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Abstract

Part I of this report presents a Uniform Theory of Diffraction (UTD)

model for the principal-plane radar cross section (RCS) of a perfectly

conducting, rectangular plate coated on one side with an electrically

thin (t << A), lossy dielectric. The incorporation of higher-order, mul-

tiple diffractions and of multiply diffracted surface-waves is discussed

in detail. It is demonstrated that these terms are crucial to obtain-

ing an accurate model. Approximations that are used in the model

are discussed. Suggestions for improvements to the model are made.

Validation is provided via comparison with experimental data and a

physical optics (PO) model.

Part II of this report examines the scattering in the interior regions

of both square and triangular trihedral corner reflectors. The theo-

retical model presented combines geometrical and physical optics (GO

and PO), used to account for reflection terms, with equivalent edge cur-

rents (EEC), used to account for first-order diffractions from the edges.

First-order, second-order, and third-order reflection terms are included.

Calculating the first-order reflection terms involves integrating over the

entire surface of the illuminated plate. Calculating the second- and

third-order reflection terms, however, is much more difficult because

the illuminated area is an arbitrary polygon whose shape is dependent

upon the incident angles. The method for determining the area of in-

tegration is detailed in this report. Extensive comparisons between the

high-frequency model, Finite-Difference Time-Domain (FDTD) and ex-

perimental data are used for validation of the RCS of both square and

triangular trihedral reflectors.
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A. INTRODUCTION

Important research areas involving high-frequency scattering prediction techniques

that have been discussed in previous reports include the development of techniques

for modeling corner diffraction, nonprincipal-plane scattering, and scattering from

coated conducting geometries [1, 2, 3, 4, 5, 6, 7, 8, 9]. The most recent reports

have dealt mainly with the principal-plane radar cross section (RCS) prediction

of a perfectly conducting rectangular plate coated on one side with an electrically

thin (t << A), lossy dielectric [3, 4, 5, 6, 7, 8, 9]. This is an important geome-

try to consider because its simplicity allows the isolation of individual scattering

mechanisms while its generality enables its incorporation into more complex mod-

eling geometries. In other words, the plate geometry allows one to develop and

validate modeling techniques for higher-order mechanisms, such as multiple diffrac-

tions and multiply diffracted surface waves, with the eventual goal of being able

to apply these techniques to general, coated conducting geometries.

This report presents and validates a Uniform Theory of Diffraction (UTD)

model for the principal-plane RCS prediction of a coated conducting rectangular

plate. The incorporation of higher-order multiple diffraction terms and of higher-

order surface-wave terms is discussed. The necessity of including higher-order

mechanisms is demonstrated. The model is validated by comparisons with exper-

imental results, and its superiority over a simple physical optics (PO) model is

demonstrated. Other models exist for the coated plate geometry [10, 11]; however,

the model presented in this report incorporates higher-order terms which were not

included in these earlier models. Specifically, the work by Knop and Cohn [10]

is based upon a physical optics (PO) approach, which does not include edge ef-
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fects. The modelpresentedby Bhattacharyyaand Tadon [11], althoughsimilar in

approachto the method usedin this report, includesonly first- and second-order

diffractions. The model presentedhere includesfirst-, second-,and third-order

regular diffractions and second-and third-order surface-wavediffractions. These

additional terms arecrucial to obtaining accurateresults.

The modelingof the scatteredfieldsfrom coatedconductingtargets is a sub-

ject of interest both to thosedevelopinglow-frequencymodelingtechniquesand

to thosedevelopinghigh-frequencytechniques.The developmentof low-frequency

techniqueshas beenquite successful.Both the moment method (MM) and the

finite-differencetime-domain (FDTD) techniquescan be used to accuratelypre-

dict the RCSof a coatedplate [12]. Becausethesetechniquesare low-frequency

techniques, the sizeof the geometry that can easily be modeledis limited by

computational time and memoryrequirements.Thus, it is important to develop

high-frequencytechniques,which are inherently moreappropriate for electrically

largestructures.

The model developedin this report is basedupon the UTD diffraction co-

efficients for an impedancewedge[13, 14]. The effectsof the finite thickness

lossycoatingbackedby a perfectconductorare includedusingthe short-circuited

transmission-lineapproximation.Although asimplemodel,it will bedemonstrated

that this model is accuratenear and at normal incidenceand sufficientfor other

angles. The model presentedin this report is computationally fast and simple

and increasesin accuracyas the electrical sizeof the geometryincreasesand as

the electrical thicknessof the coatingbecomessmaller. Theseare desirableand

expectedpropertiesof a high-frequencymethod.

Other work on high-frequencymethodsfor modeling coatedconducting ge-

ometries includes more sophisticated ways of dealing with problems of importance.

