged structure during natural calamity. Only high-resolution visible
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range RGB and Multispectral imaging data acquired through aircraft is considered for
damage assessment of a bridge.

(b) Satellite: Satellites are operated at higher altitudes of 10–1000 km, and the revisit time
on a particular location is more than 5 days, which may not be available at desired
dates. Data sets obtained are of coarser resolution and may contain cloud cover that
makes the bridge monitoring a hard task [27].

All remote sensing acquisition systems are well designed to assess the condition above
the bridge deck. Although there are certain advantages and disadvantages to each data
acquisition system, UAV monitoring systems stand out as they can be operated even below
the bridge deck and also at inaccessible locations.

Objective

There is a need for a rapid, risk-free and cost-effective method to monitor and docu-
ment the damage of a bridge by ensuring minimal impacts on traffic flow. Development of
mobile DIC that can hover through inaccessible locations and obtain the near perpendicular
images for investigating the structural health. DIC mounted on a UAV can cost-effectively
solve the issue of obtaining near perpendicular image structure. The main objective of this
study is to evaluate DIC studies using UAV in laboratory conditions and real-time field
conditions on an active service bridge. The remote sensing setup would also facilitate the
inspectors to obtain high resolution spatial and temporal images remotely to inspect and
actively alarm the engineers.

3. Methodology

The methodology is divided into two phases, such as a feasibility study of UAVIC
inside the laboratory and field implementation on a bridge. Initially, the lab studies included
three RCC beam specimens, their deformation studies upon loading with a standalone
digital camera setup, and a UAV mounted camera setup. The obtained results are compared,
and deflection accuracy assessment studies are conducted. Second, the entire proposed
UAVIC configuration is tested on an existing serviceable bridge, and deformation studies
are performed.

3.1. UAVIC Studies in Laboratory Conditions

The above Figure 2 depicts the flow chart of the methodology followed to perform the study.
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An experimental setup along image acquisition platforms, such as digital camera
and UAV procedures is described here. RCC beams labelled and speckled are tested with
increasing displacement levels that correspond to a load setup. The methodology discusses
image processing methods and dial gauge setup for deformation and crack identification.

MATLAB-based open source Ncorr V1.2 software for DIC analysis is used in MATLAB
for measuring displacements and strains.

3.1.1. Specimen Preparation

Three concrete specimens of M25 grade strength is casted for conducting the study.
Three specimens are prepared by spraying white paint as a background for the application
of random speckles with black paint on the surface at the centre portion of the beam as
shown in Figure 3. To achieve accurate results, it is important to have a considerable
quantity of black speckles with random shapes and sizes [28].
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3.1.2. Loading Test

A three-point bending test conducted on specimens to measure displacements and
strains. Three-point bending means placing the concrete specimen across the support span
on either end of the material and bringing down a point load to the centre of the span
and bending the material until failure while recording applied force and displacements.
To relate the deformation to the corresponding load, it is necessary to record the readings
and their labelling. Each load increment of 5 kN, the deflection is noted on dial gauge and
images of digital camera and drone camera are also obtained at the same time.

3.1.3. Image Acquisition

A series of digital images are acquired during load implications at different load levels
to process in DIC [29]. Image acquisition during loading condition is done simultaneously
with DSLR camera and drone camera as shown in Figure 4. Dial gauge is also placed prior
to loading at the bottom centre of the beam to measure the deformation that occurred due
to load implication. Similarly, images for the rest of the beams are also acquired at specific
load levels. The camera images are acquired using a Nikon D5600 (Nikon, Tokyo, Japan)
bearing a CMOS sensor of 24.2 MP with a focal length of 18 mm and 1920 × 1080 resolution,
and it has 60 fps video recording capabilities. The drone image acquisition is achieved by
employing DJI Phantom4 Pro V2.0 (DJI, Shenzhen, China) that is equipped with CMOS
20MP sensor with a focal length of 8.8 mm and resolution of 5472 × 3648 pixels, and it has
60 fps video recording capabilities. The UAV is a quadcopter with a designed flight time of
30 min and a maximum weight of 1375 g. It is a relatively cheaper and commonly used
UAV in many engineering applications, due to its onboard sensor capabilities. Both the
cameras are set at 3 m away from the target beam for imaging.
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3.1.4. Image Correlation Using Ncorr via MATLAB

It is a crucial stage at which displacement and strain fields are studied and determined
from the image correlation algorithms. In this study MATLAB, version R2018a (MathWorks,
MA, USA) and Ncorr software version 1.2.2 (Georgia Institute of Technology, Atlanta, GA,
USA) is used. The work flow in Ncorr software is described below. The entire set of digital
camera images and drone camera images for each specimen need to be processed in the
software. Thirty digital camera images and 30 drone camera images of each specimen are
processed separately for deflection investigations. Altogether, 270 images are processed.

