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Abstract

Background: Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of
transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics
analyses, in particular alignment and assembly. Error correction methods have been highly effective for
whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene
expression levels and alternative splicing.

Findings: We developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina
RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike
WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local
threshold at every position in a read.

Conclusions: Rcorrector has an accuracy higher than or comparable to existing methods, including the only other
method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint
for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the
GNU General Public License from https://github.com/mourisl/Rcorrector/.
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Introduction
Next-generation sequencing of cellular RNA (RNA-seq)
has become the foundation of virtually every transcrip-
tomic analysis. The large number of reads generated from
a single sample allow researchers to study the genes being
expressed and estimate their expression levels, and to dis-
cover alternative splicing and other sequence variations.
However, biases and errors introduced at various stages
during the experiment, in particular sequencing errors,
can have a significant impact on bioinformatics analyses.
Systematic error correction of whole-genome sequenc-

ing (WGS) reads was proven to increase the quality
of alignment and assembly [1–3], two critical steps in
analyzing next-generation sequencing data. There are
currently several error correction methods for WGS
reads, classified into three categories [4]. K-spectrum
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based methods, which are the most popular of the
three, classify a k-mer as trusted or untrusted depending
on whether the number of occurrences in the input
reads exceeds a given threshold. Then, for each read,
low-frequency (untrusted) k-mers are converted into
high-frequency (trusted) ones. Candidate k-mers are
stored in a data structure such as a Hamming graph,
which connects k-mers within a fixed distance, or a
Bloom filter. Methods in this category include Quake [5],
Hammer [6], Musket [7], Bless [1], BFC [2], and Lighter
[3]. Suffix tree and suffix array based methods build a data
structure from the input reads, and replace a substring
in a read if its number of occurrences falls below that
expected given a probabilistic model. These methods,
which include Shrec [8], Hybrid-Shrec [9] and HiTEC
[10], can handle multiple k-mer sizes. Lastly, multiple
sequence alignment (MSA) based methods such as Coral
[11] and SEECER [12] cluster reads that share k-mers to
create a local vicinity and a multiple alignment, and use
the consensus sequence as a guide to correct the reads.

© 2015 Song and Florea. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13742-015-0089-y-x&domain=pdf
https://github.com/mourisl/Rcorrector/
mailto: florea@jhu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Song and Florea GigaScience  (2015) 4:48 Page 2 of 8

RNA-seq sequence data differ from WGS data in sev-
eral critical ways. First, while read coverage inWGS data is
largely uniform across the genome, genes and transcripts
in an RNA-seq experiment have different expression lev-
els. Consequently, even low-frequency k-mers may be
correct, belonging to a homolog or a splice isoform.
Second, alternative splicing events can create multiple
correct k-mers at the event boundaries, a phenomenon
that occurs only at repeat regions for WGS reads. In both
of these cases, the reads would be erroneously converted
by a WGS correction method. Hence, error correctors
for WGS reads are generally not well suited for RNA-seq
sequences [13].
There is so far only one other tool designed specifically

for RNA-seq error correction, called SEECER [12], based
on the MSA approach. Given a read, SEECER attempts to
determine its context (overlapping reads from the same
transcript), characterized by a hidden Markov model, and
to use this to identify and correct errors. One signifi-
cant drawback, however, is the large amount of memory
needed to index the reads. Herein we propose a novel
k-spectrum based method, Rcorrector (RNA-seq error
CORRECTOR), for RNA-seq data. Rcorrector uses a flex-
ible k-mer count threshold, computing a different thresh-
old for a k-mer within each read, to account for different
transcript and gene expression levels. It also allows for
multiple k-mer choices at any position in the read. Rcor-
rector only stores k-mers that appear more than once in
the read set, which makes it scalable with large datasets.
Accurate and efficient, Rcorrector is uniquely suited to
datasets from species with large and complex genomes
and transcriptomes, such as human, without requiring
significant hardware resources. Rcorrector can also be
applied to other types of data with non-uniform cover-
age such as single-cell sequencing, as we will show later.
In the following sections we present the algorithm, first,
followed by an evaluation of this and other methods on
both simulated and real data. In particular, we illustrate
and compare the impact of several error correctors for two
popular bioinformatics applications, namely, alignment
and assembly of reads.