For example, Herman and Volakis [15] have dealt extensively with the model-

ing of scatterers in overlapping transition regions using the Extended Spectral

Ray Method (ESRM). Volakis and Senior [16] have investigated the scattering



by a metal-backed dielectric half plane using higher-order generalized impedance

boundary conditions. Rojas and Chou [17] have also explored solutions to partially

coated conducting geometries using generalized impedance boundary conditions.

Finally, Bernard [18] developed a solution for the specific case of a conducting

wedge covered by a dielectric material. Because all of this work focuses on specific

problems inherent in developing high-frequency techniques for dealing with coated

conductors, the results obtained are highly accurate for the problems of interest.

The techniques are not inherently easy to apply to more general geometries. The

goal of the research outlined in this report is to develop general models, for coated

conducting geometries, that are easily implemented and computationally fast and

accurate. Thus, the model outlined in this report uses a simple boundary condition,

the impedance boundary condition, which is incorporated into the short-circuited

transmission-line approximation, to model the effects of a flnite-thickness coating

backed by a perfect conductor. Also, a straightforward application of the UTD,

based upon the coefficients for the impedance wedge, is applied. Future research

will attempt to incorporate ideas from the aforementioned research into the general

model.

B. THEORY AND RESULTS

1. UTD Plate Model

The UTD plate model consists of two parallel impedance wedges separated by a

distance, w, equal to the plate width. The wedge geometry is shown in Fig. 1.

To obtain the plate model illustrated in Fig. 2, the left and right wedge included

angles are set to 0", or the wedge parameter is set to n = 2. For the coated plate,

the bottom face of each wedge is modeled as a perfect conductor with r/2 = 0.

The top face of each wedge is modeled by an equivalent impedance appropriate for

the coating. The plate is modeled two-dimensionally in the principal plane, and

4



Source

Observation

face "0" (2-n)

Figure 1: Impedance wedge geometry.

Incident y

Field

Figure 2: Geometry for principal-plane scattering from a strip/plate with a finite-

thickness coating backed by a perfect conductor.
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three-dimensional results are obtained using Ross's truncation approximation [19]:

2L 2

= (1)

It is important that the impedance of the coating be modeled accurately, yet

simply, so that the model remains computationally fast and easy to implement.

For these reasons, the short-circuited transmission-line approximation is used to

express the normalized equivalent impedance of the top face of each wedge as [8]:

,7o = jtF--_ tan (2TrOt) (2)
V ec

where #c and ec are the relative permeability and permittivity, respectively, of the

coating; and t is the thickness of the coating in free-space wavelengths. Both/_

and ec can be complex numbers, so r/0 is usually a complex quantity.

A first-order model which accounts for diffractions from each of the wedges

comprising the plate is not sufficient for accurate RCS prediction. As will be

demonstrated, interactions between the wedges are crucial scattering mechanisms.

The model of this work contains second- and third-order diffraction terms, in

addition to first-order mechanisms. Also, second- and third-order surface-wave

terms are included.

Higher-order diffraction terms are formulated by consecutively multiplying

the appropriate diffraction coefficients by the phase and amplitude spreading fac-

tors. The diffraction coefficients used are the UTD coefficients derived by Tiberio,

et aI. [131,and further revised by Griesser and Balanis [14]. These were based upon

Maliuzhinets' solution for the scattering by an impedance wedge [20]. The partic-

ular coefficients and methods of calculation were explicitly detailed in a previous

report [8] and, therefore, will not be repeated here. For reference, the notation for

the specific coefficients, their particular use, and the number of the equation in [8]

that gives the expression for the coefficient are given in the following table:



Table of Coefficients

Usage Notation

lst-order Diffractions

(Plane-wave Incidence,

Far-field Observation)

Higher-order Diffrac-

tions (Plane-wave Inci-

dence, Observation at a

Finite Distance)

Higher-order Diffrac-

tions (Cylindrical-wave

Incidence, Far-field

Observation)

Dlf(¢', ¢, 00, 02 = 0, n = 2)

Dv,ofd(p', ¢', ¢, 00, 02 = 0, n = 2)

D_SI(p, ¢', ¢, 00, 02 = O, n = 2)

Equation Refer-

ence in [8]

Eq.

(4) with Fresnel

Functions set to

unity (Fix] = 1)

Eq. (4)

Eq. (4) with

p substituted for

p' and ¢' and ¢

switched

Surface Wave Field Uo,_(p,¢',¢,8o, n = 2) Eq. (19)

g,,,,,(p,¢',¢,8o, n = 2) Eq. (21)Surface Wave Transi-

tion Field

The angles of incidence and observation with respect to the wedge of interest are

Ct and ¢, respectively. In [8], these were designated as Cr and ¢. The distance

from the source to the point of diffraction is pr while p is the diffraction distance.

The Brewster angles, 80 and 0_, of the top and bottom faces of the wedge are,

respectively, given by Eqs. (2) and (3) of [8]. The wedge parameter is n, and it is

equal to 2 for a half plane.