3.1.5. Setting Images

The reference image is the initial one taken before application of load as shown in
Figure 5a, then the current image (deformed image) is uploaded as shown in Figure 5b.
All the images should be in the same format as the reference image to minimize initial
processing. Region of interest drawn on the surface for which displacements and strains are
to be determined and minimizes computational time. The same image processing tools and
algorithms were used for processing the images obtained from UAV as shown in Figure 6
prior to loading and after loading.
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3.1.6. Setting of DIC Parameters

DIC parameters need to be set up on ROI for displacement measurements in the Ncoor
V1.2 image processing software. Subset radius is chosen to cover the portion of speckle
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pattern which should be small and at least covers more than 3 speckles that does not result
in noisy displacement data as shown in Figure 7. Subset spacing is chosen in such a way
that it should increase the computational speed. Multithreading is done for speeding up the
computation and accurate results. In this study, an optimal subset size of 80, subset spacing
of 15 and 4 number of threads are set as DIC parameters. Subset size ranges between 10 and
200. Subset spacing ranges between 0 and 20 are adopted.
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3.1.7. DIC Analysis

To perform image analysis a contiguous region is selected for processing and seeds
are placed in Ncoor V1.2 software. The seed placement process gives initial assessment for
DIC analysis from which neighboring pixels are computed for correlation analysis in the
series of digital images. DIC analysis for the strain computations are also performed based
on the displacements occurring on the beam. The selection of strain radius is similar to that
of subset radius, which is desired to be the smallest that does not result in noisy strain data.
In this study, a strain radius of 10 is selected as shown in Figure 8. The strain anomaly is
given on the beam facade based on the load distribution.

3.1.8. Crack Identification and Feature Extraction

Reinforced cement concrete upon loading exhibits minimum elastic properties and
tends to bend a certain limit. Beyond the elastic limit, RCC exhibits cracks upon further
excessive loading of the beam. Micro cracks may be caused during shrinkage, creep and
heat of hydration. The cause of cracks in concrete structures are of three basic types,
flexural, shear and flexural-shear [30]. These cracks produced during and after construction
may cause failure to the structure. Cracks will have a much longer major axis (length)
compared to the minor axis (width), resulting in a ratio greater than 1, while a ratio closer
to 1 represents surface defects. Properties of selected cracks are investigated by a set of
image processing tools available in MATLAB with a designated alphabet for each crack.
The methodology of crack identification and parameter estimation is given in Figure 9. The
acquired 2D images are converted to grey scale images and edge detection technique is
performed for crack identification. The identified cracks on the beam are quantified for
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crack width and length by performing segmentation and morphological operations on the
grey scale images. The result for crack width and length of laboratory tested beam is given
in Section 4.4; similarly, bridge crack investigations are given in Section 4.6.
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3.2. UAVIC Evaluation Studies on Bridge

Bridges are the most important RCC structures in the transportation system for con-
necting inaccessible locations. Due to its elevation, monitoring the bridges also became a
herculean task in terms of safety and traffic mobility. The proposed and tested UAVIC is
deployed to inspect the fully functional RCC Bridge available in the vicinity of the institu-
tion. The UAVIC study workflow on the bridge is given in Figure 10. The selected structure
is rail over bridge (ROB) aged 21 years, with a length of 540 m and height 7 m and heavy
weight freight on it. An automated process based on digital imaging and processing was
used to determine structural damages of spalled concrete, crack initiation and propagation,
crack width measurement and monitoring. Digital images of ROB are acquired by flying
UAV on the center span and away from railway power lines. The span of the bridge deck is
11 m in length from center to center of support and 7 m in height. Images are obtained in
the broad daylight under sunny conditions for detailed information of the bridge. There
are two sets of reflective reference points attached on the supports of the bridge deck.
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3.2.1. Bridge Image Acquisition