Algorithm
De Bruijn graph
In a first preprocessing stage, Rcorrector builds a De
Bruijn graph of all k-mers that appear more than once
in the input reads, together with their counts. To do so,
Rcorrector uses Jellyfish2 [14] to build a Bloom counter
that detects k-mers occurring multiple times, and then
stores these in a hash table. Intuitively, the graph encodes
all transcripts (full or partial) that can be assembled from
the input reads. At run time, for each read the algorithm
finds the closest path in the graph, corresponding to its
transcript of origin, which it then uses to correct the read.

Read error correction: the path search algorithm
As with any k-spectrummethod, Rcorrector distinguishes
among solid and non-solid k-mers as the basis for its
correction algorithm. A solid k-mer is one that passes a
given count threshold and therefore can be trusted to be
correct. Rcorrector uses a flexible threshold for solid k-
mers, which is calculated for each k-mer within each read
sequence. At run time, Rcorrector scans the read sequence
and, at each position, decides whether the next k-mer and
each of its alternatives are solid and therefore represent
valid continuations of the path. The path with the smallest
number of differences from the read sequence, represent-
ing the likely transcript of origin, is then used to correct
k-mers in the original read.
More formally, let u be a k-mer in read r and S(u, c)

denote the successor k-mer for u when appending
nucleotide c, with c ∈ {A,C,G, T}. For example, in Fig. 1,
S(AAGT,C) = AGTC, k = 4. LetM(u) denote the multi-
plicity of k-mer u. To find a start node in the graph from
which to search for a valid path, Rcorrector scans the read
to identify a stretch of two or more consecutive solid k-
mers, and marks these bases as solid. Starting from the
longest stretch of solid bases, it proceeds in both direc-
tions, one base at a time as described below. By symmetry,
we only illustrate the search in the 5′ → 3′ direction.
Suppose u = riri+1 . . . ri+k−1 is the k-mer starting

at position i in read r. Rcorrector considers all possible
successors S(u, c), c ∈{A,C,G,T}, and their multiplicities
M(S(u, c)) and determines which ones are solid based on
a locally defined threshold (see below). Rcorrector tests
all the possible nucleotides for position i + k and retains
those that lead to solid k-mers, and then follows the paths
in the De Bruijn graph from these k-mers. Multiple k-mer
choices are considered in order to allow for splice variants.
If the nucleotide in the current path is different from ri+k ,
then it is marked as a correction. When the number of
corrections in the path exceeds an a priori defined thresh-
old, Rcorrector terminates the current search path and
starts a new one. In the end, Rcorrector selects the path
with the minimum number of changes and uses the path’s
sequence to correct the read. To improve speed, Rcor-
rector does not attempt to correct solid positions, and
gradually decreases the allowable number of corrections if
the number of searched paths becomes large.

A flexible local threshold for solid k-mers
Let u be the k-mer starting at position i in the read, as
before. Unlike with WGS reads, even if the multiplicity
M(S(u, ri+k)) of its successor k-mer is very low, the base
ri+k may still be correct, for instance sampled from a low-
expression transcript. Therefore, an RNA-seq read error
corrector cannot simply use a global k-mer count thresh-
old. Rcorrector uses a locally defined threshold as follows.
Let t = maxc M(S(u, c)), calculated over all possible
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Fig. 1 Path extension in Rcorrector. Four possible path continuations at the AGTC k-mer (k = 4) in the De Bruijn graph for the r = AAGTCATAA read
sequence. Numbers in the vertices represent k-mer counts. The first (top) path corresponds to the original read’s representation in the De Bruijn
graph. The extension is pruned after the first step, AGTC→GTCA, as the countM(GTCA) = 4 falls below the local cutoff (determined based on the
maximum k-mer count (494) of the four possible successors of AGTC). The second path (yellow) has higher k-mer counts but it introduces four
corrections, changing the read into AAGTCCGTC. The third path (blue) introduces only two corrections, to change the sequence into AAGTCGTTA,
and is therefore chosen to correct the read. The fourth (bottom) path is pruned as the k-mer count for GTCT does not pass the threshold. Paths 2 and
3 are likely to indicate paralogs and/or splice variants of this gene

successors of k-mer u encoded in the De Bruijn graph.
Rcorrector defines the local threshold at run time, f (t, r),
as the smaller of two values, a k-mer-level threshold and a
read-level one: f (t, r) = min(g(t), h(r)).
The k-mer-level threshold is defined as g(t) = αt +