The second-order diffracted fields actually consist of four mechanisms; two

emanating from each edge of the plate. Fig. 3 illustrates the mechanisms for the

right side of the plate. The field incident on the left side of the plate diffracts along

both the top and bottom of the plate. Each of these diffracted fields then diffracts

from the right side of the plate. Analogous mechanisms exist for the left side

of the plate for a total of four second-order mechanisms. The total second-order

diffracted field is:

E2nd : EI_ 2



Figure3: Second-orderscatteringtermsemanatingfrom the right edgeof the plate.

× =0,n = 2)

× D_ss(w,O°,_bl,Oo, 02 = 0, n = 2)

' ° 2)+ Dv.,,la(w , 422,360 , 0o, 02 = 0, n =

x D_1i(w, 360°,_,Oo, 02 = 0, n = 2)]

+ e-J_¢ _°''¢-_°'_)

' * 0 2)x [Dv,.jd(w, Ca, 0 , 0o, 2 = O, n =

× D_iI(w,O*,¢2,0o,02 = 0, n = 2)

+ Dp,_jd(w,_b_,360*,Oo, O2=O,n= 2)

x D_H(w,360°,_2,0o,02 =0, n = 2)]} (3)

The third-order diffracted field consists of eight scattering mechanisms. The

four emanating from the right side of the plate are demonstrated in Fig. 4. Four

analogous mechanisms exist for the left side of the plate. The total third-order

diffracted field is:

E3rd Ei e-_kP_ e-J2k_v/k4w {e-J'_ (¢'_¢+¢°" _)

! 0

x [D_td(w, _,, 0 , 0o, 02 = 0, n = 2)

x D_nt(w , 0*, _'1, 0o, 02 = 0, n = 2)

8
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Figure 4: Third-order scattering terms emanating from the right edge of the plate.

× D_sS(2, 0", 0°, 0o,02,n = 2)

+ Dp_,la(w,_,_,360°,Oo,02 =0, n = 2)

x D_ll(W , 360*, ¢1, 00, 02 = 0, n = 2)

× D_ll(2,360*,360*,Oo, O2, n = 2)

+ D_yd(w,¢_,OO, Oo, O2=O,n=2)

x D_H(w,360°,¢l,0o, 02 = O,n = 2)

w

× D_II(-_, 0 °, 360*, 0o, 02, n = 2)

q- Dpwyd(w, ¢_, 3600, 0o, 02 = 0, n = 2)

× D_H(w,O*,¢I,0o,02 = O,n = 2)

w . ]x D_H(- _, 360 , 0", 0o, 02, n = 2)

+ eJ_(e°'4''+c°'_)

I O
× [Dr_ld(w,¢2,0 ,0o,02 =0, n = 2)

× D_ll(w, 0 °, ¢2, 0o, 02 = 0, n = 2)

w , , 2)
× D,._H(-_,O ,O,Oo,02, n=

9



+ Dp,ofd(w, g"2,360°, 0o, 02 = O, n = 2)

x D¢,_ff(w, 360°,¢2,0o, 02 = O,n = 2)

x D_fl( w, 360 °, 360 °, 0o, 02, n = 2)
2

+ Dp,ofd(w,¢'2,0°,Oo,02 =O,n = 2)

x D_ll(w, 360 °, 4'2, 0o, 02 = O, n = 2)

x D_H(2, 0 °, 360 °, 0o, 02, n = 2)

+ Dp,old(w,¢_,3600,Oo, 02 =O,n = 2)

× D_oH(w, 00, ¢2, 0o, 02 = O, n = 2)

x D_H(2,360°,O°,Oo, O2, n = 2)1} (4)

In the above equation, _ is used at some points as the distance parameter

because the diffraction coefficient at these points is for cylindrical-wave incidence

from a distance of w and observation at a finite distance of w. For this case, a

t IO

distance parameter of _ = _- must be used. Another point of greater importance

is that the UTD diffraction coefficients for the impedance wedge developed in [13]

axe identically zero for grazing incidence, which is the angle of incidence necessary

for incorporating higher-order diffraction terms. Tiberio, et aI., performed a more

precise expansion of Maluizhinets' solution to the impedance wedge problem and,

thus, developed an appropriate diffraction coefficient for the case of grazing inci-

dence (see [13] Eq. (16)). The incorporation of this coefficient into our model is a

future goal of this research. For the results generated in this report, the value of

1
the diffraction coefficient for grazing incidence is calculated i-_th of a degree from

grazing using the ordinary UTD coefficients of Eq. (4) in [8]. The results using

this approximation are quite good, as will be demonstrated in the results section

of this report. It is expected that incorporating the more precise coefficient of Eq.

(16) in [13] will achieve even better results.

10



Surface wave fields exist only for certain angular regions and surface impedances

given by Eqs. (17) and (18) in [8]. Surface wave transition fields compensate for

discontinuities in the surface wave field at the surface wave shadow boundaries

in a manner analogous to the way in which diffracted fields compensate for dis-

continuities in the geometrical optics field at the incident and reflection shadow

boundaries. The surface wave transition fields also add to the total field every-

where, as do the diffracted fields.