A triangular scale at the center of the bridge deck is attached for reference length
to perform DIC studies on the bridge. The irregularity and other dust particles on the
surface of the bridge beam acted as a speckle pattern for conducting DIC studies. UAV
images facing the center of the bridge deck prior to vehicle passage as shown in Figure 11a
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and after vehicle passage are acquired as shown in Figure 11b. Similarly, different kinds
of vehicles with varying loading condition images are acquired during the passage at a
specified point.
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3.2.2. UAVIC Studies

The pre-processing is done for every UAV acquired bridge image by referencing with
fixed points and ortho-rectifying them. These images are stacked on one another exactly
at referencing points and post–processed for DIC studies. The images are processed for
deflection and deformation investigations of the bridge deck. The vehicle during the
passage generates an impact load on the deck slab. Images of prior and during the vehicle
loading are given to Ncorr V1.2 software, and the above-mentioned processing is done
for all the images with different loading conditions. The strains and displacements are
recorded from the investigations, and results are presented.

3.2.3. Damage Quantification

Damage analysis of the beam done by investigating the present structural condition
of the bridge components. The entire stretch of the bridge is investigated for occurrence
of cracks by flying the UAV. Crucial aspects, such as column and beam joints, beneath the
deck slab, sides of the slab supporting beams and growth of organic matter are inspected.
The damage structural images are analyzed for crack width and length investigations, and
damage is ascertained by the results obtained. Few damaged portions of the bridge are
shown in Figure 12 in alphabetical order and described: (a) crack in the joint and damage
of beam, (b) crack in the deck of the bridge, (c) damage and crack in the pier, (d) spalling of
beam and (e) crack in the beam and slab joint.
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Excessive loading and poor maintenance of bridge structures causes cracking, which
affects the structure’s performance [31]. According to Sheerin [32], longitudinal and ver-
tical cracks, which are commonly found in bridges, are classified as moderate or severe. The
majority of the cracks detected in the study also fall into this category. In RCC constructions,
fracture widths greater than 0.3mm cause rebar corrosion, expand the crack and cause
structural damage. The maximum crack width allowed under service loads, as defined by
several standard codes, is 0.3mm; any crack width greater than that should be treated [33].
The damage index is calculated based on the loading situation, crack width, and crack
length [34,35]. The deterioration of bridge in terms of spalling and chemical attack is also
considered for damage analysis [36,37].

4. Results and Discussions
4.1. Displacements Investigations

Results from RCC beam specimens tested for two-point bending have been evaluated.
The image analysis performed on the DSLR images and UAV images of a single beam
in the Ncorr V1.2 software is yielded with the below outputs. The maximum load has
been recorded as 112 kN at which the failure has occurred. After the failure load, the
displacement increases rapidly and the load decreases. Figure 13a depicts displacement at
failure load in the longitudinal direction (U-Displacement) is 5.3640 mm, which indicates
compression in the deformed image. The median value was found to be −0.0599 mm.
The following Figure 13b depicts displacement at failure load in the lateral direction
(V-Displacement) is −3.563 mm which is negative indicates tension. The median value has
found to be −6.4953 mm. The results of the given beam are of a single deformed image,
and each image yields different displacements according to the varying load values.
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Figure 13. DSLR image Displacements in the (a) longitudinal direction and (b) lateral direction.

The following Figure 14a depicts displacement at failure load in the longitudinal direc-
tion (U-Displacement) is 5.8320, which indicates compression in the deformed image. The
median value was found to be −0.0630 mm. The following Figure 14b depicts displacement
at failure load in the lateral direction (V-Displacement) is −4.113 mm which is negative
indicates tension. The median value has found to be −6.992 mm.
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4.2. Strain Investigations

The DIC analysis also helps in determining the strains occurred with the beam. There
are more strains in the longitudinal directions compared to the lateral directions. Figure 15a
depicts strain in X-direction is 0.0126 mm. The median value has found to be 0.0025 mm.
Figure 15b depicts strain in Y-direction is 0.1321 mm. The median value was found to be
0.0020 mm.
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4.3. Load-Displacement Plots

Displacements obtained from DIC analysis are compared with the experimentally
recorded dial gauge values at varying load values. Displacement values of DSLR images
are obtained separately from UAV images and plotted. Small variation in the investigations
is observed in dial gauge to DSLR displacements, with an accuracy of 95%, whereas the
variations are higher in investigations observed form dial gauge to UAV displacements,
with an accuracy of 88%. A sudden spike is observed in UAVIC results at some intervals
due to occurrence of vibrations and magnetic attractions in the drone. Figure 16a displays a
load-displacement graph of beam-A with failure load as 88 kN and maximum displacement
as 4.82 mm.
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Similarly, beam-2 graph as shown in Figure 16b indicated failure load as 109 kN and
maximum displacement as 5.35 mm, and beam-3 as shown in Figure 16c signifies failure
load as 116 kN and maximum displacement as 6.45 mm, respectively. A good result has
been observed between the two studies, with a deviation of 12% of experimental values.