6
√

αt, where α is a global variation coefficient. Specifi-
cally, α is determined for each dataset from a sample of
1 million high-count k-mers (multiplicities over 1,000),
as follows. Given the four (or fewer) possible continu-
ations of a k-mer, Rcorrector calculates a value equal
to the ratio between the second highest and the high-
est multiplicities. Then, α is chosen as the smallest
such value larger than 95% of those in the sample.
This criterion ensures that only k-mers that can be
unambiguously distinguished from their alternates will
be chosen; lowering this parameter value will reduce the
stringency. Note that the k-mer-level threshold is the
same for a k-mer in all read contexts, but differs by
k-mer.
To calculate the read-level threshold, Rcorrector orders

all k-mers in the read by decreasing multiplicities. Let x
be the multiplicity before the first sharp drop (> 2-fold) in
this curve. Rcorrector then uses h(r) = g(x) as the read-
level threshold. Refinements to this step to accommodate
additional lower-count paths are described below.

Refinements
Clustered corrections
Once a set of corrections has been determined for a
read, Rcorrector scans the read and selectively refines

those at nearby positions. The rationale for this step is
that the likelihood of two or more clustered errors is
very low under the assumed model of random sequenc-
ing errors, and the read may instead originate from a
paralog. More specifically, let ui and uj be the k-mers end-
ing at two positions i and j, with j − i < k, and M(ui)
and M(uj) their multiplicities. To infer the source for the
k-mer, Rcorrector uses the local read context and tests
for the difference in the multiplicities of k-mers before
correction. If the difference is significant, then it is a
strong indication for a cluster of sequencing errors. Oth-
erwise (i.e., if 0.5 < M(ui)/M(uj) < 2), then the k-mers
are likely to have originated from the same path in the
graph, corresponding to a low-expression paralog, and the
read is deemed to be correct. Rcorrector will revert cor-
rections at positions i and j and then iteratively revisit
all corrections within distance k from those previously
reverted.

Unfixable reads
Rcorrector builds multiple possible paths for a read and
in the end chooses the path with the minimum number
of base changes. If the number of changes over the entire
read or within any window of size k exceeds an a pri-
ori determined threshold, the read is deemed ‘unfixable’.
There are two likely explanations for unfixable reads: i)
the read is correct, and originates from a low-expression
transcript for which there is a higher-expression homolog
present in the sample; and ii) the read contains too many
errors to be rescued.
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In the first case, Rcorrector never entered the true path
in the graph during the extension, and hence the read was
incorrectly converted to the high-expression homolog. To
alleviate this problem, Rcorrector uses an iterative proce-
dure to lower the read-level threshold h(r) and allow lower
count k-mers in the path.
Specifically, Rcorrector looks for the next sharp drop in

the k-mer multiplicity plot to define a new and reduced
h(r), until there is no such drop or the number of correc-
tions is within the set limits.

PolyA tail reads
The presence of polyA tail sequences in the sample will
lead to k-mers with mostly A or T bases. Because their
multiplicities are derived from a mixture distribution
from a large number of transcripts, these k-mers are
ignored during the correction process. Rcorrector will
consequently not attempt to correct such k-mers.

Paired-end reads
With paired-end reads, Rcorrector leverages the k-mer
count information across the two reads to improve the
correction accuracy. In particular, it chooses the smaller
of the two read-level thresholds as the common threshold
for the two reads. In doing so, it models the scenario where
the fragment comes from a low-expression isoform of the
gene, with one of the reads specific to this isoform and the
other shared amongmultiple, higher-expression isoforms.
In this case, the lower of the two read-level thresholds
better represents the originating transcript.