The model of this report includes second- and third-order diffracted surface

wave and surface-wave transition fields. The expressions for the total fields are

cumbersome and similar in form to Eqs. (3) and (4) above, so they will not be

included here. The general expression for the total nth-order diffracted field, in-

cluding the surface wave and surface wave transition terms is:

n-1 [ VPs£-jkpi ]
= U, II + +

i=1

e-jkp

× O(¢',, ¢,, p,) _ (5)

2. Contributions of Higher-Order Scattering Mechanisms

Although a model that includes first-order diffractions is accurate near and at

normal incidence to the plate, it is an insufficient model for accurately predicting

the scattering at all angles. For angles away from normal incidence, higher-order

diffraction terms and surface wave terms are crucial. A breakdown of the contri-

butions of the various terms is shown in Figs. 5 - 8 for a 2_ by 2_ plate coated

on one side with a coating of thickness t = 0.04121_ and with material param-

eters/_c = 1.539 -jl.2241 and ec = 11.826 -j0.16639. The results are shown

for a frequency of 10 GHz. In all the figures, the solid black line represents the

total field calculated using the UTD model. This model includes first-, second-,

and third-order regular diffractions, and second- and third-order surface wave and

surface wave transition terms.

11
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Figure 5: Breakdown of the UTD components (w = L = 2.0A, f - 10.0 GHz).
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Figure 6: Breakdown of the UTD components (w = L = 2.0A, f = 10.0 GHz).
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Figure 7: Breakdown of the UTD components (w = L = 2.0)_, f = 10.0 GHz).
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Figure 8: Breakdown of the UTD components (w = L = 2.0_, f = 10.0 GHz).
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Fig. 5 compares the total UTD field to the field calculated using only first-

order diffractions. Near and at normal incidence to both sides of the plate, the

two models agree fairly well indicating that first-order diffractions are the main

contributing mechanisms at these angles. Away from the main lobe, however, it

is apparent that higher-order terms are major contributors to the scattered field.

The two models differ drastically in the region extending from grazing incidence

to approximately 60 ° away from grazing on both sides of the plate.

Fig. 6 illustrates that second-order diffractions are the major higher-order

contributing mechanisms. The dotted line in this figure is the UTD field calcu-

lated using only first- and second-order diffraction terms. The dashed line is the

magnitude of the second-order diffractions only. For the main lobe on both sides

of the plate, the second-order terms are not significant; however, away from this

lobe, they become crucial. The first minor lobes are predicted fairly well with the

addition of the second-order terms. In the grazing lobes, especially on the coated

side of the plate, there is still a need for higher-order terms to complete the model.

The third-order diffraction terms improve the results in the grazing lobes

somewhat, as illustrated in Fig. 7, where the dotted line represents a UTD model

containing first-, second-, and third-order regular diffractions. The dashed line

representing the magnitude of the third-order field indicates that these fields are

very minor compared to the other fields. Pig. 8 illustrates that surface wave and

surface wave transition fields are crucial to the overall RCS pattern in the grazing

lobes. The solid line is the total field containing the surface wave and surface wave

transition fields while the dotted line does not contain these terms. The difference

between the two predicted fields is obvious in the lobes near grazing. As the dashed

line representing the magnitude of the surface wave and surface wave transition

fields indicates, the surface wave fields represent a larger contribution to the total

field than the third-order fields.

14



3. Results

To validate the coated plate UTD model, measured RCS data was obtained for two

different physical plates at several different frequencies using the ElectroMagnetic

Anechoic Chamber (EMAC) at Arizona State University (ASU). The two plates,

which will be referred to as Plate A and Plate B, are characterized by the following

parameters:

• Plate A

- size: 6.0 cm x 6.0 cm

- plate material: Aluminum (25.0 mils)

- coating material: SWAM (commercially available ferrite-loaded RAM)

- coating thickness: 48.642 mils

- relative permittivity of coating: c_ = 11.826 - j0.16639

- relative permeability of coating: _u_ = 1.539- jl.2241

- frequency of measurement: 10.0 GHz

- plate size in wavelengths: 2.0)_ x 2.0_

- coating thickness in wavelengths: 0.04121)_

• Plate B

- size: 3.1625 in. x 3.1625 in.