4.4. Crack Detection and Parametric Analysis on the Beam

The cracks formed during the failure load is investigated for its parameters, such
as crack length and width. Each crack in the beam is analyzed and designated with a
nomenclature. The major crack on the beam is investigated with image analysis, and results
are presented in Table 1.

Table 1. Length and width of crack in beam.

Beam Length in mm Width in mm

A 153 0.937
B 214 1.282
C 178 1.147

4.5. UAVIC Investigation on Bridge

The proposed method is validated in the laboratory conditions and investigated in
the field conditions under controlled climate. Image analysis of different vehicle-loading
conditions is performed in the DIC Ncorr software. The investigated displacement records
are presented in Table 2.

Table 2. Vehicle load type and displacement values from UAVIC.

Vehicle Passage 1 2 3 4 5 6 7

Deformation (mm) 2.82 1.47 3.22 3.18 1.30 2.63 0.89

Figure 17a depicts displacement at failure load in the longitudinal direction
(U-Displacement) is 2.82 mm, which indicates compression in the deformed image. The
median value was found to be −0.0519 mm. Figure 17b depicts that displacement at failure
load in the lateral direction (V-Displacement) is −4.1928 mm, which indicates tension. The
median value was found to be −3.2359 mm.
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4.6. Crack Detection and Parametric Analysis on the ROB

The image analysis similar to beam crack properties investigations is carried out on the
bridge element images acquired by UAV. A few damaged portions were put on to the show
in the UAVIC studies in the previous section of damage quantification. The designated
alphabetical order of damaged portions is investigated for crack properties and given in
Table 3.
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Table 3. UAVIC captured bridge elements crack properties.

Bridge Component Crack Width in mm Crack Length in mm

(A) Crack in the joint and damage of beam 1.82 583
(B) Crack in the deck of the bridge 2.42 467
(C) Damage and crack in the pier 0.96 328

(E) Crack in the beam and slab joint 3.28 524

5. Conclusions

From this study, it is understood that RCC beams undergo ductile failure with lateral
displacements as the steel material has high elasticity of modulus that increases rigidity
and moment of inertia so that it can withstand heavy loads and undergo larger deflections
before failure. The maximum surface crack width evaluated from DIC analysis is found
to be 0.147 mm for RCC beam. The load displacement curve declares that dial gauge
and digital camera DIC and UAVIC investigations results are similar, with a variation
of 12%. UAVIC investigation shows small spikes in the displacement recordings, it is
due to magnetic sensitivity of sensors and vibrations in the UAV. While conducting the
study, authors observed a small drift in the UAV due the availability of heavy machinery
like Universal Testing Machine (UTM) attractions in the laboratory conditions. In field
conditions, while monitoring the bridge, the wind pressure caused the drift in the drone,
gimbal played a major role in locking the view of target point. The UAVIC has proved to be
a preliminary assessment tool at inaccessible locations in RCC structural monitoring. Based
on the deterioration studies it is understood that the crack width in the bridge exceeded the
permissible limits, and it should be treated with fibers [38,39]. Usage of self-healing concrete
in the wide opened cracks also prevents future deterioration [36]. In terms of concrete
spalling, the severity level is categorized as 1, and near maintenance is required [40].
The investigated bridge needs immediate and periodic maintenance for enhancing the
serviceability of the structure. For obtaining the better results, bridge monitoring studies
can only be conducted on highly sunny days with low windy conditions in the field. Rather
than a quadcopter, an octocopter would yield better results for its better stability and
improved hovering time at in-situ conditions. The dust on the bridge beam acted as a
speckle pattern; in exceptional condition speckles should be drawn on the beam to conduct
the study. As a future scope of study, to stabilize the UAVIC images a laser referencing
system by placing the lasers at four corners of the target would yield high-precision results.
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