Findings
We evaluate Rcorrector for its ability to correct Illumina
sequencing reads, both simulated and real. We include
in the evaluation four other error correctors: SEECER
(v0.1.3), which is the only other tool specifically designed
for RNA-seq reads, as well as at least one representa-
tive method for each of the three classes of WGS error
correction methods. These include Musket (v1.1) and
BFC (r181) for k-spectrum, Hybrid-Shrec (Hshrec) for
suffix tree and suffix array, and Coral (v1.4) for MSA-
based methods. Since many tools are sensitive to the
k-mer size k, we test different k-mer sizes for each tool
where applicable and report the result that produces the
best performance. We assess the impact of all programs
on two representative bioinformatics applications, read
alignment and read assembly. Lastly, we show that Rcor-
rector can be successfully applied to other types of data
exhibiting non-uniform read coverage, such as single-cell
sequencing reads.

Evaluation on simulated data
In a first test, we evaluated all programs on a simu-
lated dataset containing 100 million 100 bp long paired-
end reads. Reads were generated with FluxSimulator

[15] starting from the human GENCODE v.17 gene
annotations. Errors were subsequently introduced with
Mason [16]; error rates were extracted from align-
ments of same-length Illumina Human Body Map reads
(Additional file 1, Section S1). As in [4], we evaluate the
accuracy of error corrections by inspecting how each base
was corrected. Let true positives (TP) be the number of
error bases that are converted into the correct nucleotide;
false positives (FP) the number of error-free bases that are
falsely corrected; and false negatives (FN) the number of
error bases that are not converted or where the converted
base is still an error. We use the standard measures of
Recall = TP/(TP + FN), Precision = TP/(TP + FP), and
F_score = 2 ∗ Recall ∗ Precision/(Recall + Precision) to
evaluate all methods. For each tool we test different k-mer
sizes and report the result with the best F_score.
Accuracy values and performance measurements for

the six error correctors are shown in Table 1. All pro-
grams were run on a 256GB RAM machine with a
48-core 2.1GHz AMD Opteron(TM) processor, with 8
threads. Here and throughout the manuscript, all mea-
sures are expressed in percentages. The overall sensitivity
is below 90% for all methods due to the large number
of polyA reads generated by FluxSimulator, which are left
unchanged. Rcorrector has the best overall performance
by all measures, with 88% sensitivity and greater than
99% precision, followed closely by SEECER. Rcorrector
is also virtually tied with BFC for the fastest method,
and is among the most memory efficient. In particular, at
5GB RAM for analyzing 100 million reads, it required 12
times less memory than SEECER and can easily fit in the
memory of most desktop computers (Table 1).
The difficulty of error correction is expected to vary

with the expression level of transcripts. Correcting reads
from low-expression transcripts is particularly challeng-
ing because the error-containing k-mers cannot be easily
distinguished on the basis of frequency. To assess the
performance of the various tools with transcript expres-
sion levels, we divide the simulated transcripts into low-,
medium-, and high-expression groups based on their

Table 1 Accuracy of the six error correction methods on the 100
million simulated reads

Program k Recall Precision F-score Run time Memory
(min) (GB)

SEECER 31 87.13 96.93 91.77 177 61

HShrec - 69.53 31.74 43.58 13641 30

Coral 31 58.35 85.14 69.25 1391 81

Musket 27 78.24 96.90 86.58 152 4

BFC 27 80.45 97.91 88.32 111 6

Rcorrector 27 88.94 99.84 94.07 118 5

Best performers in each category are highlighted in italic. All programs were run
multithreaded, with eight threads
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relative abundance A assigned by FluxSimulator (low,
A < 5e−7; medium, 5e−7 < A < 0.0001; and high,
A > 0.0001). The results of each tool on the three sub-
classes are shown in Table 2. Most tools perform well on
the high-expression dataset, with the exception of Coral
(low sensitivity) and Hshrec (low precision). However,
the performance for all methods, especially sensitivity,
drops for reads from low-expression transcripts. Rcorrec-
tor has the best or comparable sensitivity and precision
for each of the three classes of transcripts. Both Rcorrec-
tor and SEECER are significantly more precise (>86% in
all categories) and more sensitive than methods designed
for DNA reads, especially for reads from low-expression
transcripts.