- plate material: Brass (10.0 - 15.0 mils)

- coating material: GDS (commercially available ferrite-loaded RAM)

- coating thickness: 33.177 mils

- relative permittivity of coating: ec - 13.927 - j0.208

- relative permeability of coating: /_¢ = 1.446 -jl.140

- frequencies of measurement: 9.4842 GHz, 11.1964 GHz, and 12.053 GHz

- plate sizes in wavelengths: 2.54_ x 2.54_, 3.0)_ x 3.0_, and 3.23)_ x 3.23_

- coating thicknesses in wavelengths: 0.0267)_, 0.03147)_, 0.03388_

Plate A is electrically smaller than Plate B, and Plate A has a lossier coating than

Plate B. For these reasons, the UTD model is less accurate for Plate A than it is

for Plate B. The data indicates that the UTD model improves in accuracy as the

electrical size of the plate increases and as the coating becomes electrically thinner

15
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Figure 9: Monostatic RCS of Plate A (w = L = 2.0_, f = 10.0 GHz).

and less lossy. The data presented in the next few figures demonstrates that the

UTD model, which accounts for edge effects, is much more accurate than the PO

model, which does not include the effects of interacting edges.

Fig. 9 contains graphs of the PO and experimental data for Plate A. Although

there is excellent agreement in the main lobe, the PO model becomes increasingly

inaccurate away from the main lobe, especially on the coated side of the plate

(0 ° < @< 180"). Fig. 10 demonstrates that the UTD model is much more accurate.

On the perfectly conducting side of the plate, the UTD model agrees fairly well

in the main lobe and first two side lobes. On the coated side of the plate, there

is much inaccuracy; however, the results are still better than those obtained using

the PO model. The two biggest areas of concern are the discontinuities apparent

at the grazing angles near _b= 180" and the discrepancy at normal incidence to

the coated side of the plate. These areas are being investigated.
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Figure 10: Monostatic RCS of Plate A (w = L = 2.0)_, f = 10.0 GHz).

The results for Plate B demonstrate that the UTD model becomes much

more accurate as the electrical size of the plate increases. Fig. 11 contains PO and

experimental data for Plate B at 9.5 GHz. Agreement between the two sets of data

is excellent for the main lobe and first side lobe on both sides of the plate; however,

the agreement between the UTD data and the experimental results, shown in Fig.

12, shows much better agreement. On both sides of the plate, agreement is almost

exact in the main lobe and first two side lobes. Agreement even in the grazing

lobes is very good. At higher operational frequencies, the agreement between the

UTD model and experiment remains consistently good. Figs. 13 and 14 show the

results for Plate B at 11.2 GHz, and Figs. 15 and 16 show the results for 12.1 GHz.
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C. FUTURE WORK

We have demonstrated a fairly accurate, yet computationally simple and fast, UTD

model for coated plate scattering in the principal plane. Immediate future work

will address modifications and refinements of this model. Particularly, the more

accurate UTD diffraction coefficients formulated by Tiberio, et al. [13], will be

used for modeling higher-order diffractions. This should result in better accuracy.

Also, the use of the ESRM of Herman and Volakis [15] will be investigated to see

if more accurate results can be obtained using this method.

The ultimate goal of this research is to be able to apply the UTD for coated

wedges to general geometries. In order to realize this goal, the method must remain

general. Other areas of possible future research include the use of the ESRM and of

higher-order generalized impedance boundary conditions (GIBC's); however, the

drawback of these techniques is that they are specific to a geometry and must often

be reformulated for each target of interest. Also, although the area of GIBC's is

promising, current research indicates that using GIBC's often results in non-unique

solutions [21]. Despite these drawbacks, future research will look at the possibility

of including the ESRM and GIBC's in a UTD model. Other future goals include

extending the principal-plane plate model to nonprincipal planes by incorporating

equivalent currents techniques. Also, the UTD for coated wedges will be applied

to the dihedral corner reflector.
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A. INTRODUCTION

In the last report we examined the radar cross section (RCS) of the square trihedral

corner reflector in the interior region. Expressions for the reflected fields as well as

expressions for the equivalent currents at the edges of the trihedral were explicitly

given. In this report we examine the RCS of both the square and triangular corner

reflectors. The formulation of the reflected fields for the interior region of the

triangular trihedral is exactly the same as that of the square trihedral; however,

the area over which the Physical Optics (PO) surface integral is evaluated is now

different. The approach followed to determine this area of integration is explained

thoroughly in this report. The equivalent currents at the exterior edges of either

trihedral were derived based upon Michaeli's PTD equivalent edge currents. The

PTD-EEC expressions for the triangular trihedral are also similar to those already

used in the case of the square trihedral but now the orientation of the edges is

different. Furthermore, in this report we include more results, for both the square

and triangular trihedrals, which are compared with Finite-Difference Time-Domain

(FDTD) data as well as with measurements performed in the ElectroMagnetic

Anechoic Chamber (EMAC) at Arizona State University. The PO-MEC results

compare very well with both the FDTD data and the measured data.