Real datasets
For a more realistic assessment, we applied the tools to
three real datasets that vary in their sequencing depth,
read length, amount of sequence variation, and applica-
tion area (Table 3 and Additional file 1: Section S2). These
include a plant RNA-seq dataset (peach embryos and
cotyledons; SRA accession SRR531865), a lung cancer cell
line (SRA accession SRR1062943), and a lymphoblastoid
cell line sequenced as part of the GEUVADIS population
variation project (SRA accession ERR188021). We use

Table 2 Accuracy of six error correction methods on 100 million
simulated reads, by expression level of transcripts. k-mer sizes
used are those in Table 1

Program Recall Precision F-score

Low expression

SEECER 32.78 90.54 48.14

HShrec 24.77 0.81 1.56

Coral 31.88 64.60 42.69

Musket 13.88 33.94 19.71

BFC 25.18 58.37 35.19

Rcorrector 39.40 86.62 54.16

Medium expression

SEECER 86.58 97.05 91.51

HShrec 70.57 19.57 30.64

Coral 89.07 85.12 87.05

Musket 72.02 92.16 80.86

BFC 89.12 96.88 92.84

Rcorrector 87.73 99.66 93.31

High expression

SEECER 87.39 96.90 91.90

HShrec 69.22 41.67 52.02

Coral 47.59 85.17 61.06

Musket 80.50 98.53 88.61

BFC 77.47 98.35 86.67

Rcorrector 89.42 99.91 94.37

Best performers are highlighted in italic

Table 3 Summary of datasets included in the evaluation

Name Reads Read length Aligned Perfectly
(bp) aligned

Simulated 99,338,716 100 81,994,413 21,070,024

Peach 38,883,238 75 24,775,386 5,617,514

Lung 113,313,254 50 110,771,941 85,160,322

Geuvadis 65,015,656 75 59,130,806 26,468,128

Best performers are highlighted in italic

these three sets to evaluate the performance of programs
on real data, as well as to illustrate the effects of error
correction on the alignment and assembly of RNA-seq
reads. Summary statistics for all datasets are shown in
Table 3.