Analysis of a square trihedral corner reflector was performed by Baldanf et

aI. [22], using the CAD-based Shooting and Bouncing Ray (SBR) method. They

examined both its monostatic and bistatic RCS for three different sizes (small,

medium, and large). Their results were good for medium and large trihedrals but

less accurate for smaller objects. The SBR method has the disadvantage that both
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its accuracyand the CPU time required to run a particular casedependon the

number of rays per wavelength launched from the incident direction toward the

target. Increasing the density of the rays leads to more accurate results but at the

expense of extending the CPU time. The accuracy of the method is proportional

to the number of rays because the fields at the aperture of the output ray tube

are approximated to those that correspond to the ray passing through the center

of the aperture. As the number of rays per wavelength increases, the area of

the aperture eventually becomes very small and the approximation becomes more

appropriate. In other words, the smaller the aperture of the output ray tube is,

the more accurate the SBR results are; however, the CPU time increases because

of the use of a denser grid. Also, the CPU time increases with increasing radar

target size. This is not a very attractive feature for a high frequency approach

such as the SBR method.

In the present analysis, PO and Michaeli's equivalent edge currents (EEC)

method (usually referred as PTD-EEC) are applied on both the square and tri-

angular trihedral corner reflectors to evaluate the backscatter RCS in the interior

region. PO is used for the calculation of single, double, and triple reflections

from the trihedral plates, whereas PTD-EEC is used for the calculation of the

first-order diffractions from the exterior edges. The PO surface current density is

integrated over the illuminated area of the particular plate. For single reflections

the surface integration is evaluated over the entire plate because it is completely

illuminated. The integration is carried out in closed form since the integrand is a

simple exponential function with linearly varying phase over the entire surface of

the plate. For double and triple reflections, however, the surface of integration is

not the entire area of the second and third plates, respectively, but rather only the

illuminated parts of these plates. The shape of the illuminated area is usually an

arbitrary polygon whose shape changes according to the incident and observation

angles. The difficulty in this case is to determine the shape of the illuminated area

at any incident angle and to efficiently integrate the surface current density over
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that area. Another problemwith the evaluationof the doubleand triple reflected

fieldsis the fact that the surfacecurrent densityon the secondand third plates of

the trihedrai shouldbecalculatedin the "near field" of the first and second reflec-

tions, respectively. In our analysis, however, the GO approximation is used for the

calculation of the initial reflected fields and the PO is subsequently applied only

for the last reflection. In other words, it is assumed that the planar nature of the

incident wave is maintained after the first and second reflections, which simplifies

the expressions for the scattered fields considerably.

For the evaluation of the diffracted fields, Michaeli's PTD-EEC expressions

are utilized to calculate the first-order diffractions from the exterior edges of the

trihedrai. Diffractions from interior edges are usually much lower than diffractions

from exterior edges and, therefore, were excluded. PTD-EEC expressions are based

on the fringe component of the equivalent edge current for the wedge. These

were deduced from the exact solution of the canonical wedge problem. It is also

important to note that PTD-EEC expressions do not contain the PO component of

equivalent currents; therefore, the diffracted fields using PTD-EEC should improve

the reflected fields calculated using PO. In the case of the trihedral, however, the

reflected fields in the interior region are significantly higher than the diffracted

fields. Consequently, the effect of the diffractions is not always obvious.

B. ANALYSIS

The backscatter cross section of the square and triangular trihedral corner reflec-

tors, depicted in Figs. 17(a) and 17(b), is evaluated by considering single, double,

and triple reflections as well as first-order diffractions. Expressions for the re-

flected fields were given explicitly in the previous report; therefore, they are not

repeated here. It is important, however, that the approach used to determine the

shape of the illuminated area on the plate of last reflection be explained in detail.

This is the area on which the PO integration is evaluated. For single reflections

the illuminated area is the entire surface of the particular plate. For double and
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Figure 17: Geometry of the square and triangular trihedrals.

triple reflections the illuminated area looks like an arbitrary polygon whose shape

depends on the incident angles.

1. The Shape of the Illuminated Area for Double and Triple Reflections

Evaluation of the doubly and triply reflected fields requires integration over the

illuminated part of the plate on which the last reflection occurs. The illuminated

area on that plate has the shape of a polygon whose corner coordinates vary ac-

cording to the direction of incidence. Our objective in this section is to explain

how the corner coordinates of the illuminated area can be determined, as well as

to illustrate an efficient way to evaluate the PO surface integral over this area.

Double and triple reflections occurring in the interior of a trihedral corner re-

flector create shadow regions on the second and third plate, respectively. Fig. 18(a)

illustrates the shaded area created on plate #3 for the case of the double reflection

term R_3. As is shown, the incident plane wave, which illuminates completely all

three trihedral plates, is first reflected from plate #2 and then propagates toward

plate #3. However, the reflected fields from plate #2 do not completely illumi-

nate plate #3. To determine the shape of the illuminated and/or shadow region
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on plate #3, it is first necessaryto obtain the directionof the rays after the first

reflectionoccurs. Their direction, accordingto imagetheory, is the mirror image

of the incident directionoverplate #2. Knowing the directionof the reflectedrays

from plate #2, onecan trace the path of the rays that passthrough the exterior

edgesof plate #2, asshownin Fig. 18(a), to the point wherethey reachthe sur-

faceof plate #3. We do not trace the path of the rays that do not strike plate

#3. The line connectingthe points wheretheseray-pathsintersectwith plate #3,

referring to Fig. 18(a), definesthe boundary that separatesthe illuminated from

the shadowregion. The illuminated areashouldalways include the origin of the

coordinate system. Note that the shapeof the illuminated area varies with the

incident angle. To illustrate this, two caseswith different directionsof incidence

areexamined.Fig. 18(a)depictsthe shadowregiononplate #3 for incidentangles

Oi greater than 45* and ¢i also greater than 45*. As Oi becomes smaller than 45 °,

the shape of the illuminated area looks like a triangle, as shown in Fig. 18(b).