Table 4 Tophat2 alignments of simulated and real reads

Simulated reads

k Aligned Observed Base Specificity
rate match rate

Original - 81,994,413 82.540 99.391 -

SEECER 31 85,374,347 85.943 99.988 99.619

Hshrec - 77,488,558 78.004 99.888 97.886

Coral 31 84,662,510 85.226 99.745 99.494

Musket 27 84,892,466 85.458 99.906 99.739

BFC 27 84,844,168 85.409 99.918 99.889

Rcorrector 27 85,033,277 85.599 99.986 99.970

Peach

Original - 24,775,386 63.717 99.198 -

SEECER 27 29,056,747 74.728 99.879 99.199

Hshrec - 24,496,308 63.000 99.265 96.027

Coral 23 28,974,141 74.516 99.316 99.027

Musket 27 28,345,203 72.898 99.256 99.677

BFC 31 26,553,943 68.291 99.278 99.777

Rcorrector 23 30,563,388 78.603 99.833 99.628
Lung

Original - 110,771,941 97.757 99.717 -

SEECER 23 111,261,651 98.189 99.855 98.239

Hshrec - 102,121,932 90.124 99.781 89.786

Coral 23 111,107,133 98.053 99.809 98.330

Musket 27 110,907,828 97.877 99.781 98.698

BFC 23 111,427,773 98.336 99.824 99.359

Rcorrector 23 111,198,587 98.134 99.830 99.599
Geuvadis

Original - 59,130,806 90.949 99.477 -

SEECER 23 61,514,024 94.614 99.837 98.530

Hshrec 23 51,669,686 79.473 99.709 87.924

Coral 23 61,399,007 94.437 99.717 98.049

Musket 23 60,450,316 92.978 99.652 97.900

BFC 23 61,870,897 95.163 99.775 98.790

Rcorrector 23 61,641,866 94.811 99.814 99.227

Best performers are highlighted in italic
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Unlike for simulated data, the ground truth for each
base is unknown, making it impossible to judge per-
formance directly and in an unbiased way. Instead, we
use alignment rates to estimate the accuracy of error
correction. We tested different k-mer sizes for each
tool, and chose the one maximizing the total number
of matching bases. Statistics for alignments generated
with Tophat2 (v2.0.13) [17] are summarized in Table 4.
Lacking a true measure of sensitivity, the number and
percentage of aligned reads as well as the per base
match rate, as introduced in [3], are used to estimate
sensitivity at read and base-level, respectively. The per
base match rate is computed as the ratio of the total
number of all the matching bases to the total num-
ber of aligned reads. Likewise, we introduce an alter-
nate measure of specificity, defined as TN/(TN + FP),
based on a high-confidence subset of the original reads
(Table 4). We extracted those reads that have perfect
alignments on the genome, i.e., that had exact sequence
matches and the alignment of reads in a pair was con-
cordant. These reads are expected to be predominantly
error-free, therefore the proportion of reads that are not
corrected represents a measure of specificity. As a caveat,
these measures will falsely include those reads that are
incorrectly converted to a paralog and aligned at the
wrong location in the genome.
Error correction improves alignment rates by 1–11%,

depending on the dataset (Table 4). Note that alignment
rates themselves differ with the amount of sequence vari-
ation and quality of the data. Rcorrector, SEECER, and
BFC take turns in being the most sensitive across the
four datasets. However, only Rcorrector and SEECER are
consistently ranked among the top results in each cate-
gory. Rcorrector has the highest or comparable specificity,
greater than 99.2%, in all cases.
We further assess the impact of error correction on

improving de novo assembly of RNA-seq reads. We used
the transcript assembler Oases [18] to assemble the
reads a priori corrected with each of the methods. To
evaluate the quality of the assembled transcripts, we
aligned them to the reference genome with the spliced

alignment program ESTmapper/sim4db [19], retaining
only the best match for each transcript. We use conven-
tional methods and measures to evaluate the performance
in reconstructing full-length transcripts [20]. Specifically,
we define a match between a reference annotation tran-
script and the spliced alignment of an assembled tran-
script if and only if they have identical intron chains,
whereas their endpoints may differ. We used the GEN-
CODE v.17 annotations and the peach gene annotations
(v1.1) obtained from the Genome Database for Rosaceae
as the gold reference for the real datasets, respectively,
and the subset of GENCODE transcripts sampled by
FluxSimulator for the simulated data. The results, shown
in Table 5, again indicate that SEECER, Rcorrector, and
BFC have the most impact on improving the accuracy
and quality of the assembled transcripts, and show com-
parable performance. Results were similar, showing Rcor-
rector and SEECER predominantly producing the top
results, when using an alternative assembler, Trinity [21]
(Additional file 1: Section S3). Of note, these measures
only capture full transcripts, whereas many of the tran-
scripts in the sample will not have enough reads to be
assembled fully.
Figure 2 illustrates the spliced alignments of a 13 exon

transcript at the MTMR11 (myotubularin related pro-
tein) gene locus (chr1:149,900,543-149,908,791)
assembled with Oases from the simulated reads before
and after correction. All methods missed the first
intron, which was supported by six error-containing
reads, but produced partial reconstructions of the tran-
script, consisting of multiple contigs (Additional file 1:
Section S4). While all error correctors improved upon
the original reads, Rcorrector produced the most com-
plete and compact assembly, with only three contigs,
including one containing the full reconstruction of exons
1–12.

Single-cell sequencing
While Rcorrector was designed to correct RNA-seq reads,
the method is also applicable to a wider range of problems
where read coverage is non-uniform.

Table 5 Oases assembly of simulated and real reads

Program Simulated Peach Lung Geuvadis

Recall Precision Recall Precision Recall Precision Recall Precision

Original 30.575 48.862 28.879 16.410 4.957 10.475 5.997 16.749

SEECER 36.698 52.181 29.752 16.116 4.944 10.174 6.162 16.639

Hshrec 23.334 47.417 26.132 13.850 3.608 11.459 4.266 19.101

Coral 35.039 51.942 29.784 15.881 4.934 10.174 6.170 16.372

Musket 33.845 47.769 28.760 15.991 4.920 10.577 5.846 16.901

BFC 34.789 50.579 29.633 16.211 5.018 10.498 6.166 16.509

Rcorrector 36.763 52.144 29.355 15.951 5.012 10.478 6.222 16.375

Best performers are highlighted in italic
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Fig. 2 Transcripts assembled from the original and error-corrected reads at the MTMR11 gene locus. Rcorrector (bottom panel) improves upon the
original reads and leads to the most complete reconstruction of the transcript

Single-cell sequencing has recently emerged as a pow-
erful technique to survey the content and variation within
an individual cell. However, PCR amplification of the
input DNA introduces biases in read coverage across the
genome. We compared Rcorrector with SEECER and the
error correction module built into the assembly package
SPAdes (3.1.0) [22]. The latter is based on the error cor-
rector BayesHammer [23], which accounts for variable
depth coverage. We applied all three methods to correct
29,124,078 E. coli K-12 MG1655 Illumina reads [22], then
aligned the corrected reads to the E. coli K-12 genome
with Bowtie2 [24] and assembled them with SPAdes. We
evaluated the alignment outcome as described earlier and
separately used the package QUAST [25] to assess the
quality of the resulting genome assemblies.
As seen in Table 6, Rcorrector results in the largest num-

ber of aligned reads, and is also the most specific among
the methods. Surprisingly, the built-in SPAdes error cor-
rector shows very low specificity (41.5%), primarily aris-
ing from BayesHammer’s trimming of end sequences for
some reads. In contrast, SEECER has very high specificity
but relatively low sensitivity, as the number of mapped
reads was actually reduced after correction. Rcorrector
shows both the highest sensitivity and the highest preci-
sion, and is therefore the best choice for this dataset.
For assembly, both Rcorrector and SEECER lead to

longer contigs and better genome coverage compared to

Table 6 Bowtie2 alignment of single-cell sequencing reads

k Aligned Rate Base match rate Specificity

Original - 27,002,682 92.716 98.863 -

SPAdes - 27,104,190 93.065 99.675 41.482

SEECER 27 26,937,652 92.493 99.507 99.553

Rcorrector 19 27,227,855 93.489 99.711 99.998

Best performers are highlighted in italic

the built-in corrector in SPAdes, while Rcorrector addi-
tionally produces the smallest number of misassemblies
(Table 7). To conclude, Rcorrector can be effectively
applied to correct single-cell DNA sequencing reads.

Conclusions
Rcorrector is the first k-spectrum based method designed
specifically for correcting RNA-seq reads, and addresses
several limitations in existing methods. It implements a
flexible k-mer count threshold, to account for different
gene and transcript expression levels, and simultaneously
explores multiple correction paths for a read, to accom-
modate isoforms of a gene. In comparisons with simi-
lar tools, Rcorrector showed the highest or near-highest
accuracy on all datasets, which varied in their amount of
sequencing errors as well as polymorphisms. Also, with
a small 5GB memory footprint for a 100 million read
dataset, it required an order of magnitude less memory
than SEECER, the only other tool designed specifically
for RNA-seq reads. Lastly, Rcorrector was the fastest of
all methods tested, taking less than two hours to correct
the simulated dataset. Therefore, Rcorrector is an excel-
lent choice for large-scale and affordable transcriptomic
studies in both model and non-model organisms.

Table 7 SPAdes assembly of single-cell sequencing reads. NG50
is the minimum contig length such that the total number of
bases in contigs this size or longer represents more than half of
the length of the reference genome

NG50 Misassembly Edits/100 kbps Genome
coverage

Original 105,623 1 6.57 95.054

SPAdes 109,876 2 7.52 94.903

SEECER 110,103 2 7.26 95.059

Rcorrector 110,103 1 10.02 95.094

Best performers are highlighted in italic
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Availability and requirements
Project name: Rcorrector
Project home page: http://github.com/mourisl/Rcorrec-
tor
Operating system(s): Unix, Linux
Programming language: C, C++, Perl
License:GNUGeneral Public License version 3.0 (GPLv3)
Any restrictions to use by non-academics: none

Availability of supporting data
All data sets supporting the analyses are available from the
GigaScience GigaDB repository [26].
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Additional file 1: Supplementary material. Section S1 - Command line
and error rate parameters for Mason. Section S2 - Variation coefficient (α)
for the four datasets. Section S3 - Trinity assembly of simulated and real
reads. Section S4 - Sim4db spliced alignments of Oases transcripts
assembled from original and error-corrected reads. (DOCX 130 kb)
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