For triple reflections, estimating the shaded part on the third plate after two

consecutive reflections on the other two trihedral plates is much more complicated

than in the case of double reflections. The approach, however, remains the same as

before -- the double reflected rays passing through the periphery of the illuminated

area on the second plate, see Fig. 18(c), are traced to the third plate. These rays

intersect the surface of the third plate at certain points, which actually mark the

boundary of the illuminated area (or shaded area). The shaded area on the third

plate for the case of the triple reflection term R123 is ilustrated in Fig. 18(c).

As demonstrated above, the illuminated area on a particular plate due to

either double or triple reflection is a polygon whose shape depends on the direction

of wave incidence. To calculate the reflected fields, the P* surface integral should

be evaluated on this polygon. An efficient way to evaluate this integral is to

subdivide the corresponding polygon into rectangles and right triangles. The P*

surface integral can then be easily evaluated over the areas of both these two shapes

in closed form.
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2. Evaluation of Diffracted Fields Using PTD-EEC

PTD-EEC expressions, derived by Michaeli [23, 24], are utilized to find the far-

field diffracted fields from the exterior edges of both the square and the triangular

trihedral corner reflectors. PTD-EEC expressions are based on the fringe cur-

rents that exist at the edges. Unlike GTD-EEC, PTD-EEC does not include the

PO surface current density. Therefore, adding the diffracted fields (based on the

PTD-EEC formulations) to the reflected fields (based on the PO surface current

density) results in closer agreement with the experimental data. The correspond-

ing expressions for the fringe currents, IS and M I, can be found in Michaeli's

papers on equivalent currents [23, 24]. Here, the analysis is restricted to how the

electric and magnetic fringe currents are used to derive expressions for the far-field

diffracted fields. The procedure is similar to the one used for the reflected fields

in the previous section. First, the vector potentials are estimated using

/C fe-jkR /cIfeJkL'dl (6)P I ----_dl "_ It e-JkrA = _ -41r r

fC fe-JkR fC nf eJ_L'dl (7)M ---_dl "_ _ e-Jk_F - 4rr - 4r r

where L, was defined in the previous report. The integral is evaluated along the

length of the trihedral edge from which the diffracted fields are to be calculated. As

in the case of reflected fields from a trihedral plate, this integral can be evaluated

in closed form because the integrand is a simple exponential function with linearly

varying phase along the edge. After evaluating the electric and magnetic vector

potentials, the far-field spherical components of the scattered field can be written

as [25]

E_ _ 0 (s)

(9)

(1o)
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C. RESULTS

Results from the combined PO-MEC model are compared with experimental data,

as well as with data obtained using the FDTD method. The experiments were

performed using both a square and a triangular corner reflector whose geometries

are shown in Figs. 17(a) and 17(b).

The main advantage of the PO-MEC approach, over other techniques, is that

it calculates each scattering component separately and then combines them for the

calculation of the total RCS. Each component (single, double, trible reflections and

first-order diffractions), therefore, can be plotted separately in order to examine

its contribution to the total RCS. Then, the shape of the particular target can

be slightly modified to reduce the RCS of the component that contributes the

most to the total backscattered fields. Fig. 19 illustrates the major individual

backscattering components of a 15A square trihedral for 01 = 0o = 50 ° and _bi = _bo

varying from 0° to 90 °. These RCS plots represent single reflections (R1, R2, and

Rs), double reflections (R12, R13, R21, R23, Rza, and Rs2), triple reflections (R123,

R132, R213, R231, R312, and R321), and first-order diffractions from the exterior

edges of the square trihedral plates. Diffractions from the three interior edges

of the trihedral were not considered, which explains why the RCS pattern for

the first-order diffractions is not completely symmetric about 45 °. Fig. 19 also

illustratesthe total RCS pattern of the square trihedral. Examining these five

figures,itcan be seen that the major contributionto the RCS isprovided by the

triplyreflectedfields.The reason isthat allthree trihedralplatesare mutually

perpendicular;therefore,the directionof propagation of the triplyreflectedfields

isparallelto that of the incidentplane wave. Changing the angle between the

plateswillcertainlyreduce the overallRCS.

To adequately validate the approach followed in this paper, differentsizes

of both trihedralcorner reflectorswere considered. All graphs in this section

correspond to E0 polarization.
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1. Small Trihedral Corner Reflectors

A 3A square trihedral and a 5A triangular trihedral are considered relatively small

radar targets for high frequency analysis. The classification of small, medium and

large trihedrals is based on the total area covered by the trihedral plates. Fig. 20

shows the monostatic RCS of a 3A square trihedral at ¢i = ¢s = 60 ° as Oi = Oo

varies from 0 ° to 90 °. The agreement between the predicted and the experimental

results is good even if the object is relatively small for high frequency analysis.

Fig. 21 shows the monostatic RCS of a 5A triangular trihedral at ¢i = ¢o = 35 °

as Oi = O° varies from 0 ° to 90 °. A very good agreement between the theoretical

and the experimental results is observed.
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2. Medium Trihedral Corner Reflectors

A 5)_ square trihedral and a 7_ triangular trihedral are considered medium sized

radar targets. Fig. 22 shows the monostatic RCS of the 5A square trihedral on a

conical path where Oi = O, = 66 ° and ¢i = ¢, varies from 0° to 90 °. Our predictions

are compared with both FDTD and measured data. The agreement is very good.

In addition to conical paths, our formulation is capable of calculating the

RCS of either the square or triangular trihedral by moving the source and/or

observation point along a great circle. The great circle has its center at the origin

of the coordinate system and makes an angle 0 = 0_ with the z-axis at ¢ = 45 °.

This is the same as if the trihedral is tilted forward so its z-directed edge makes an

angle 90 - 0a degrees with the z-axis as ¢o changes from 0 ° to 90 °. Fig. 23 shows

the monostatic RCS of a 7A triangular trihedral as ¢, varies on a great circle at

09 = 80 °. The agreement between theoretical and experimental data is very good.

Also, observe that the RCS patterns of Figs. 22 and 23 are symmetric about
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¢ = 45 °. This is always the case since the trihedral exhibits symmetry when the

observation point moves on an azimuthal plane. Fig. 24 illustrates the monostatic

RCS of a 7_ triangular trihedral at ¢i = ¢, = 45 ° as #i = #, varies from 0 ° to 90 °.

Our predictions match very well with both the FDTD and the experiment.

3. Large Trihedral Corner Reflectors

A 7,k square trihedral and a 10)_ triangular trihedral are considered relatively large

radar targets. Fig. 25 shows the monostatic RCS of a 7)_ square trihedral on a

conical path as 01 = 0, = 700 and _i = ¢, varies from 0 ° to 90 °. The agreement

of the PO-MEC with the experiment is very good. Fig. 26 shows the monostatic

RCS of a 7_ square trihedral at ¢i = ¢o = 50* as Oi = 0° varies from 00 to 90 °. Our

predictions agree very well with the FDTD data. Fig. 27 shows the monostatic

RCS of a 10)_ triangular trihedral as ¢, varies on a great circle at 09 = 80 °. The

agreement of the PO-MEC with the experiment is very good except near ¢_, = 7°;
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however, it was observed that near this specific observation angle the RCS pattern

is very sensitive to slight changes in 0a. Also, it can be seen from Fig. 27 that the

experimental data is not quite symmetric about ¢m = 45*. Finally, Fig. 28 shows

the monostatic RCS of a 10X triangular trihedral at ¢i = ¢s = 45 ° as Oi = O,

varies from 0° to 90 °. Our predictions are in nearly excellent agreement with the

experimental data.

The FORTRAN code written for the evaluation of the RCS of either the

square or the triangular trihedral corner reflector provides very good results for

any angle of incidence and/or observation. The agreement with experimental data

is within 2 dB of accuracy. Fig. 29 and Fig. 30 show three-dimensional RCS

patterns of a 5X square trihedral and a 7A triangular trihedral, respectively. The

execution time required by a SUN SPARC station IPX computer to calculate the

data to create either one of these three-dimensional plots is 77.4 seconds, which

is much less than the execution time required by other theoretical techniques to
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perform the sametask.

D. CONCLUSIONS

The hybridization of PO and MEC is a very good approach for the evaluation of

the monostatic RCS of complex structures such as the square and triangular corner

reflectors. It provides results that compare very well with experimental, as well

as with FDTD data. The method is also very efficient in terms of computational

requirements such as memory space and CPU time. For example, the FORTRAN

code, which was used to obtain the results presented in this report, can compile

and run on a variety of computer systems including a PC. It also runs very quickly.

Specifically, it takes only 0.0095 seconds on a SUN SPARC station IPX computer

to evaluate the RCS of either trihedral corner reflector at a single point. This CPU

time is constant, regardless of the trihedral size.

E. FUTURE WORK

In this semiannual report we examined the monostatic RCS of both square and

triangular trihedral corner reflectors in the interior region. In the future, we are

planning to obtain the RCS of both these trihedrals in the exterior region as well.

This will complicate the approach used to determine the illuminated area on the

plate of last reflection.
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